首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
本文概述了彗星等离子体和太阳风相互作用的一些主要问题和磁流体动力学模式,综述了1985-1986年国际上对G/Z(Giacobini-Zinner)和哈雷(Halley)彗星空间直接观测的初步成果。  相似文献   

2.
Abstract

Some approaches of one-dimensional time-dependent magneto-hydrodynamic modeling of the structure of the inner coma of comet Halley are considered. The influence of the magnetic field diffusion on this structure is studied. The solution of Cravens (1989) approach containing classic magnetic diffusion is compared with an approach containing a specific diffusion, caused by non-instantaneous mass-loading of new ions. A case with no magnetic field is also considered. Common features of all the solutions are obtained. Special attention is paid to the sharp velocity jump, synchronized with a local density pick. Some differences between two types of magnetic field diffusion are discussed. A possible connection is supposed between this consideration and the large-scale shock fitting modeling of the solar plasma-comet interaction.  相似文献   

3.
The first observations of cometary wave activity were carried out in 1985/1986 by several space missions (ICE, VEGAs 1 and 2, Suisei, Sakigake, Giotto) in the environments of comets Giacobini-Zinner and Halley. The interpretation of thesein situ field (and particle) measurements fostered investigations on (among other topics) wave generation that, leaving aside the inherently nonlinear (but related) problem of the eventual formation of a cometary bow shock wave, explored the free energy available in two specific features of the velocity distributions of the newborn particle populations: their parallel (with respect to the IMF direction) drift in the solar wind frame and perpendicular ring-like organization. Analytical and simulation works looked into the influence of the solar wind and cometary newborn parameters on the instabilities and the ensuing, or associated (as evidenced by wave observations), nonlinear phenomenology. Comprehensive reviews have described the experimental and theoretical results obtained in this cometary wave research until 1992 and identified outstanding problems warranting further attention. Here, only a cursory revisit to the Giacobini-Zinner/Halley era of low frequency wave observation and interpretation shall be made: rather, attention shall be predominantly focussed on the new implications to cometary wave research of the recent Giotto encounter with comet Grigg-Skjellerup on July 10 of 1992. The three visited comets, starting with their gas production rates, had different characteristics that showed up in thein situ observations. Yet, with the important exception of the Grigg-Skjellerup encounter, the interpretation of the wave activity measurements could be made in terms of common basic generation mechanisms adapted to the relevant properties of the appropriate plasma environment. New aspects emerged in the last Giotto cometary mission: the smaller gas production rates yield a scale length for the neutral gas density that is not (much) larger than the gyration distance of a heavy newborn ion (estimated by the product of the solar wind speed and the ion cyclotron period). As a consequence of this inhomogeneity, the velocity distribution of the heavy newborn ions exhibits gyrophase organization, i.e. nongyrotropy. This new source of free energy, albeit briefly mentioned in a few studies preceding the Grigg-Skjellerup mission, was not investigated in the context of the Giacobini-Zinner and Halley encounters. Since the last Giotto observations strongly suggest that nongyrotropy plays a prominent role in wave generation as the comet Gigg-Skjellerup nucleus is approached and its stability characteristics have only seldomly been analyzed, the review shall emphasize the wave generation capabilities of particle populations with gyrophase organization.  相似文献   

4.
A possible naked-eye comet that may have been important in early cometary theory is announced by D J Asher , M E Bailey , A Christou , J McFarland , M F Muir and P P Rafferty .
Early indications sugest that Comet C/2002 (Ikeya-Zhang), discovered on 1 February 2002, may brighten to naked-eye visibility in late March 2002. It has also been suggested that it may be identical to one of the brighter comets of the 16th or 17th centuries, namely C/1532 R1 or C/1661 C1. The first of these, observed for more than 100 days towards the end of 1532, played an important role in the development of cometary theory. The second, although identified by Halley as having an orbit similar to that of the comet C/1532 R1, was not seen on its predicted return in 1788/1789 and so was presumably unrelated. Here we present long-term orbital integrations of C/2002 C1 which suggest that it orginated from the Oort cloud, and will be ejected again, within ˜0.3 Myr. There is a chance of 10–20% that it will end its life by falling into the Sun during a Halley-type phase of cometary evolution. The discovery of Ikeya-Zhang so closeto perigee by two amateur astonomers highlights the need for surveys covering both hemispheres to discover long-period and intermediate-period comets on Earth-crossing orbits.  相似文献   

