首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We present the first results of gravity wave signatures on polar mesospheric clouds (PMCs) during the summer of 2007, in the northern hemisphere polar region. The Cloud Imaging and Particle Size (CIPS) experiment has one of the three instruments on board the NASA Aeronomy of Ice in the Mesosphere (AIM) spacecraft, which was launched into a sun-synchronous orbit on April 25, 2007. CIPS is a four-camera, wide-field (120°×80°) imager designed to measure PMC morphology and particle properties. One of the objectives of AIM is to investigate gravity wave effects on PMC formation and evolution. CIPS images show distinct wave patterns and structures in PMCs that are similar to ground-based photographs of noctilucent clouds (NLCs). The observed horizontal wavelengths of the waves were found to vary between 15 and 320 km, with smaller-wavelength structures of less than 50 km being the most common. In this paper we present examples of individual quasi-monochromatic wave events observed by CIPS and statistics on the wave patterns observed in the northern hemisphere during the summer months of 2007, together with a map showing the geographic locations of gravity wave events observed from CIPS.  相似文献   

2.
The Cloud Imaging and Particle Size Experiment (CIPS) is one of three instruments aboard the Aeronomy of Ice in the Mesosphere spacecraft. CIPS provides panoramic ultraviolet images of the atmosphere over a wide range of scattering angles in order to determine the presence of polar mesospheric clouds, measure their spatial morphology, and constrain the parameters of cloud particle size distribution. The AIM science objectives motivate the CIPS measurement approach and drive the instrument requirements and design, leading to a configuration of four wide-angle cameras arrayed in a ‘+’ arrangement that covers a 120° (along orbit track)×80° (across orbit track) field of view. CIPS began routine operations on May 24, 4 weeks after AIM was launched. It measures scattered radiances from PMCs near 83 km altitude to derive cloud morphology and particle size information by recording multiple exposures of individual clouds to derive PMC scattering phase functions and detect nadir horizontal spatial scales to approximately 3 km. This paper describes the instrument design, its prelaunch characterization and calibration, and flight operations. Flight observations and calibration activities confirm performance inferred during ground test, verifying that CIPS exceeds its measurement requirements and goals. These results are illustrated with example flight images that demonstrate the instrument measurement performance.  相似文献   

3.
We compare measurements from the Aeronomy of Ice in the Mesosphere (AIM) Cloud Imaging and Particle Size (CIPS) experiment to the NOAA-17 solar backscatter ultraviolet (SBUV/2) instrument during the 2007 Northern Hemisphere polar mesospheric cloud (PMC) season. Daily average Rayleigh scattering albedos determined from identical footprints from the CIPS nadir camera and SBUV/2 agree to better than ~5% throughout the season. Average PMC brightness values derived from the two instruments agree to within ±10%. PMC occurrence frequencies are on average ~5% to nearly a factor of two higher in CIPS, depending on latitude. Agreement is best at high latitudes where clouds are brighter and more frequent. The comparisons indicate that AIM CIPS data are valid for scientific analyses. They also show that CIPS measurements can be linked to the long time series of SBUV/2 data to investigate long-term variability in PMCs.  相似文献   

4.
5.
The Cloud Imaging and Particle Size (CIPS) instrument on the Aeronomy of the Ice in the Mesosphere (AIM) spacecraft is a 4-camera nadir pointed imager with a bandpass centered at 265 nm and a field of view of 120°×80°. CIPS observes polar mesospheric clouds (PMCs) against the sunlit Rayleigh-scattered background. At individual polar locations approximately 5 km×5 km in area, CIPS observes the same volume of air seven times over a range of scattering angles from about 35° to 150°. These multi-angle observations allow the identification and extraction of the PMC scattered radiance from the Rayleigh-scattered background. We utilize the fact that the former has a highly asymmetric phase function about 90° scattering angle, while the latter has a phase function that is symmetric. The retrieved PMC phase function can then be interpreted to obtain PMC particle size distributions. We describe a technique for identification of PMCs in the CIPS observations through the separation of the Rayleigh and PMC radiances. PMC phase function results are shown for the first season of CIPS observations. Assuming the particles are oblate spheroids with an axial ratio of 2, and a Gaussian distribution of width 14 nm, we find the phase functions are consistent with mean radii between 50 and 60 nm. These results are similar to those discussed by Hervig et al. [2009. Interpretation of SOFIE PMC measurements: cloud identification and derivation of mass density, particle shape, and particle size. J. Atmos. Sol. Terr. Phys., in review.] in this issue from the Solar Occultation for Ice Experiment (SOFIE) which also flies on the AIM satellite.  相似文献   

