首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Three thousand kilometres of multichannel (MCS) and wide-angle seismic profiles, gravity and magnetic, multibeam bathymetry and backscatter data were recorded in the offshore area of the west coast of Mexico and the Gulf of California during the spring 1996 (CORTES survey). The seismic images obtained off Puerto Vallarta, Mexico, in the Jalisco subduction zone extend from the oceanic domain up to the continental shelf, and significantly improve the knowledge of the internal crustal structure of the subduction zone between the Rivera and North American (NA) Plates. Analyzing the crustal images, we differentiate: (1) An oceanic domain with an important variation in sediment thickness ranging from 2.5 to 1 km southwards; (2) an accretionary prism comprised of highly deformed sediments, extending for a maximum width of 15 km; (3) a deformed forearc basin domain which is 25 km wide in the northern section, and is not seen towards the south where the continental slope connects directly with the accretionary prism and trench, thus suggesting a different deformational process; and (4) a continental domain consisting of a continental slope and a mid slope terrace, with a bottom simulating reflector (BSR) identified in the first second of the MCS profiles. The existence of a developed accretionary prism suggests a subduction–accretion type tectonic regime. Detailed analysis of the seismic reflection data in the oceanic domain reveals high amplitude reflections at around 6 s [two way travel time (twtt)] that clearly define the subduction plane. At 2 s (twtt) depth we identify a strong reflection which we interpret as the Moho discontinuity. We have measured a mean dip angle of 7° ± 1° at the subduction zone where the Rivera Plate begins to subduct, with the dip angle gently increasing towards the south. The oceanic crust has a mean crustal thickness of 6.0–6.5 km. We also find evidence indicating that the Rivera Plate possibly subducts at very low angles beneath the Tres Marias Islands.  相似文献   

2.
This article characterizes the spatial and temporal current variations, in the subtidal and tidal ranges, during the rainy and dry seasons, at the continental shelf off the Jaguaribe River, through measurements of continuous current field data from an acoustic Doppler current profiler (ADCP) mooring during 124 days, from June 12 to October 14, 2009. To support this dataset, we collected corresponding data from a meteorological station located at the estuary. The spatial variation showed that highest current speeds occur near the coast, with an offset of a NNW coastal jet, decreasing intensity, monotonically, towards offshore up to 0.1 ms?1. In the rainy season, small inversions of the wind field were observed, lasting 2 to 3 days on average and were accompanied by the direction of surface currents only. In the dry season, the period of reversal of wind fields and currents lasted 14 and 35 h, respectively. The analysis of empirical orthogonal functions in rainy and dry seasons showed that the continental shelf is predominantly barotropic, where the second and third modes explained only 7% of the total variance, during the dry season. The tidal currents are more intense in the direction normal to the coast, showing a semidiurnal tidal regime. Energy distribution between tidal currents and currents of longer periods showed that for the component parallel to bathymetry, subtidal frequency currents are dominant, contributing to more than 70% of the variance. For the normal component to the coastline bathymetry, there is a significant increase of power concerning tidal currents, at all depths, so they contribute with about 55% of the total variance.  相似文献   

3.
The propagation of an oceanic rift is an important tectonic problem, with a bearing on the reorganization of plate motion and on the early opening of oceanic basins. At the propagating rift at 95°30′W near the Galapagos Islands, we can use magnetic methods to determine the tectonic origin of a set of important sea floor features. The observed 27 km offset between the axes of the propagating rift and the dying rift presents us with an ideal situation, in which the oceanic crust created by the opposing systems has been magnetized in opposite directions. The normally magnetized crust of the propagating rift tip penetrates into older crust, which created when the earth's main field was reversed. A combined Deep Tow and Sea Beam investigation at 95°30′W on the Cocos-Nazca spreading center has revealed the crustal contact between the propagating rift and the dying rift systems. The inherent magnetic labelling of the crust has been recovered by performing inversions on the gridded representations of the observed magnetic field and bathymetry, working in the Fourier domain. The result is a gridded rock magnetization distribution. The inversion of the surface data covers a large area, 6000 km2, and demonstrates close agreement with magnetization amplitudes of rock samples at existing dredge sites. In general, the propagating rift process appears to be much more orderly than the dying rift process. The magnetic polarity transition widths are narrower, and the boundaries have fewer undulations than the dying rift, which appears to be quite episodic in behavior. The average propagation rate is 52 mm/yr, compared to the average spreading half-rate of 29 mm/yr. The locations of the boundaries suggest that the acceleration to the normal spreading rate on the propagation rift requires about 250, 00 years. The inversion of the Deep Tow data, near the sea floor, provides a high resolution definition of the tip of the propagation rift, at 2°38.1t'N, 95°30.0′W.  相似文献   