5.
We analyse the new ISCCP (International Satellite Cloud Climatology Project) D2 cloud data to ascertain if a connection between cosmic-ray flux and cloud cover exists. Despite a previous finding that total-cloud factor and cosmic-ray fluxes were correlated, our results indicate that only the low-level cloud follows solar activity over the full period, 1983–94. Using several proxies for solar activity and the radiative forcing calculated by Ockert-Bell (1992) for the ISCCP cloud types, we estimate the possible impact that such a solar–terrestrial connection may have on climate. We conclude that, possibly excluding the most recent decades, much of the warming of the past century can be quantitatively accounted for by the direct and indirect effects of solar activity.  相似文献   

6.
The difficulties involved in making geomagnetic measurements from the moving ice shelf at Halley are considered, as are measurements giving information on this movement. These indicate that the observatory has been moving westward, accelerating from 400 m yr–1 in 1969 to 800 m yr–1 in 1980, and rotating at up to 30 min of arc yr–1. The effects of both rotation and tilt on the two types of variometers installed are examined. It is concluded that the geomagnetic data obtained from Halley since 1969 are best treated as variation data.  相似文献   

7.
We present a first detailed climatological study of individual quasi-monochromatic mesospheric, short-period gravity-wave events observed over Antarctica. The measurements were made using an all-sky airglow imager located at Halley Station (76°S, 27°W) and encompass the 2000 and 2001 austral winter seasons. Distributions of wave parameters were found to be similar to findings at other latitudes. The wave headings exhibited unusually strong anisotropy with a dominant preference for motion towards the Antarctic continent and a rotation from westward during fall, to poleward in mid-winter, to eastward in spring. This rotation was accompanied by a systematic increase of ~50% in the magnitudes of the horizontal wavelengths and observed phase speeds. It is postulated that the observed wave anisotropy was due to a succession of wave sources of different characteristics lying equatorward of Halley, or a dominant source mechanism evolving with time during the winter months.  相似文献   

8.
Evaluating climate variability and pumping effects in statistical analyses   总被引:1,自引:0,他引:1  
Mayer TD  Congdon RD 《Ground water》2008,46(2):212-227
As development of ground water resources reaches the limits of sustainability, it is likely that even small changes in inflow, outflow, or storage will have economic or environmental consequences. Anthropogenic impacts of concern may be on the scale of natural variability, making it difficult to distinguish between the two. Under these circumstances, we believe that it is important to account for effects from both ground water development and climate variability. We use several statistical methods, including trend analysis, cluster analysis, and time series analysis with seasonal decomposition, to identify climate and anthropogenic effects in regional ground water levels and spring discharge in southern Nevada. We discuss the parameterization of climate and suggest that the relative importance of various measures of climate provides information about the aquifer system response to climate. In our system, which may be characteristic of much of the arid southwestern United States, ground water levels are much more responsive to wet years than to dry years, based on the importance of selected climate parameters in the regression. Using cluster analysis and time series seasonal decomposition, we relate differences in amplitude and phase in the seasonal signal to two major forcings—climate and pumping—and distinguish between a regional recharge response to an extremely wet year and a seasonal pumping/evapotranspiration response that decays with distance from the pumping center. The observed spring discharge data support our hypothesis that regional spring discharge, particularly at higher elevation springs, is sensitive to relatively small ground water level changes.  相似文献   

