首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
In this work solar wind measurements from several spacecraft were used to investigate the correlations of solar wind plasma parameters. These results provide a test of the concept of predicting space weather by monitoring the condition of the solar wind at a large distance (up to 230Re, the L1 point) upstream from the Earth.We compared the ion flux and bulk velocity time behavior measured by widely-separated spacecraft: the spacecraft pairs INTERBALL-1 and IMP 8 (separations up to 30Re), INTERBALL-1 and WIND, and IMP 8 and WIND (both with separations up to 250Re). The average value of the ion flux correlation coefficient is about 0.73. But in some cases the plasma parameters from two spacecraft are very different in both behavior and value, so correlations are very poor.The technique of multifactorial analysis was used to obtain the physical dependences of the correlations on the spacecraft separation and on different plasma and magnetic field parameters. We found that the correlation values have a weak but significant dependence on the separation perpendicular to the Sun–Earth line (YZse-separations up to 90Re).The most important factors influencing the correlation level are density (or ion flux) variability, the direction of the IMF vector to the Sun–Earth line (cone angle), and the solar wind bulk velocity.  相似文献   

2.
The geomagnetic and auroral response to the variations in the solar wind dynamic pressure (Pd) are investigated in the periods of positive values of the IMF B z component. It is shown that the growth of Pd results in the intensification of luminosity along the auroral oval and in the poleward expansion of the poleward boundary of luminosity (PBL) in the nightside part of the oval by ~7° in latitude at a velocity of ~0.5 km/s and is accompanied by an enhancement of the DP2-type current system. A decrease in Pd, accompanied by an abrupt reversal of the IMF B y polarity from positive to negative, results in an enhancement of the westward electrojet and in a poleward shift of PBL and electrojet center. The conclusion has been made that the available three types of auroral response to Pd variations differ in the azimuthal velocity of the luminosity region or particle precipitation along the auroral oval: V 1 ~ 30–40 km/s, V 2 ~ 10, and V 3 ~ 1 km/s.  相似文献   

3.
Parameters of the interplanetary magnetic field and solar wind plasma during periods of 163 isolated substorms have been studied. It is shown that the solar wind velocity V and plasma density N remain approximately constant for at least 3 h before substorm onset Т o and 1 h after Т o . On average, the velocity of the solar wind exhibits a stable trend toward anticorrelation with its density over the whole data array. However, the situation is different if the values of V and N are considered with respect to the intensity of substorms observed during that period. With the growth of substorm intensity, quantified as the maximum absolute value of AL index, an increase in both the solar wind plasma velocity and density, at which these substorms appear, is obsreved. It has been found that the magnitude of the solar wind dynamic pressure P is closely related to the magnetosphere energy load defined as averaged values of the Kan–Lee electric field EKL and Newell parameter dΦ/dt averaged for 1 h interval before Т o . The growth of the dynamic pressure is accompanied by an increase in the load energy necessary for substorm generation. This interrelation between P and values of EKL and dΦ/dt is absent in other, arbitrarily chosen periods. It is believed that the processes accompanying increasing dynamic pressure of the solar wind result in the formation of magnetosphere conditions that increasingly impede substorm generation. Thus, the larger is P, the more solar wind energy must enter the Earth’s magnetosphere during the period of the growth phase for substorm generation. This energy is later released during the period of the substorm expansion phase and creates even more intense magnetic bays.  相似文献   

4.
Electron and ion temperature (Te and Ti) data observed using RPA on board SROSS C2 satellite are investigated for the variation with local time, season, latitude (0–30°N geographic) over a half of a solar cycle (1995–2000). The nighttime Te (∼1000 K) is independent of the season and the solar flux whereas Ti exhibits positive correlation with the solar activity during all three seasons. In the early morning hours during summer, Te is higher by ∼500 K than other seasons in all three levels of solar activity. During winter and equinox in the early morning hours, Te and Ti are higher during low solar activity, showing a negative correlation with solar flux. During daytime, the Ti increases with the solar flux in winter and summer solstice, but is independent in equinox. IRI underestimates Te and Ti during the morning period by 50–75% in the equatorial and near-equatorial stations during all levels of solar activities.  相似文献   