4.
5.
Because of the significance to the formation and evolution of the Tibetan plateau, the displacement and slip rate of the Altyn Tagh fault have been topics full of disputation. Scientists who hold different opinions on the evolution of Tibet insist on different slip rates and displacements of the fault zone. In the article, study is focused on the late Quaternary slip rate of the Altyn Tagh fault west of the Cherchen River (between 85°E and 85°45'E). On the basis of high resolution SPOT images of the region, three sites, namely Koramlik, Aqqan pasture and Dalakuansay, were chosen for field investigation. To calculate the slip rate of the fault, displacement of terraces was measured on SPOT satellite images or in situ during fieldwork and thermo-luminescence (TL) dating method was used. To get the ages of terraces, samples of sand were collected from the uppermost sand beds that lie just under loess. The method for calculating slip rate of fault is to divide the displacement of terrace risers by the age of its neighboring lower terrace. The displacement of rivers is not considered in this article because of its uncertainties. At Koramlik, the slip rate of the Altyn Tagh fault is 11.6±2.6mm/a since 6.02±0.47ka B.P and 9.6±2.6mm/a since 15.76±1.19ka B.P. At Aqqan pasture, about 30km west of Koramlik, the slip rate is 12.1±1.9mm/a since 2.06±0.16 ka B.P. At Dalakuansayi, the slip rate of the fault is 12.2±3.0mm/a since 4.91±0.39ka B.P. Hence, we get the average slip rate of 11.4±2.5mm/a for the western part of the Altyn Tagh Fault since Holocene. This result is close to the latest results from GPS research.  相似文献   

6.
在震后2300~2450s的时间内,于震中距30°~50°之间发现了以前从未报道过的1Hz散射波。这些散射波可能是在上地幔和地壳发生的PKPbc到PKPbc的反方位角散射而产生的,为绘制地幔非均匀性的小尺度变化(10km)提供了一个新的手段。大孔径地震台阵(LASA)记录的阵列波束清晰地展示了散射波能量从噪声中逐步显露,在大约80s后达到最大振幅,并在150s后恢复到噪声水平。横向与径向慢度(ρt,ρr)的叠加显示在大约(2,-2)和(-2,-2)s/°存在两个峰值,表明这些波是沿着主弧路径(180°~360°)到达,而且明显是反方位角。基于上述观测资料,我们提出一种地幔和地表的PKPbc到PKPbc的散射机制,因为(1)这与散射波到时和散射波特有的慢度特征相吻合,(2)它的散射路径与之前观测到的深部地幔PK·KP散射路径类似(Chang and Cleary,1981)。观测到的上地幔散射波和PK·KP波均符合散射波的广义集合,我们称其为P′·d·P′,可以在地幔的任意深度d散射。  相似文献   

