首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Artificial periodic irregularities (API) are produced in the ionospheric plasma by a powerful standing electromagnetic wave reflected off the F region. The resulting electron-density irregularities can scatter other high-frequency waves if the Bragg scattering condition is met. Such measurements have been performed at mid-latitudes for two decades and have been developed into a useful ionospheric diagnostic technique. We report here the first measurements from a high-latitude station, using the EISCAT heating facility near Troms0, Norway. Both F-region and lower-altitude ionospheric echoes have been obtained, but the bulk of the data has been in the E and D regions with echoes extending down to 52-km altitude. Examples of API are shown, mainly from the D region, together with simultaneous VHP incoherent-scatter-radar (ISR) data. Vertical velocities derived from the rate of phase change during the irregularity decay are shown and compared with velocities derived from the ISR. Some of the API-derived velocities in the 75–115-km height range appear consistent with vertical neutral winds as shown by their magnitudes and by evidence of gravity waves, while other data in the 50–70-km range show an unrealistically large bias. For a comparison with ISR data it has proved difficult to get good quality data sets overlapping in height and time. The initial comparisons show some agreement, but discrepancies of several metres per second do not yet allow us to conclude that the two techniques are measuring the same quantity. The irregularity decay time-constants between about 53 and 70 km are compared with the results of an advanced ion-chemistry model, and height profiles of recorded signal power are compared with model estimates in the same altitude range. The calculated amplitude shows good agreement with the data in that the maximum occurs at about the same height as that of the measured amplitude. The calculated time-constant agrees very well with the data below 60 km but is larger above 60 km by a factor of up to 2 at 64 km. The comparisons with the model are considered to be a good basis for more refined comparisons.  相似文献   

3.
The optical detection of auroral subarcs a few tens of m wide as well as the direct observation of shears several m/s per m over km to sub km scales by rocket instrumentation both indicate that violent and highly localized electrodynamics can occur at times in the auroral ionosphere over scales 100 m or less in width. These observations as well as the detection of unstable ion-acoustic waves observed by incoherent radars along the geomagnetic field lines has motivated us to develop a detailed time-dependent two-dimensional model of short-scale auroral electrodynamics that uses current continuity, Ohms law, and 8-moment transport equations for the ions and electrons in the presence of large ambient electric fields to describe wide auroral arcs with sharp edges in response to sharp cut-offs in precipitation (even though it may be possible to describe thin arcs and ultra-thin arcs with our model, we have left such a study for future work). We present the essential elements of this new model and illustrate the models usefulness with a sample run for which the ambient electric field is 100 mV/m away from the arc and for which electron precipitation cuts off over a region 100 m wide. The sample run demonstrates that parallel current densities of the order of several hundred A m-2 can be triggered in these circumstances, together with shears several m/s per m in magnitude and parallel electric fields of the order of 0.1 mV/m around 130 km altitude. It also illustrates that the local ionospheric properties like densities, temperature and composition can strongly be affected by the violent localized electrodynamics and vice-versa.  相似文献   

4.
Incoherent-scatter radar and ionospheric sounding are powerful and complementary techniques in the study of the Earths ionosphere. The work presented here involves the use of the Tromsø Dynasonde as a correlative diagnostic with the EISCAT incoherent-scatter radar. A comparison of electron-density profiles shows how a Dynasonde can be used to calibrate an incoherent-scatter radar and to monitor changes in the system. Sky-maps of the direction of Dynasonde echoes are compared with EISCAT-derived density profiles to illustrate how a Dynasonde can be used to measure the drift velocity of auroral features. Vector velocities fitted to Dynasonde echoes are compared with EISCAT-derived plasma velocities. The results show good agreement when the data are taken during quiet to moderately active conditions and averaged over time scales of 30 min or more.  相似文献   

