首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The global structures of annual oscillation (AO) and semiannual oscillation (SAO) of stratospheric ozone are examined by applying spherical harmonic analysis to the ozone data obtained from the Nimbus-7 solar backscattered UV-radiation (SBUV) measurements for the period November 1978 to October 1980. Significant features of the results are: (1) while the stratospheric ozone AO is prevalent only in the polar regions, the ozone SAO prevails both in the equatorial and polar stratospheres; (2) the vertical distribution of the equatorial ozone SAO has a broad maximum of the order of 0.5 (mixing ratio in g/g) and the maximum appears earlier at high altitude (shifting from May [and November] at 0.3 mb [60 km] to November [and May] at 40 mb); (3) above the 40 km level, the maximum of the polar ozone SAO shifts upward towards later phase with altitude with a rate of approximately 10 km/month in both hemispheres; (4) vertical distributions of the polar ozone AOs and SAOs show two peaks in amplitude with a minimum (nodal layer) in between and a rapid phase change with altitude takes place in the respective nodal layers; and (5) the heights of the ozone AO- and SAO-peaks decrease with latitude. The main part of AOs and SAOs of stratospheric ozone including hemispheric asymmetries is ascribable to: (i) temperature dependent ozone photochemistry in the upper stratosphere and mesosphere, (ii) variations of radiation field in the lower stratosphere affected by the annual cycle of solar illumination and temperature in the upper stratosphere and (iii) meridional ozone transport by dynamical processes in the lower stratosphere.  相似文献   

2.
Synthetic annual and monthly rainfall data series are generated by using autoregressive (AR) processes, Thomas-Fiering (TF) model, method of fragments (F) and its modified version (MF), two-tier (TT) model, and a newly developed wavelet (W) approach. It is seen that the W approach is as well in preserving the statistical behavior of the observed data series as the classical annual and monthly hydrological data generation schemes used in this study. The W approach is found even better in replacing some particular characteristics such as the mean of the sequence and correlation between the successive months in the series. It is, therefore, proposed as a new annual and monthly hydrological data generation scheme.  相似文献   

3.
A model for simulation of monthly streamflow series is developed by a multiple regression approach, which includes both precipitation and flow, instead of the simple regression Markovian model, which is based on the antecedent flow alone.  相似文献   

4.
The estimation of evapotranspiration (E) in forested areas is required for various practical purposes (e.g. evaluation of drought risks) in Japan. This study developed a model that estimates monthly forest E in Japan with the input of monthly temperature (T). The model is based on the assumptions that E equals the equilibrium evaporation rate (Eeq) and that Eeq is approximated by a function of T. The model formulates E as E (mm month−1) = 3·48 T ( °C) + 32·3. The accuracy of the model was examined using monthly E data derived using short‐term water balance (WB) and micrometeorological (M) methods for 15 forest sites in Japan. The model estimated monthly E more accurately than did the Thornthwaite and Hamon equations according to regression analysis of the estimated E and E derived using the WB and M methods. Although the model tended to overestimate monthly E, the overestimation could be reduced by considering the effect of precipitation on E. As T data are commonly available all over Japan, the model would be a useful tool to estimate forest E in Japan. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

5.
COSMIC掩星数据在平流层的温度特性验证   总被引:1,自引:0,他引:1  
针对掩星技术的反演精度在上大气层(一般在35 km以上)的验证会受到限制,本文选用2007年1月、4月、7月和10月COSMIC掩星观测的月平均温度数据,与MERRA再分析场和ECMWF再分析场月平均温度数据进行比较,以不同的方式进行对比,主要对20~50 km COSMIC掩星温度资料进行精度和可用性的检验.结果显示...  相似文献   