9.
Cloud profiling from active lidar and radar in the A-train satellite constellation has significantly advanced our understanding of clouds and their role in the climate system. Nevertheless, the response of clouds to a warming climate remains one of the largest uncertainties in predicting climate change and for the development of adaptions to change. Both observation of long-term changes and observational constraints on the processes responsible for those changes are necessary. We review recent progress in our understanding of the cloud feedback problem. Capabilities and advantages of active sensors for observing clouds are discussed, along with the importance of active sensors for deriving constraints on cloud feedbacks as an essential component of a global climate observing system.  相似文献   

10.
Hindcasting global temperature by evolutionary computation   总被引:2,自引:1,他引:1  
Interpretation of changes of global temperature is important for our understanding of the climate system and for our confidence in projections for the future. Massive efforts have been devoted to improve the accuracy of reproducing the global temperature by the available climate models, but the hindcasts are still inaccurate. Notwithstanding the need to further advance climate models, one may consider data-driven approaches, providing practically useful results in a simpler and faster way. Without assuming any prior knowledge about physics and without imposing a model structure that encapsulates the existing knowledge about the underlying processes, we hindcast global temperature by automatically identified evolutionary computation models. We use 60 years of records of global temperature and climate drivers, with training and testing periods being 1950–1999 and 2000–2009, respectively. This paper demonstrates that the global temperature observed in the past is mimicked with reasonably good accuracy. Evolutionary computation holds promise for modeling the global climate system, which looks hopelessly complex in classical perspective.  相似文献   

11.
This paper describes the first ever mesospheric wind observations from Halley, Antarctica, over a full year. The recent implementation of an Imaging Doppler Interferometer at Halley is providing a new, high quality and continuous dataset to investigate the dynamics of the Antarctic mesosphere. The mean winds show clear seasonal variations, with reversals in both zonal and meridional components near the equinoxes. The dominant tidal modes have periods of 12 h and 24 h but with significant variations in amplitude during the year. Waves with longer periods are also apparent at certain times of year. The seasonal variations and amplitudes of the winds and tides are compared with other high-latitude sites in the southern and northern hemispheres. It is found that the overall pattern of winds at Halley is broadly similar to that seen at similar geographic latitudes, but with noticeable differences which may be related to it being a southern hemisphere site.  相似文献   

12.
Water vapor plays an important role in the global climate system. A clear relationship between water vapor and solar activity can explain some physical mechanisms of how solar activity influences terrestrial weather/climate changes. To gain insight of this possible relationship, the atmospheric precipitable water vapor (PWV) as the terrestrial climate response was observed by ground-based GPS receivers over the Antarctic stations. The PWV changes analyzed for the period from 2003 to 2008 coincided with the declining phase of solar cycle 23 exhibited following the solar variability trend. Their relationship showed moderate to strong correlation with 0.45 < R 2 < 0.93 (p < 0.01), on a monthly basis. This possible relationship suggests that when the solar-coupled geomagnetic activity is stronger, the Earth’s surface will be warmer, as indicated by electrical connection between ionosphere and troposphere.  相似文献   

13.
We tested the validity of two current hypotheses on the dependence of climate change on solar activity. One of them states that variations in the tropospheric temperature are caused directly by changes of the solar radiance (total or spectral). The other suggests that cosmic ray (CR) fluctuations, caused by the solar/heliospheric modulation, affect the climate via cloud formation. Confronting these hypotheses with seven different sets of the global/hemispheric temperature reconstructions for the last 400 years, we found that the former mechanism is in general more prominent than the latter. Therefore, we can conclude that in so far as the Sun–climate connection is concerned tropospheric temperatures are more likely affected by variations in the UV radiation flux rather than by those in the CR flux.  相似文献   