5.
Studies of the auroral plasma with small-scale inhomogenieties producing the VHF-radar reflections (radar aurora) when observed in conditions of the saturated Farley-Buneman instability within the auroral E region, show strong nonlinear interactions and density fluctuations of 5–15%. Such nonlinearity and high fluctation amplitudes are inconsistent with the limitations of the weak turbulence theory, and thus a theory for arbitrary amplitudes is needed. To this end, a nonlinear theory is described for electrostatic MHD moving plasma structures of arbitrary amplitude for conditions throughout the altitude range of the collisional auroral E region. The equations are derived, from electron and ion motion selfconsistent with the electric field, for the general case of the one-dimensional problem. They take into account nonlinearity, electron and ion inertia, diffusion, deviation from quasi-neutrality, and dynamical ion viscosity. The importance of the ion viscosity for dispersion is stressed, while deviation from the quasi-neutrality can be important only at rather low plasma densities, not typical for the auroral E region. In a small amplitude limit these equations have classical nonlinear solutions of the type of electrostatic shock wave or of knoidal waves. In a particular case these knoidal waves degrade to a dissipative soliton. A two-dimensional case of a quasi-neutral plasma is considered in the plane perpendicular to the magnetic field by way of the Poisson brackets, but neglecting the nonlinearity and ion inertia. It is shown that in these conditions an effective saturation can be achieved at the stationary turbulence level of order of 10%.  相似文献   

6.
The density and temperature of the plasma electron component and wave emission intensity in the topside ionosphere were measured by the INTERCOSMOS-19 satellite. In the subauroral ionosphere, a decrease in the plasma density correlates with an increase in the plasma electron component temperature. In this case, the additional increase in the electron component temperature was measured in regions with increased plasma density gradients during the substorm recovery phase. In a linear approximation, the electromagnetic wave growth increments are small on electron fluxes precipitating in the auroral zone. It has been indicated that Bernstein electromagnetic waves propagating in the subauroral topside ionosphere can intensify in regions with increased plasma density gradients on electron fluxes orthogonal to the geomagnetic field, which are formed when plasma is heated by decaying electrostatic oscillations of the plasma electron component. This can be one of the most important factors responsible for the intensification of auroral kilometric radiation.  相似文献   

7.
Flow bursts within the ionosphere are the ionospheric signatures of flow bursts in the plasma sheet and have been associated with poleward boundary intensifications (PBIs). Some PBIs extend equatorward from the polar cap boundary, where they can be roughly divided into north–south-aligned and east–west-aligned structures. In this paper, we present two flow burst events observed by the new Poker Flat Advanced Modular Incoherent Scatter Radar (PFISR) in the pre-midnight auroral zone on 28 April 2007, one towards the west and the other towards the east. In both cases, enhanced flows lasted for about 8–10 min with peak velocities exceeding 1500 m/s. The concurrently measured electron density showed that the flow bursts occurred in low conductivity regions. However, near the poleward (equatorward) edge of the westward (eastward) flow burst, strong electron density enhancements were observed in the E region, indicating the presence of discrete auroral arcs. Auroral images from the Polar spacecraft were available at the time of the eastward flow burst and they indicate that this burst was associated with an east–west-aligned auroral structure that connected at later MLT to a north–south structure. In addition, simultaneous precipitating particle energy spectrum measured by the the Defense Meteorological Satellites Program (DMSP) F13 satellite reveals that this auroral structure resulted from mono-energetic electron precipitation associated with a significant field-aligned potential drop. These observations show direct evidence of the relationship between flow bursts, field-aligned currents and auroral intensifications, and suggest that eastward/westward flow bursts are associated with east–west-oriented PBI structures that have extended well within the plasma sheet. This is in contrast to the equatorward-directed flow that has been previously inferred for PBIs near the polar cap boundary and for north–south auroral structures. This paper illustrates the use of the PFISR radar for studying the magnetosphere–ionosphere coupling of flow bursts.  相似文献   

8.
Observations from the special UK EISCAT program UFIS are presented. UFIS is a joint UHF-VHF experiment, designed to make simultaneous measurements of enhanced vertical plasma flows in the F-region and topside ionospheres. Three distinct intervals of upward ion flow were observed. During the first event, upward ion fluxes in excess of 1013 m–2 s–1 were detected, with vertical ion velocities reaching 300 ms–1 at 800 km. The upflow was associated with the passage of an auroral arc through the radar field of view. In the F-region, an enhanced and sheared convection electric field on the leading edge of the arc resulted in heating of the ions, whilst at higher altitudes, above the precipitation region, strongly enhanced electron temperatures were observed; such features are commonly associated with the generation of plasma upflows. These observations demonstrate some of the acceleration mechanisms which can exist within the small-scale structure of an auroral arc. A later upflow event was associated with enhanced electron temperatures and only a moderate convection electric field, with no indication of significantly elevated ion temperatures. There was again some evidence of F-region particle precipitation at the time of the upflow, which exhibited vertical ion velocities of similar magnitude to the earlier upflow, suggesting that the behaviour of the electrons might be the dominant factor in this type of event. A third upflow was detected at altitudes above the observing range of the UHF radar, but which was evident in the VHP data from 600 km upwards. Smaller vertical velocities were observed in this event, which was apparently uncorrelated with any features observed at lower altitudes. Limitations imposed by the experimental conditions inhibit the interpretation of this event, although the upflow was again likely related to topside plasma heating.  相似文献   