5.
A superposed epoch analysis of geomagnetic storms has been undertaken. The storms are categorised via their intensity (as defined by the Dst index). Storms have also been classified here as either storm sudden commencements (SSCs) or storm gradual commencements (SGCs, that is all storms which did not begin with a sudden commencement). The prevailing solar wind conditions defined by the parameters solar wind speed (vsw), density (sw) and pressure (Psw) and the total field and the components of the interplanetary magnetic field (IMF) during the storms in each category have been investigated by a superposed epoch analysis. The southward component of the IMF, appears to be the controlling parameter for the generation of small SGCs (-100 nT< minimum Dst\leq-50 nT for\geq4 h), but for SSCs of the same intensity solar wind pressure is dominant. However, for large SSCs (minimum Dst\leq-100 nT for \geq4 h) the solar wind speed is the controlling parameter. It is also demonstrated that for larger storms magnetic activity is not solely driven by the accumulation of substorm activity, but substantial energy is directly input via the dayside. Furthermore, there is evidence that SSCs are caused by the passage of a coronal mass ejection, whereas SGCs result from the passage of a high speed/ slow speed coronal stream interface. Storms are also grouped by the sign of Bz during the first hour epoch after the onset. The sign of Bz at t=+1 h is the dominant sign of the Bz for \sim24 h before the onset. The total energy released during storms for which Bz was initially positive is, however, of the same order as for storms where Bz was initially negative.  相似文献   

6.
An extended structure-function model is developed by including the new effect in the p-model of Meneveau and Sreenivasan which shows that the averaged energy cascade rate changes with scale, a situation which has been found to prevail in nonfullydeveloped turbulence in the inner solar wind. This model is useful for the small-scale fluctuations in the inner heliosphere, where the turbulence is not fully developed and cannot be explained quantitatively by any of the previous intermittency turbulence models. With two model parameters, the intrinsic index of the energy spectrum <alpha>, and the fragmentation fraction P 1, the model can fit, for the first time, all the observed scaling exponents of the structure functions, which are calculated for time lags ranging from 81 s to 0.7 h from the Helios solar wind data. From the cases we studied we cannot establish for P 1 either a clear radial evolution trend, or a solar-wind-speed or stream-structure dependence or a systematic anisotropy for both the flow velocity and magnetic field component fluctuations. Generally, P 1 has values between 0.7 and 0.8. However, in some cases in low-speed wind P 1 has somewhat higher values for the magnetic components, especially for the radial component. In high-speed wind, the inferred intrinsic spectral indices (<alpha>) of the velocity and magnetic field components are about equal, while the experimental spectral indices derived from the observed power spectra differ. The magnetic index is somewhat larger than the index of the velocity spectrum. For magnetic fluctuations in both high- and low-speed winds, the intrinsic exponent <alpha> has values which are near 1.5, while the observed spectral exponent has much higher values. In the solar wind with considerable density fluctuations near the interplanetary current sheet near 1 AU, it is found that P 1 has a comparatively high value of 0.89 for V x . The impact of these results on the understanding of the nature of solar wind fluctuations is discussed, and the limitations in using structure functions to study intermittency are also described.  相似文献   

7.
The crustal structure in Myanmar can provide valuable information for the eastern margin of the ongoing Indo-Eurasian collision system. We successively performed H–k stacking of the receiver function and joint inversion of the receiver function and surface wave dispersion to invert the crustal thickness (H), shear wave velocity (VS), and the VP/VS ratio (k) beneath nine permanent seismic stations in Myanmar. H was found to increase from 26 ?km in the south and east of the study area to 51 ?km in the north and west, and the VP/VS ratio was complex and high. Striking differences in the crust were observed for different tectonic areas. In the Indo-Burma Range, the thick crust (H ?~ ?51 ?km) and lower velocities may be related to the accretionary wedge from the Indian Plate. In the Central Myanmar Basin, the thin crust (H ?= ?26.9–35.5 ?km) and complex VP/VS ratio and VS suggest extensional tectonics. In the Eastern Shan Plateau, the relatively thick crust and normal VP/VS ratio are consistent with its location along the western edge of the rigid Sunda Block.  相似文献   