7.
8.
Continuous MF radar measurements of mesospheric mean winds are in progress at the observatories in Yamagawa (31.2°N, 130.6°E) and Wakkanai (45.4°N, 141.7°E). The observations at Yamagawa and Wakkanai were started in August 1994 and September 1996, respectively. The real-time wind data are used for the study of major large scale dynamic features of the middle atmosphere such as mean winds, tides, planetary waves, and gravity waves, etc. In the present study of mean winds, we have utilized the data collected until June 1999, which include the simultaneous observation period of little more than two and a half years, for the two sites. The database permits us to draw conclusions on the characteristics of mean winds and to compare the mean wind structure over these sites. The mean prevailing zonal winds at both sites are dominated by westward/eastward motions in summer/winter seasons below 90 km. Meridional circulation at meteor heights is generally southward during most times of the year and it extends to lower mesospheric heights during summer also. The summer westward jet at Wakkanai is consistently stronger than those at Yamagawa. However, the winter eastward winds have identical strength at both locations. Meridional winds also show larger values at Wakkanai. The mean wind climatology has been examined and compared with the MU radar observations over Shigaraki (34.9°N, 136.1°E). The paper also presents the results of the comparison between the MF radar winds and the latest empirical model values (HWM93 model) proposed by Hedin et al. (1996. Journal of Atmospheric and Terrestrial Physics 58, 1421–1447). Hodograph analyses of mean winds conducted for the summer and winter seasons show interesting similarities and discrepancies.  相似文献   

9.
One of the main morphological changes along the Southern Central Andes occurs from 36° to 39°S. The northern portion is characterized by prominent basement structures and a thick-skinned orogenic front with relief of over 2000 m with a deep level of exhumation where more than 4 km of section has been eroded. Contrastingly, the southern part is formed by mildly inverted basement structures restricted mainly to the hinterland zone, which reaches only 1500–1700 m relief. We quantify the variable contributions of two main contractional stages through the construction of three regionally balanced sections across the Andes, constrained by field and geophysical data. Extensional re-activation described for this segment in late Oligocene-early Miocene and Pliocene to Quaternary times, after the two main contractional episodes, suggests only 3 km of stretching that represents 30–10% of the original longitude. We, therefore, conclude that while initial Late Cretaceous to Eocene compression was similar along strike (∼10–7 km), it is the contrasting degrees of Neogene shortening (∼16–6 km) that have played the largest role in the along strike differences in structure and morphology along this portion of the southern Andes. Variable Neogene arc expansion could be responsible for the contrasting contractional deformation: In the north, late Miocene arc-related rocks cover most of the retroarc zone (>200 km with respect to the late Miocene arc front in the south), presumably driven by a shallow subduction episode in the area, whereas to the south they remain restricted to the continental drainage divide. Other factors involving architecture of previous rift structures, are proposed as additional mechanisms that accommodated variable shortening magnitudes through inversion.  相似文献   

10.
11.
12.
Data about the variations of mesopause temperature (~87 km) obtained from ground-based spectrographic measurements of the OH emission (834.0 nm, band (6-2)) at Irkutsk and Zvenigorod observatories were compared with satellite data on vertical temperature distribution in the atmosphere from Aura MLS v3.3. We analyzed MLS data for two geopotential height levels: 0.005 hPa (~84 km) and 0.002 hPa (~88 km) as the closest to OH height (~87 km). We revealed that Aura MLS temperature data have lower values than ground-based (cold bias). In summer periods, that difference increases. Aura cold biases compared with OH(6-2) at Irkutsk and Zvenigorod were calculated. For the 0.002 hPa height level, the biases are 10.1 and 9.4 K, and for 0.005 hPa they are 10.5 and 10.2 K at Irkutsk and Zvenigorod, respectively. When the bias is accounted for, an agreement between Aura MLS and OH(6-2) data obtained at both Irkutsk and Zvenigorod is remarkable.  相似文献   