6.
Emrah Yalcin 《水文科学杂志》2013,58(13):1588-1604
ABSTRACT

This study is an assessment of the return flow ratio of an irrigation abstraction using the flow records of a downstream stream-gauging station, with the example of the Kozluk scheme irrigated by diverted water from Garzan Creek flowing through the southeastern region of Turkey. In the planning reports of the major dam projects of the region, an unverified return ratio was assumed in eliminating the influence of this irrigation on the flow measurements of Garzan Creek. The correctness of this assumed return ratio is evaluated by analysing the monthly streamflow measurements of the Besiri station through a Soil and Water Assessment Tool (SWAT) model constructed with the coarse-scale topography, land use and soil data from open source databases. The results show the necessity of irrigation project-based return flow analyses using regional fine-scale datasets, instead of rule-of-thumb assumptions, to determine the effects of irrigation activities on flow regimes more accurately.  相似文献   

7.
Ground pressure observations made at Macao (22N, 113E) from 1953 to 1991 are analyzed and compared with the stratospheric quasi-biennial oscillation (QBO) data obtained during the same interval. The periods of the two phenomena and their time evolution are found to be close to each other. Furthermore, the time series of the stratospheric winds and the S2(p) QBO signature are highly correlated, thus confirming earlier analysis. On this basis, pressure measurements obtained at Batavia (now Djakarta: 6S, 107E) from 1870 to 1944 are used to trace back the QBO phenomenon before the advent of systematic stratospheric balloon measurements. The inferred period, which varies between 25 and 32 months, suggests that the QBO has been present in the atmosphere at least since 1870.  相似文献   

8.
This study demonstrates the use of spatially downscaled, monthly general circulation model (GCM) rainfall and temperature data to drive the established HyMOD hydrological model to evaluate the prospective effects of climate change on the fluvial run‐off of the River Derwent basin in the UK. The evaluation results of this monthly hydrological model using readily available, monthly GCM data are consistent with studies on nearby catchments employing high‐temporal resolution data, indicating that useful hydro‐climatic planning studies may be possible using standard datasets and modest computational resources. HyMOD was calibrated against 5 km2 gridded UK Climate Projections dataset data and then driven using monthly spatially interpolated (~5 km2) outputs from Hadley Centre Coupled Model, version 3 and the Canadian Centre for Climate Modelling and Analysis for Intergovernmental Panel on Climate Change Special Report on Emissions Scenarios (IPCC‐SRES) A2a and B2a covering the 2020s, 2050s and 2080s. Results for both GCMs project a decrease in annual run‐off in both GCM models and scenarios with higher values in the summer/autumn months, whereas an increase in the later winter months. Both Hadley Centre Coupled Model, version 3 and the Canadian Centre for Climate Modelling and Analysis show higher ranges of uncertainty during the winter season with higher values of run‐off associated with December in all three simulation periods and two scenarios. A seasonal comparison of run‐off simulations shows that both GCMs give similar results in summer and autumn, whereas disparities due to GCM uncertainties are more conspicuous in winter and spring. In this study, both the GCMs under A2a scenario have demonstrated the high possibility of time shift in monthly average peak run‐offs in the Derwent River by 2080s in comparison with the early 21st century. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

9.
ABSTRACT

This study focuses on the variability of lake evaporation and also the periodic relationships among hydro-meteorological variables. The monthly hydro-meteorological data of Lake Keban were investigated by wavelet transforms. The results show that the main periodicity is on an annual scale. This periodicity is weaker for precipitation and wind speed but higher for evaporation, temperature, runoff and relative humidity. In addition to this, the continuous wavelet figures show some weak periodicities on the almost 10-year scale level but they are not continuous over time. Also, strong events on a short-term monthly scale are seen for evaporation, precipitation and runoff in 1988. This event in 1988 may be explained by the 1988 La Niña event, which was one of the strongest on record. Also, the periodicities on the 2–8-month scales in the precipitation data can be interpreted as being connected with the strong El Niño events of 1982 and 1992.
Editor D. Koutsoyiannis; Associate editor A. Carsteanu  相似文献   