14.
The question of whether or not global warming has paused since more than ten years ago, namely "warming hiatus", has attracted the attention of climate science community including the IPCC. Some authors have attributed the "warming hiatus" to the internal changes in the climate system, i.e., the recombination of ocean-atmosphere circulations. Therefore, it is necessary to propose higher requirements on reconstructing circulation background of climate change for the past millennium. However, the analyses of changes in atmospheric circulation over the last millennium as well as the conclusions of related regional climate patterns are so widely different and contradictory, bringing uncertainties to our understanding of regional even global climate change to a great extent. On the other hand, in the last 10 years the high-precision U/Th-dated stalagmite oxygen isotope ratio(δ~(18)O) sequences provided an accurate chronological frame for the paleoclimate study of the middle and late Pleistocene, in which all authors from China took the Chinese stalagmite δ~(18)O as the summer monsoon index without exception. However, this point of view misleads the climate scientists into thinking that the stalagmite δ~(18)O can be as the proxy of precipitation amount. Nevertheless, it is well known that all of these records have a lot in common in the low frequency trend. However, most sequences cannot be calibrated by instrumental precipitation records, and thus the uncertainty of the climate research framework of China and even of the world has increased. Therefore, it is imperative for climatology to clarify the origin of contradiction and to reduce the uncertainty as early as possible. On the basis of analyzing the significance of stalagmite δ~(18)O in the monsoon regions of China, the author tries to propose a new circulation proxy in this paper: integrating the Chinese stalagmite oxygen isotope sequence to reconstruct the tropical Pacific sea surface temperature gradient, i.e., the large-scale ENSO-like state over the past millennium. Furthermore, the author speculates that it was warm in the modern times and the Medieval Period, but the circulation recombination was different in both periods. And this inference could be supported by the longer record since Last Glacial Maximum. In other words, the attribution analysis of the identical low-frequency trends of Chinese stalagmite δ~(18)O on a large scale shows that the ENSO-like state controls the climate change in the monsoon regions of China at different time scales(from interannual to century or even longer time scales). Wherein the important connection of circulations is the western Pacific subtropical high(WPSH), that is to say, besides the interannual and decadal time scales, the WPSH would possess the circulation mode on longer timescales. For example, we may discuss the change of the WPSH in the whole Holocene epoch, i.e., the half precession period. These discussions could make sense to the study of not only the paleoclimate but also the modern climate.  相似文献   

15.
Permeability differences in multi-cycle loess–paleosol aeolian sediments, which are still poorly understood, have the potential to significantly improve our understanding of climatic change during the glacial–interglacial periods of the Quaternary. In this study, the permeability of a well-preserved and continuous loess–paleosol sequence in the South Jingyang Plateau was investigated. Weathering intensity was inferred using a series of climate proxies including grain-size distribution, magnetic susceptibility and mineralogy. The results of laboratory tests showed that the average saturated hydraulic conductivity of loess layers is higher than that of paleosol layers. Also, clear differences between loess and paleosol were found in terms of depth variations of the vertical and horizontal saturated hydraulic conductivities. Differences in loess–paleosol were also found for other proxies for pedogenic weathering [i.e. clay content, sand content, Kd value (ratio of coarse silt to clay), magnetic susceptibility, dolomite content and the ratios of hornblende/illite and hornblende/chlorite]. Our results showed a high permeability of loess layers associated with weak pedogenic weathering during cold/dry paleoclimatic conditions in glacial stages. On the contrary, paleosol layers developed in a warm/humid climate during the interglacial stages experienced strong pedogenic weathering that resulted in lower permeability. Based on these results, we construct a connection between Quaternary climate change theory and the modern hydrological system. This provides a scientific basis for investigating the distribution and pollution of groundwater resources in the local region. © 2020 John Wiley & Sons, Ltd.  相似文献   