9.
Ground-based dual-frequency GPS observations can be used to create images of electron density. This is well established for the Arctic ionosphere; here one of the first results is presented for the Antarctic. In this study, the GPS receivers in the Antarctic are supplemented with another GPS receiver onboard CHAMP. The aim of the study is to demonstrate the technique for investigating geophysical events, for example, an ionospheric disturbance period on 11 February 2004. The images have been validated by in-situ measurements from DMSP and CHAMP satellites, as well as Super Dual Auroral Radar Network (SuperDARN) convection patterns, which are able to confirm the location, presence, and transportation of large-scale plasma patches. This study indicates that although the convection still dominates in the high-latitude ionosphere, soft precipitation within the polar cap may play a role in the evolution of the polar patches. It also illustrates the potential for future multi-instrument studies of the Antarctic.  相似文献   

10.
The electron component of intensive electric currents flowing along the geomagnetic field lines excites turbulence in the thermal magnetospheric plasma. The protons are then scattered by the excited electromagnetic waves, and as a result the plasma is stable. As the electron and ion temperatures of the background plasma are approximately equal each other, here electrostatic ion-cyclotron (EIC) turbulence is considered. In the nonisothermal plasma the ion-acoustic turbulence may occur additionally. The anomalous resistivity of the plasma causes large-scale differences of the electrostatic potential along the magnetic field lines. The presence of these differences provides heating and acceleration of the thermal and energetic auroral plasma. The investigation of the energy and momentum balance of the plasma and waves in the turbulent region is performed numerically, taking the magnetospheric convection and thermal conductivity of the plasma into account. As shown for the quasi-steady state, EIC turbulence may provide differences of the electric potential of δ V ≈ 1–10 kV at altitudes of 500 < h < 10 000 km above the Earth’s surface. In the turbulent region, the temperatures of the electrons and protons increase only a few times in comparison with the background values.  相似文献   

11.
Physical processes which affect the absorption of radio waves passing through the auroral E-region when Farley-Buneman irregularities are present are examined. In particular, the question of whether or not it is legitimate to include the anomalous wave-enhanced collision frequency, which has been used successfully to account for the heating effects of Farley-Buneman waves in the auroral E-region, in the usual expression for the radio-wave absorption coefficient is addressed. Effects also considered are those due to wave coupling between electromagnetic waves and high-frequency electrostatic waves in the presence of Farley-Buneman irregularities. The implications for radio-wave heating of the auroral electrojet of these processes are also discussed. In particular, a new theoretical model for calculating the effects of high-power radio-wave heating on the electron temperature in an electrojet containing Farley-Buneman turbulence is presented.  相似文献   

12.
13.
The existence of anomalous ionospheric reflections was shown on the basis of vertical soundings at the Moskow station. They are observed at heights of 100–200 km. These anomalous reflections are not related to the main Ne(h) ionospheric profile. Morphological characteristics of such reflections are presented: the daily, seasonal, and cyclic dependences of their appearance.  相似文献   

14.
Auroral electron transport calculations are a critical part of auroral models. We evaluate a numerical solution to the transport and energy degradation problem. The numerical solution is verified by reproducing simplified problems to which analytic solutions exist, internal self-consistency tests, comparison with laboratory experiments of electron beams penetrating a collision chamber, and by comparison with auroral observations, particularly the emission ratio of the N2 second positive to N+ 2 first negative emissions. Our numerical solutions agree with range measurements in collision chambers. The calculated N22P to N+ 21N emission ratio is independent of the spectral characteristics of the incident electrons, and agrees with the value observed in aurora. Using different sets of energy loss cross sections and different functions to describe the energy distribution of secondary electrons that emerge from ionization collisions, we discuss the uncertainties of the solutions to the electron transport equation resulting from the uncertainties of these input parameters.  相似文献   