10.
This article aims at analyzing if high-frequency radar observations of surface currents allow to improve model forecasts in the Ligurian Sea, where inertial oscillations are a dominant feature. An ensemble of ROMS models covering the Ligurian Sea, and nested in the Mediterranean Forecasting System, is coupled with two WERA high-frequency radars. A sensitivity study allows to determine optimal parameters for the ensemble filter. By assimilating observations in a single point, the obtained correction shows that the forecast error covariance matrix represents the inertial oscillations, as well as large- and meso-scale processes. Furthermore, it is shown that the velocity observations can correct the phase and amplitude of the inertial oscillations. Observations are shown to have a strong effect during approximately half a day, which confirms the importance of using a high temporal observation frequency. In general, data assimilation of HF radar observations leads to a skill score of about 30% for the forecasts of surface velocity.  相似文献   

11.
ABSTRACT

A two-parameter monthly water balance model to simulate runoff can be used for a water resources planning programme and climate impact studies. However, the model estimates two parameters of transformation of time scale (c) and of the field capacity (SC) by a trial-and-error method. This study suggests a modified methodology to estimate the parameters c and SC using the meteorological and geological conditions. The modified model is compared with the Kajiyama formula to simulate the runoff in the Han River and International Hydrological Programme representative basins in South Korea. We show that the estimated c and SC can be used as the initial or optimal values for the monthly runoff simulation study in the model.
EDITOR M.C. Acreman; ASSOCIATE EDITOR S. Kanae  相似文献   

12.
V. P. SINGH  C.-Y. XU 《水文研究》1997,11(11):1465-1473
The influence of data errors on the performance of mass transfer-based evaporation equations was investigated for both monthly and daily data from a climatological station in the State of Vaud in Switzerland. Evaporation estimates were found to be particularly sensitive to vapour pressure gradient, less sensitive to wind speed and most insensitive to temperature. A quantitative analysis showed that: (1) systematic errors in vapour pressure data influenced evaporation estimates inversely to more or less the same magnitude for both monthly and daily cases; (2) systematic errors in wind speed and temperature data influenced evaporation estimates inversely to the magnitude of about a half and a quarter of the magnitude of the influence of vapour pressure errors, respectively; and (3) evaporation estimates were much more sensitive to random errors in the case of monthly data than daily data. © 1997 John Wiley & Sons, Ltd.  相似文献   

13.
Several models for simulation of water balance processes in semi-arid mountainous basins were developed by coupling different modules of existing water balance models (WBM). Snow accumulation and snowmelt rate relationships extracted from the McCabe-Markstrom, Guo, Rao-Al Wagdany and WASMOD-M WBMs, originally developed for basins with humid climate, were coupled with the Jazim WBM, primarily developed for arid basins. Karaj Basin, central Iran, with snowy autumn–winter and dry summer periods, was selected to assess model performance. The model parameters were optimized using a genetic algorithm (GA). All coupled models performed better than the non-modified (original) WBMs in the study basin. The coupled Jazim–McCabe-Markstrom model provided the best performance in simulating low and high monthly flows. It estimated the snowmelt runoff values more accurately than other proposed coupled models because the linear relationships used in the snow module of the McCabe-Markstrom model are more compatible with snow variations in the Karaj Basin.  相似文献   

14.
In many real-world situations, operation of water resources systems are subject to constraints which are formulated on a daily basis. Since mathematical models (simulation or optimization models) are often developed on a monthly basis to avoid dimensionality problems and to reduce necessary computer time, some degree of approximation is necessary. Two examples are presented in order to show how this approximation can be done:
  • •- a reservoir is operated for hydroelectric power production and low-flow augmentation is provided on a daily basis as a function of inflows (Lech River System in Germany)
  • •- a reservoir is operated optimally for daily low-flow augmentation at a control gage downstream. The model includes also mandatory releases as constraints (Wupper River System in Germany).
In the first example the daily requirements are part of the constraints in the system, while in the second example the daily constraint concerns directly the objective function. Further, in the first case water can be saved and in the second case more water is needed as compared to calculations on a monthly basis.These examples are presented to show two solutions using envelope curves but other possibilities (i.e., regression analysis, constraints, coefficients) could be considered.  相似文献   