8.
The dynamics of energetic electrons (E e =0.17–8 MeV) and protons (E p =1 MeV) of the outer radiation belt during the magnetic storm of May 15, 2005, at high (GOES-10 and LANL-84 geosynchronous satellites) and low (Meteor-3M polar satellite) altitudes is analyzed. The data have been compared to the density, plasma velocity, solar wind, and magnetic field measurements on the ACE satellite and geomagnetic disturbances. During the magnetic storm main phase, the nighttime boundary of the region of trapped radiation and the center of westward electrojet shifted to L ~ 3. Enhancements of only low-energy electrons were observed on May 15, 2005. The belt of relativistic electrons with a maximum at L ~ 4 was formed during the substorm, the amplitude of which reached its maximum at ~0630 UT on May 16. The results are in good agreement with the regularity relating the position of a maximum of the new relativistic electron belt, boundaries of the trapped radiation region, and extreme low-latitude position of westward electrojet center to the Dst variation amplitude.  相似文献   

9.
Compressible fluctuations in solar wind plasma are analyzed on the basis of the 1995–2010 WIND and Advanced Composition Explorer (ACE) spacecraft data. In the low-speed solar wind (V 0 < 430 km/s), correlations between fluctuations in the magnetic field direction and plasma density, as well as between velocity fluctuations and plasma density, are found. The covariance functions of these parameters calculated as functions of the local magnetic field direction are axially symmetric relative to the axis, which is oriented nearly along the regular magnetic field of the heliosphere (the Parker spiral). Fluctuations in the magnetic field and velocity are polarized in the plane that is orthogonal to the axis of symmetry. Plasma oscillations of these properties can be caused by fast magnetosonic waves propagating from the Sun along the Parker spiral.  相似文献   

10.
The present paper focuses on planetary wave type responses of the thermosphere/ionosphere system to forcing from above and below during the Arctic winter of 2005/2006. The forcing from above is described by the sunspot numbers, the solar wind speed, the Bz-component of the IMF and the geomagnetic Kp-index, while the forcing from below, i.e. by upward propagating atmospheric waves, is represented by the SABER/TIMED temperatures. The observed global ionospheric zonally symmetric oscillations with periods of ~9, ~14 and ~24–27 days were approved to be of solar origin. The most persistent ~9-day oscillation is linked to a triad of solar coronal holes distributed roughly 120° apart in solar longitude. The ~18-day westward propagating wave with zonal wavenumber 1, observed in the ionospheric currents (detected by magnetometer data), and in the F-region plasma (foF2 and TEC) could be allocated to a simultaneous 18-day westward propagating planetary wave observed in the stratosphere/mesosphere/lower thermosphere region with large (~70 km) vertical wavelength.  相似文献   

11.
Spatial-temporal and spectral features of ground geomagnetic pulsations in the frequency range of 1–5 mHz at the initial phase of a strong magnetic storm of the 24th cycle of solar activity (August 5–6, 2011, with a Dst-variation in the storm maximum of ?110 nT) are analyzed. Large opposite in sign amplitudes of variations in IMF parameters (from ?20 to +20 nT) at a high velocity of the solar wind (~650 km/s) accompanied by intense bursts in solar-wind density (up to ~50 cm?3) were distinctive feature of interplanetary medium conditions causing the storm. Geomagnetic Pi3 pulsations global in longitude and latitude and in-phase in the middle and equatorial latitudes were found. The onset of pulsation generation was caused by a pulse of dynamic pressure of the solar wind (~20 nPa), i.e., by a considerable compression of the magnetosphere. The maximum (2–3 mHz) in the amplitude spectrum of near-equatorial pulsations coincided with the maximum of pulsations in the daytime polar cap. After the next jump of the dynamic pressure of the solar wind (~35 nPa), an additional maximum appeared in the pulsation spectrum in the frequency band of ~3.5–4.5 mHz. Global pulsations suddenly stopped after a sharp decrease in the solar-wind dynamic pressure and corresponding extension of the magnetosphere. The obtained results are compared with the time dynamics of the position and shape of the plasmapause.  相似文献   