6.
A global numerical weather prediction system is extended to the mesosphere and lower thermosphere (MLT) and used to assimilate high-altitude satellite measurements of temperature, water vapor and ozone from MLS and SABER during May–July 2007. Assimilated temperature and humidity from 100 to 0.001 hPa show minimal biases compared to satellite data and existing analysis fields. Saturation ratios derived diagnostically from these assimilated temperature and water vapor fields at PMC altitudes and latitudes compare well with seasonal variations in PMC frequency measured from the aeronomy of ice in the mesosphere (AIM) satellite. Synoptic maps of these diagnostic saturation ratios correlate geographically with three independent transient mesospheric cloud events observed at midlatitudes by SHIMMER on STPSat-1 and by ground observers during June 2007. Assimilated temperatures and winds reveal broadly realistic amplitudes of the quasi 5-day wave and migrating tides as a function of latitude and height. For example, analyzed winds capture the dominant semidiurnal MLT wind patterns at 55°N in June 2007 measured independently by a meteor radar. The 5-day wave and migrating diurnal tide also modulate water vapor mixing ratios in the polar summer MLT. Possible origins of this variability are discussed.  相似文献   

7.
We present the first measurement of polar mesospheric cloud (PMC) occurrence frequency over the diurnal cycle from a satellite. The observations are made during the 2007 northern hemisphere PMC season by the Spatial Heterodyne IMager for MEsospheric Radicals (SHIMMER), which views the limb near 309 nm typically between 34 and 98 km. The PMC diurnal variation is derived between 50 and 58°N, where local times at the tangent point precess by ~30 min/day allowing for observations between 0330 and 2130 local time during the PMC season. We find that the occurrence frequencies exhibit a strong semidiurnal behavior with peaks near 0600 and 1800 local time and a minimum between 0900 and 1600 during which they are on average an order of magnitude less. The semidiurnal dependence is strongly correlated with concurrent ground-based measurements of meridional winds and temperatures measured at the same latitude. Our results for PMC frequency over the diurnal cycle can be used to help reconcile observations from other satellites that only permit cloud measurements at discrete local times.  相似文献   

8.
A noctilucent cloud is seen at a particular time from a specified place. The journey of the cloud particles from nucleation to observation can be calculated by using a simple model of growth and taking account of the fall speed of the cloud particles. Cloud particles can be backtracked by bringing together growth and fall speed equations and a model of mesospheric winds to find where the particles of a cloud seen at a particular time and place have originated. The wind model that is used here suggests that there is a distinct outer edge to the summertime polar circulation pattern in which water vapour is being carried up from the lower mesosphere to the mesopause. The change in latitude of this outer edge during the summer season may well account for the observed seasonal change in occurrence of mesospheric clouds. Polar mesospheric clouds cause a drying of the upper mesosphere. It is suggested here that diffusion of water vapour dumped at the level of polar mesospheric clouds will take an appreciable time to carry water vapour back up to the mesopause. In consequence, there will be a significant separation between the observed location of a noctilucent cloud and its precursor polar mesospheric cloud.  相似文献   

9.
The visible image data archived by EUMETSAT have been examined to discover if the whole-Earth images acquired from the geostationary meteorological satellite, METEOSAT, show polar mesospheric clouds above the limb. Images from the northern summer of 1995 show polar mesospheric clouds frequently in June and July at the highest visible latitude (81.3°N) and on occasion extending down as low as 65°N. A first-look at days through the summer shows that there is no marked forward-scatter of sunlight from the clouds and that it is possible to choose times of day throughout the year when there will be no interference to the detection of polar mesospheric clouds from ghost images of the Sun or from light scattered in the optical system of the radiometer. With over 20 years of data in the archive, available for both northern and southern hemispheres, taken under controlled conditions, studies of the climatology of polar mesospheric clouds can develop significantly.  相似文献   

10.
The Solar Occultation For Ice Experiment (SOFIE) was launched onboard the Aeronomy of Ice in the Mesosphere (AIM) satellite on 25 April 2007, and began science observations on 14 May 2007. SOFIE conducts solar occultation measurements in 16 spectral bands that are used to retrieve vertical profiles of temperature, O3, H2O, CO2, CH4, NO, and polar mesospheric cloud (PMC) extinction at wavelengths from 0.330 to 5.006 μm. SOFIE performs 15 sunset measurements at latitudes from 65° to 85°S and 15 sunrise measurements from 65° to 85°N each day. This work describes the SOFIE instrument, measurement approach, and retrieval results for the northern summer of 2007.  相似文献   