15.
16.
Özgür Kişi 《水文研究》2009,23(14):2081-2092
This paper proposes the application of a conjunction model (neuro‐wavelet) for forecasting monthly lake levels. The neuro‐wavelet (NW) conjunction model is improved combining two methods, discrete wavelet transform and artificial neural networks. The application of the methodology is presented for the Lake Van, which is the biggest lake in Turkey, and Lake Egirdir. The accuracy of the NW model is investigated for 1‐ and 6‐month‐ahead lake level forecasting. The root mean square errors, mean absolute relative errors and determination coefficient statistics are used for evaluating the accuracy of NW models. The results of the proposed models are compared with those of the neural networks. In the 1‐month‐ahead lake level forecasting, the NW conjunction model reduced the root mean square errors and mean absolute relative errors by 87–34% and 86–31% for the Van and Egirdir lakes, respectively. In the 6‐month‐ahead lake level forecasting, the NW conjunction model reduced the root mean square errors and mean absolute relative errors by 34–48% and 30‐46% for the Van and Egirdir lakes, respectively. The comparison results indicate that the suggested model could significantly increase the short‐ and long‐term forecast accuracy. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

17.
利用我国9个电离层观测站第21和22太阳周大约20年的foF2月中值数据,分析太阳活动和地磁活动对电离层foF2的影响,结果显示白天和夏季夜间foF2和太阳黑子数R之间存在着明显非线性关系,并且随着纬度的降低逐渐增强.当回归分析加入地磁Ap指数时,多重回归模型与实测值误差进一步减小,说明同时考虑太阳活动和地磁活动的非线性影响能够更好地描述foF2的变化.基于foF2与太阳黑子数R及地磁指数Ap之间的非线性统计关系,利用Fourier级数建立9个单站谱模型,并与国际参考电离层IRI进行了比较,精度有一定提高.  相似文献   

18.
19.
The accuracy in determining the maximum usable frequencies (MUF) of reference radio links has been estimated. A method for using the data on MUF, obtained at two-hop reference radio links, in order to specify the horizontal gradients of electron concentration in the ionosphere has been proposed. The results of the observations at a system of two reference radio links are used to assess the efficiency of such a specification. It has been indicated that the developed method makes it possible to specify the values of the ionospheric critical frequency simultaneously in two radio link regions. The application of two-hop radio links together with one-hop lines substantially broadens the number of reference radio stations that can be used to adapt the parameters of the average monthly ionospheric model to the current conditions.  相似文献   

20.
The form, height and volume of coastal foredunes reflects the long‐term interaction of a suite of nearshore and aeolian processes that control the amount of sand delivered to the foredune from the beach versus the amount removed or carried inland. In this paper, the morphological evolution of more than six decades is used to inform the development of a simple computer model that simulates foredune growth. The suggestion by others that increased steepness of the seaward slope will retard sediment supply from the beach to the foredune due to development of a flow stagnation zone in front of the foredune, hence limiting foredune growth, was examined. Our long‐term data demonstrate that sediment can be transferred from the beach to the foredune, even with a steep foredune stoss slope, primarily because much of the sediment transfer takes place under oblique rather than onshore winds. During such conditions, the apparent aspect ratio of the dune to the oncoming flow is less steep and conditions are not as favourable for the formation of a stagnation zone. The model shows that the rate of growth in foredune height varies as a function of sediment input from the beach and erosion due to storm events, as expected, but it also demonstrates that the rate of growth in foredune height per unit volume increase will decrease over time, which gives the perception of an equilibrium height having been reached asymptotically. As the foredune grows in size, an increasing volume of sediment is needed to yield a unit increase in height, therefore the apparent growth rate appears to slow. Copyright © 2018 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号