15.
电离层TEC卡尔曼滤波成像研究   总被引:2,自引:2,他引:0       下载免费PDF全文
随着太空探测技术的进步,对TEC(Total Electron Content,简称TEC)探测精度要求越来越高.本文利用COSMOS 2414卫星数据资料获得观测TEC,在电离层NeQuick模型下,得到电离层电子密度,并使用卡尔曼滤波算法反演电子密度,最后结合电离层测高仪数据对实验结果进行判定.结果发现利用卡尔曼滤波反演信标资料算法,可以获得可靠的二维电子密度场.  相似文献   

16.
On the basis of observations for the IGY period (visoplots) it is shown, that during magnetic storms diffuse glow is detected at all latitudes between the lowest latitude of the visually observed auroral glow at the zenith and the auroral oval. The diffuse glow region spatially coincides with the region of soft electron precipitation extending equatorward from the boundary of the oval to the latitude of the plasmopause projections along the magnetic force lines to the ionosphere. Using published materials on the diffuse glow dynamics and SAR arcs at the Yakutsk meridian, as well as simultaneous measurements of the DMSP F9 satellite, we discuss the contribution from low-energy electron precipitation transfered via convection toward Earth from the magnetosphere’s plasma sheet to excitation of 630.0 nm emission in low-intensity (<1.0 kR) SAR arcs.  相似文献   

17.
由非相干散射雷达数据重建极光沉降粒子能谱   总被引:1,自引:0,他引:1       下载免费PDF全文
本文研究了由极区地面雷达电子密度高度剖面测量数据重建极光沉降粒子能谱的基本原理和方法.在4~30 keV能量范围内,重建结果与FAST卫星实测数在数值水平和变化趋势上基本吻合;在地磁平静和磁暴期间,重建获得能谱特征与前人研究结果相一致.该方法开辟了获取沉降粒子能谱特征的一条新途径,可以弥补卫星能量粒子观测数据磁地方时分辨率的不足,对于建立空间环境扰动模式具有重要的学术意义和应用价值.  相似文献   

18.
The intensity of the wave emission in the 0.1–10 MHz band measured in the ionosphere (the APEX satellite experiment) has been presented. A jump of the plasma density and an increase in the emission intensity at a plasma frequency have been registered at altitudes of ~1300 km in the topside auroral ionosphere. The emission intensity in the whistler-mode band nonmonotonically increased along the satellite trajectory near the plasma jump wall. It has been indicated that waveguides could be formed near the wall during damping of electrostatic oscillations generated by precipitating electron fluxes. A spatially nonmonotonous separation of waveguides from the plasma inhomogeneity stretched along geomagnetic field lines is possible in this case.  相似文献   

19.
The results of a spectral analysis of time variations in the Doppler frequency shift which accompanied solar eclipses in 1999?C2008 and calculations and estimates of disturbances in signal parameters are presented. Parameters of the ionosphere and its irregular structure are estimated on the basis of observational data. The calculation results correspond to the results of observations.  相似文献   

20.
The outputs of the IRI-2001 and NeQuick ionospheric models are compared with radio tomographic (RT) images of the ionosphere near the crest of the equatorial anomaly (EA) between Manila and Shanghai (about 850 cross sections overall). The values of the slant total electron content measured in an RT experiment as opposed to the corresponding values derived from the IRI-2001 and NeQuick models are analyzed. A comparison of model cross sections and ionosonde measurements revealed discrepancies in the critical frequencies of the ionospheric F2 layer, which were the strongest in the region of high spatial gradients close to the crest of the EA. The specific features of the dynamics of the EA are discussed based on the results of the models and radio tomography. Our analysis has shown that the IRI-2001 and NeQuick models mainly reproduce the “plasma fountain effect” but are incapable of recognizing the stable structural features of the EA observed on RT reconstructions, for example, the daytime orientation of the mature core of the EA parallel to geomagnetic field lines. A method to correct the IRI-2001 and NeQuick models in the vicinity of the EA crest is suggested.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号