12.
The regularities in the southward drift of the ionospheric current centers and luminosity boundaries during strong magnetic storms of November 2003 and 2004 (with Dst ≈ ?400 and ?470 nT, respectively) are studied based on the global geomagnetic observations and TV measurements of auroras. It has been indicated that the eastward and westward electrojets in the dayside and nightside sectors simultaneously shift equatorward to minimal latitudes of Φ min ° ~53°–55°. It has been obtained that the Φ min ° latitude decreases with increasing negative values of Dst, IMF B z component, and westward electric field strength in the solar wind. The dependence of the electrojet equatorward shift velocity (V av) on the rate of IMF B z variations (ΔB z t) has been determined. It is assumed that the electrojet dynamics along the meridian is caused by a change in the structure of the magnetosphere and electric fields in the solar wind and the Earth’s magnetosphere.  相似文献   

13.
Temporal changes of b-value, fractal (correlation) dimensions of epicenters (D e ) and occurrence time of earthquakes (D t ) and relations between these parameters were calculated to investigate precursory changes before 28 May 2004, Baladeh-Kojour earthquake (M w = 6.3) of Central Alborz, Iran. 2086 events with M N ≥ 1.7 were selected for our analyses. A wide range of variation was seen in these parameters: b-value ~ 0.6–1.11, D e ~ 0.97–1.64, and D t ~ 0.13–0.93. The results showed decreases in all fractal parameters several months before the main shock. This decrease, which might have arisen due to clusters of events occurred between 2002–2003, was followed by a systematic increase, corresponding to the increased level of low-magnitude seismicity. It seems that changes in fractal parameters may be precursors of Baladeh-Kojour earthquake which was caused by seismic activation and quiescence. Furthermore, a positive correlation between b-value and D e was detected before the main shock (D e = 0.87 + 0.7b) and during aftershock sequences (D e = 2b ± 0.09), which was further on changed to a negative one (D e = 2.56–1.32b).  相似文献   

14.
A database of the electron temperature (Te) comprising of most of the available LEO satellite measurements is used for studying the solar activity variations of Te. The Te data are grouped for two levels of solar activity (low LSA and high HSA), five altitude ranges between 350 and 2000 km, and day and night. By fitting a theoretical expression to the Te values we obtain variation of Te along magnetic field lines and heat flux for LSA and HSA. We have found that Te increases with increase in solar activity at low and mid-latitudes during nighttime at all altitudes studied. During daytime the Te response to solar activity depends on latitude, altitude, and season. This analysis shows existence of anti-correlation between Te and solar activity at mid-latitudes below 700 km during the equinox and winter day hours. Heat fluxes show small latitudinal dependence for daytime but substantial for nighttime.  相似文献   

15.
《Journal of Atmospheric and Solar》2002,64(12-14):1371-1381
We review the observational evidence for describing the characteristics of the equatorial temperature and zonal wind anomaly (ETWA) in the low-latitude thermosphere in solar maximum and minimum periods. In spite of some new results on ETWA in the last decade, including its discovery, there is no satisfactory explanation in our understanding of the phenomenon. The two suggested mechanisms for heating at the crests of the equatorial ionization anomaly (EIA) to form the equatorial temperature anomaly (ETA) are due to (1) the ion-drag on the zonal winds resulting in the transfer of kinetic energy into heat energy and (2) the exothermic chemical reactions involved in the dominant O+ion re-combinations. To verify which of the two suggested mechanisms is the most effective in causing ETA, it is necessary to measure simultaneously a few parameters in situ by the satellite-borne instruments. They are (1) the electron density (Ne) and temperature (Te), (2) the molecular and atomic ion densities (Nij) and ion temperatures (Ti), (3) the gas temperatures (T) and densities of the gas constituents, (4) the vector winds or at least the zonal (Z) and vertical (V) wind components and (5) the drift velocities of the ionization. These together with the simultaneous ground-based measurements, will resolve identifying not only the dominant mechanism(s) for ETWA, but also the processes responsible for the enigmatic phenomena, such as the equatorial spread-F (ESF), the midnight temperature maximum (MTM) and the possible role of the EIA in their occurrences.  相似文献   