16.
This paper evaluates the risk of a water crisis – a substantial, sudden reduction in water supply – in the Monterrey Metropolitan Area (MMA), posed by climate threats and the vulnerability of its water supply system. Our analysis of long-term precipitation, water supply and water availability data reveals that the MMA is highly vulnerable to recurring periods of exceptionally low precipitation and scarce surface water availability. We identify two episodes in the recent past (1998 and 2013) when the MMA water supply system almost collapsed as reservoirs neared depletion in the face of abnormally dry weather. Furthermore our climate projections point to warmer and drier future conditions for the region and consequently, heightened climate threats. We conclude that the risk of a water crisis in the MMA is substantial and probably will increase due to climate change. This establishes a clear and pressing need for a comprehensive package of adaptation measures to mitigate the consequences of a water crisis should one occur as well as to reduce the likelihood of such an event.  相似文献   

17.
18.
Regional gravity variations in Europe from superconducting gravimeters   总被引:1,自引:0,他引:1  
Recent satellite missions (CHAMP, GRACE) are now returning data on the time variation of the gravity field with harmonic coefficients computed every 4 weeks. The promise is to achieve a sub-microgal accuracy that will define continental mass variations involving large-scale hydrology. With this in mind, we examine the time varying gravity field over central Europe using a limited number of high quality ground-based superconducting gravimeter stations within the Global Geodynamics Project (GGP). Our purpose is to see whether there are coherent signals between the individual stations and to compare the regional component with that predicted from models of continental hydrology. The results are encouraging. We have found, using empirical orthogonal eigenfunctions of the gravity data that a clear annual signal is present that is consistent in phase (low amplitudes in summer) and amplitude (1–3 microgal) with that determined from a large-scale model of land water in connection with global climate modeling. More work is required to define how the gravity field is related to large-scale soil moisture and other mass variations, and we have yet to compare our results to the latest satellite-derived data.  相似文献   

19.
章鑫  孙君嵩  钱银苹  刘君 《地震》2020,40(4):169-182
地电场是联系空间Sq电流体系、 地球表面电流和内部电流活动的地球物理量, 它包含了空间电流系变化产生的大地电(流)场和区域环境变化等引起的自然电场。 通过研究青藏高原东北缘的天祝台阵5个固定地电场台站连续10年观测数据, 得出该区域地电场变化具有明显的366±(<1) d周期。 且大地电流矢量方向有明显的季节变化, 每半年改变一次方向, 方向变化时间一般为每年4月和9~10月; 大地电流矢量的强度变化也具有周期性。 通过建立简单模型进行定量化分析, 认为地电场季节变化主要受到Sq年变和区域气候环境的耦合作用, 主要依据为地电场长趋势变化与电离层Sq电流年变化趋势吻合。 基于区域性气候、 冻融深度等季节性变化模型开展计算, 认为气温导致了地下浅层介质电性结构、 电极附近电位方向的变化, 影响了地电场的长趋势变化。 本文结果有助于认识超低频地电场年变周期特点及其原因, 并探索其应用前景。  相似文献   

20.
Changes in the Earth's radiation budget are driven by changes in the balance between the thermal emission from the top of the atmosphere and the net sunlight absorbed. The shortwave radiation entering the climate system depends on the Sun's irradiance and the Earth's reflectance. Often, studies replace the net sunlight by proxy measures of solar irradiance, which is an oversimplification used in efforts to probe the Sun's role in past climate change. With new helioseismic data and new measures of the Earth's reflectance, we can usefully separate and constrain the relative roles of the net sunlight's two components, while probing the degree of their linkage. First, this is possible because helioseismic data provide the most precise measure ever of the solar cycle, which ultimately yields more profound physical limits on past irradiance variations. Since irradiance variations are apparently minimal, changes in the Earth's climate that seem to be associated with changes in the level of solar activity—the Maunder Minimum and the Little Ice age for example—would then seem to be due to terrestrial responses to more subtle changes in the Sun's spectrum of radiative output. This leads naturally to a linkage with terrestrial reflectance, the second component of the net sunlight, as the carrier of the terrestrial amplification of the Sun's varying output. Much progress has also been made in determining this difficult to measure, and not-so-well-known quantity. We review our understanding of these two closely linked, fundamental drivers of climate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号