13.
高精度地确定我国陆海任意点的似大地水准面高(或称高程异常),其基础是先建立相应区域的高精度、高分辨率的高程异常数字模型,然后在此基础上通过内插软件确定.本文阐述了建立我国陆海1′×1′高程异常数字模型的数据、方法和步骤等.分别采用全国854个(一、二级网和A、B级网点)和75个(地震监测站点)高精度GPS/水准点作为外部检核点,对该数字模型进行了精度估计,结果表明:由该数字模型确定全国任意点高程异常的精度,东部地区分别为±0.18 m和±0.13 m,西部地区分别为±0.30 m和±0.22 m,全国总体精度分别为±0.23 m和±0.17 m.比规划的±0.5 m精度指标提高了1倍多.少部分区域达到了厘米级精度.由1′×1′高程异常数字模型及相应软件确定任意点结果的速度一般在2s内.  相似文献   

14.
我国1′×1′高程异常模型的建立及应用   总被引:1,自引:1,他引:1       下载免费PDF全文
高精度地确定我国陆海任意点的似大地水准面高(或称高程异常),其基础是先建立相应区域的高精度、高分辨率的高程异常数字模型,然后在此基础上通过内插软件确定.本文阐述了建立我国陆海1′×1′高程异常数字模型的数据、方法和步骤等.分别采用全国854个(一、二级网和A、B级网点)和75个(地震监测站点)高精度GPS/水准点作为外部检核点,对该数字模型进行了精度估计,结果表明:由该数字模型确定全国任意点高程异常的精度,东部地区分别为±0.18 m和±0.13 m,西部地区分别为±0.30 m和±0.22 m,全国总体精度分别为±0.23 m和±0.17 m.比规划的±0.5 m精度指标提高了1倍多.少部分区域达到了厘米级精度.由1′×1′高程异常数字模型及相应软件确定任意点结果的速度一般在2s内.  相似文献   

15.
16.
17.
从地球重力场基本理论出发,导出了大地水准面上局部切平面坐标下的重力梯度矢量水平分量和垂直分量的计算公式,利用由多颗测高卫星联合反演的2'×2'海洋重力异常和垂线偏差资料,计算了西太平洋海域2'×2'重力梯度矢量水平分量和垂直分量.将计算的重力垂直梯度和现有资料进行比较,标准差为9.99E,并对重力梯度的空间分布特征进行了初步分析.  相似文献   

18.
We present a first detailed climatological study of individual quasi-monochromatic mesospheric, short-period gravity-wave events observed over Antarctica. The measurements were made using an all-sky airglow imager located at Halley Station (76°S, 27°W) and encompass the 2000 and 2001 austral winter seasons. Distributions of wave parameters were found to be similar to findings at other latitudes. The wave headings exhibited unusually strong anisotropy with a dominant preference for motion towards the Antarctic continent and a rotation from westward during fall, to poleward in mid-winter, to eastward in spring. This rotation was accompanied by a systematic increase of ~50% in the magnitudes of the horizontal wavelengths and observed phase speeds. It is postulated that the observed wave anisotropy was due to a succession of wave sources of different characteristics lying equatorward of Halley, or a dominant source mechanism evolving with time during the winter months.  相似文献   

19.
20.
本文利用中国廊坊站(39.4°N,116.7°E)流星雷达在2012年4月1日至2013年3月31日期间的水平风场观测数据,分析了廊坊上空中间层和低热层(MLT,80~100 km)大气纬向风、经向风潮汐的季节变化特征.研究表明:廊坊MLT区域周日潮汐和半日潮汐波动比较显著,有明显的季节变化特征.周日潮汐振幅在88 km以下为半年变化,极大值位于2-3月和10月,极小值位于冬、夏季;在88 km以上为周年变化,振幅冬末春初最强,夏季最弱.周日潮汐相位在秋、冬季比春、夏季提前.半日潮汐主要呈现半年变化,在5月和9月最强,冬、夏季最弱.半日潮汐相位在春、夏季比秋、冬季提前.此外,廊坊风场潮汐的观测结果与WACCM4模式模拟结果进行比较,结果表明两者的主要特征相似,在细节上有显著区别.与40°N附近其他站点风场潮汐观测结果的比较结果表明中纬度MLT风场潮汐有显著的随经度变化特性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号