16.
High-resolution three-dimensional V P and V P /V S images in the Longtan reservoir area were obtained from local earthquake data by using 3,178 events with total 24,153 P-wave and 23,987 S-wave arrivals collected from 23 seismic stations. The tomographic images show that significant V P heterogeneities can be seen at layers of different depth in the Longtan reservoir area. Low-V P anomalies both beneath and around the main rivers in the reservoir area may be related to the composition of rocks which are mainly deposit carbonate and arenaceous shale, which contributes to water saturation. We deduced that the high porosity rocks beneath the main rivers may be fully saturated with water. The phenomenon that V P is relatively high in the area which is 10–20?km away from the rivers indicates that horizontal saturation of water is limited within a small range of area that is about 10–20?km from the main rivers. The characteristic is significant that seismicity in the Longtan reservoir area is coincident with the distribution of the low-V P area. V P /V S tomographic images show that V P /V S ranges from 1.8 to 2.05 in shallow layers above 4?km depth beneath the Longtan reservoir, suggesting the properties of the rocks are limestone and shale. At the depth of 7?km, the distribution of V P /V S image varies quite remarkably, especially in the dam area. This demonstrates that the range of influence by the saturation of water in the media below the reservoir surface can reach 4–7?km depth in the dam area.  相似文献   

17.
Hourly foF2 data from over 100 ionosonde stations during 1967–89 are examined to quantify F-region ionospheric variability, and to assess to what degree the observed variability may be attributed to various sources, i.e., solar ionizing flux, meteorological influences, and changing solar wind conditions. Our findings are as follows. Under quiet geomagnetic conditions (Kp<1), the 1-σ (σ is the standard deviation) variability of Nmax about the mean is approx. ±25–35% at ‘high frequencies’ (periods of a few hours to 1–2 days) and approx. ±15–20% at ‘low frequencies’ (periods approx. 2–30 days), at all latitudes. These values provide a reasonable average estimate of ionospheric variability mainly due to “meteorological influences” at these frequencies. Changes in Nmax due to variations in solar photon flux, are, on the average, small in comparison at these frequencies. Under quiet conditions for high-frequency oscillations, Nmax is most variable at anomaly peak latitudes. This may reflect the sensitivity of anomaly peak densities to day-to-day variations in F-region winds and electric fields driven by the E-region wind dynamo. Ionospheric variability increases with magnetic activity at all latitudes and for both low and high frequency ranges, and the slopes of all curves increase with latitude. Thus, the responsiveness of the ionosphere to increased magnetic activity increases as one progresses from lower to higher latitudes. For the 25% most disturbed conditions (Kp>4), the average 1-σ variability of Nmax about the mean ranges from approx. ±35% (equator) to approx. ±45% (anomaly peak) to approx. ±55% (high-latitudes) for high frequencies, and from approx. ±25% (equator) to approx. ±45% (high-latitudes) at low frequencies. Some estimates are also provided on Nmax variability connected with annual, semiannual and 11-year solar cycle variations.  相似文献   

18.
The solar wind velocity is the primary driver of the electron flux variability in Earth's radiation belts. The response of the logarithmic flux (“log-flux”) to this driver has been determined at the geosynchronous orbit and at a fixed energy [Baker, D.N., McPherron, R.L., Cayton, T.E., Klebesadel, R.W., 1990. Linear prediction filter analysis of relativistic electron properties at 6.6 RE. Journal of Geophysical Research 95(A9), 15,133–15,140) and as a function of L shell and fixed energy [Vassiliadis, D., Klimas, A.J., Kanekal, S.G., Baker, D.N., Weigel, R.S., 2002. Long-term average, solar-cycle, and seasonal response of magnetospheric energetic electrons to the solar wind speed. Journal of Geophysical Research 107, doi:10.1029/2001JA000506). In this paper we generalize the response model as a function of particle energy (0.8–6.4 MeV) using POLAR HIST measurements. All three response peaks identified earlier figure prominently in the high-altitude POLAR measurements. The positive response around the geosynchronous orbit is peak P1 (τ=2±1 d; L=5.8±0.5; E=0.8–6.4 MeV), associated with high-speed, low-density streams and the ULF wave activity they produce. Deeper in the magnetosphere, the response is dominated by a positive peak P0 (0±1 d; 2.9±0.5RE; 0.8–1.1 MeV), of a shorter duration and producing lower-energy electrons. The P0 response occurs during the passage of geoeffective structures containing high IMF and high-density parts, such as ICMEs and other mass ejecta. Finally, the negative peak V1 (0±0.5 d; 5.7±0.5RE; 0.8–6.4 MeV) is associated with the “Dst effect” or the quasiadiabatic transport produced by ring-current intensifications. As energies increase, the P1 and V1 peaks appear at lower L, while the Dst effect becomes more pronounced in the region L<3. The P0 effectively disappears for E>1.6 MeV because of low statistics, although it is evident in individual events. The continuity of the response across radial and energy scales supports the earlier hypothesis that each of the three modes corresponds to a qualitatively different type of large-scale electron acceleration and transport.  相似文献   

19.
地球同步轨道高能电子变化   总被引:1,自引:0,他引:1       下载免费PDF全文
结合小波分析及交叉小波分析方法,研究了地球同步轨道高能电子动态变化的多时间尺度结构,分析了电子通量在不同周期随着太阳风速、地磁指数Dst变化的具体特点.结果发现:(1)电子通量的长期变化受控于太阳风速,在太阳活动低值年,电子通量值高,具有明显的13.4天,27.4天及187天周期;交叉小波分析表明,电子通量的13.4天及27.4天周期受太阳风速周期变化信号的影响,187天周期变化受Dst指数周期变化信号的影响.(2)电子通量半年变化主要归因于太阳风的驱动作用,在每年的第100天及270左右达到两次峰值,峰值大小不对称,与Dst指数的谷值大小呈反比.(3)由于冕洞形成过程中的太阳风高速流影响,电子通量具有13.4及27.4天的周期,峰值水平受控于太阳风速结构.  相似文献   

20.
Data on the distribution of fCO2 were obtained during a cruise in the Aegean Sea during February 2006. The fCO2 of surface water (fCO2sw) was lower than the atmospheric fCO2 (fCO2atm) throughout the area surveyed and ΔfCO2 values varied from ?34 to ?61 μatm. The observed under-saturation suggests that surface waters in the Aegean represent a sink for atmospheric CO2 during the winter of 2006. Higher fCO2sw values were recorded in the ‘less warm’ and ‘less saline’ shallow northernmost part of the Aegean Sea implying that the lower seawater temperature and salinity in this area play a crucial role in the spatial distribution of fCO2sw.A first estimate of the magnitude of the air–sea CO2 exchange and the potential role of the Aegean Sea in the transfer of atmospheric CO2 was also obtained. The air–sea CO2 fluxes calculated using different gas transfer formulations showed that during February 2006, the Aegean Sea absorbs atmospheric CO2 at a rate ranging from ?6.2 to ?11.8 mmol m?2 d?1 with the shipboard recorded wind speeds and at almost half rate (?3.5 to ?5.5 mmol m?2 d?1) with the monthly mean model-derived wind speed. Compared to recent observations from other temperate continental shelves during winter period, the Aegean Sea acts as a moderate to rather strong sink for atmospheric CO2.Further investigations, including intensive spatial and temporal high-resolution observations, are necessary to elucidate the role of the Aegean Sea in the process of transfer of atmospheric CO2 into the deep horizons of the Eastern Mediterranean.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号