11.
Polar Mesospheric Cloud (PMC) observations from the Cloud Imaging and Particle Size (CIPS) instrument on the Aeronomy of Ice in the Mesosphere (AIM) spacecraft are used to investigate the role of planetary wave activity on global PMC variability in the summer polar mesosphere during the 2007 Northern hemisphere season. This is coupled with an analysis of contemporaneous measurements of atmospheric temperature by the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) instrument onboard the Thermosphere–Ionosphere–Mesosphere–Energetics and Dynamics (TIMED) spacecraft to characterize the importance of temperature as a dominant forcing mechanism of the dynamical state of the summer polar mesosphere. The study confirms results from a recent study using PMC data from the Student Nitric Oxide Explorer (SNOE) and temperature data from SABER, such that planetary wave activity is present in both PMCs and mesospheric temperature and that are strongly coherent and anti-correlated. The dominant wave present in the polar summer mesosphere in both PMCs and temperature is the 5-day wavenumber 1 Rossby normal mode. The maximum amplitude of the variation of the 5-day wave in temperature is small at 3 K but has a significant effect on PMC albedo. The phase relationship between PMC and temperature is variable between 150° and 180° out of phase, with PMC albedo reaching a maximum ~10 h before the minimum in temperature. We have identified two additional waves, the westward propagating 2-day wavenumber 2 (2DW2) and the eastward propagating 2-day wavenumber 1 (2DE1) are both present in PMC and temperature variability in the 2007 NH season. The 2DW2 wave is consistent with a Rossby normal mode excited by the instability in the zonal mean zonal wind. However, the source of the 2DE1 wave could be a nonlinear interaction of the 2DW2 with the migrating diurnal tide. This is the first time these two wave features have been detected in coincident PMC and temperature measurements. Analysis of the zonal variation of PMC occurrence and temperature shows they are also anti-correlated and supporting the conclusion that temperature is an important forcing mechanism in zonal variability.  相似文献   

12.
This work examines the first season of polar mesospheric cloud (PMC) observations from the Solar Occultation for Ice Experiment (SOFIE). SOFIE observations of temperature, water vapor, and PMC frequency, mass density, particle shape, and size distribution are used to characterize the seasonal evolution and altitude dependence of mesospheric ice and the surrounding environment. SOFIE indicates that ice is nearly always present during summer, and that the ice layer is continuous from about 81 km altitude to the mesopause and above. Ice particles are observed to be more aspherical above and below the extinction peak altitude, suggesting a relationship between particle shape and mass density. The smallest particles are observed near the top of the ice layer while the largest particles exist at low concentrations near cloud base. A strong correlation was found between water vapor and particle size with small particles existing when H2O is low. This relationship holds when examining variability in altitude, and variability over time at one altitude.  相似文献   

13.
Strong VHF radar echoes have been observed not only during summer months at polar latitudes (polar mesosphere summer echoes, PMSE) but also at middle latitudes (mesosphere summer echoes, MSE). These echoes are closely connected with small ice particles, thus containing information about mesospheric temperature and water vapour content. But the (P)MSE also depend on the ionisation due to solar wave radiation and precipitating high energetic particles. Observations with VHF radars at Andenes (69.3°N; 16.0°E) since 1994 and at Kühlungsborn (54.6°N; 11.8°E) since 1998 are used for investigations of the solar and geomagnetic control of the (P)MSE as well as of possible long-term changes. The (P)MSE are positively correlated with the solar Lyman α radiation and the geomagnetic activity and have slightly positive trends. Due to the limited measuring period, the significance levels of the detected (P)MSE trends are small. Positive trends in noctilucent clouds (NLC) and polar mesospheric clouds (PMC) are in general agreement with (P)MSE trends.  相似文献   

14.
本文利用AIM卫星搭载的CIPS云图反照率和冰晶粒径数据,从中提取了2007/08南半球和2008年北半球共6489个小尺度重力波活动(波长5~150km范围)个例,对重力波区域与背景云层冰晶粒径谱进行对比分析,从而研究重力波对冰晶平均半径和谱宽的影响规律.结果表明,北半球重力波区域冰晶的平均半径和谱宽分别比背景云层小2.5nm和6.1nm,南半球则分别减小1.1nm和7.9nm.在随纬度的分布上,小于80°时,南北半球的平均半径扰动值均为负值,绝对值随纬度增大而减小,而大于80°时,负扰动转变为正扰动,且绝对值增加;谱宽扰动的绝对值也随着纬度增加而减小,但均为负值.在季节内随时间的分布上,南北半球重力波对冰晶平均半径和谱宽的扰动在始末阶段以负值为主,且绝对值较大,而在中期阶段正负值相当,且绝对值较小.这一特征与重力波引起冰晶粒径变化的振幅在纬度和时间上的分布趋势一致.重力波的波长均随纬度升高而减小,在季节的始末阶段较大,中期小,且南半球的平均波长和变化幅度都要明显大于北半球的,粒径扰动振幅随波长的变化率为南半球0.207nm·km-1,北半球的0.163nm·km-1.根据分析推断,重力波自身的扰动振幅应与其影响区域内的谱参数相对于背景云层的变化量有直接关系,且振幅越大,平均半径和谱宽的负扰动就越大.  相似文献   

15.
Using daily distributions of noctilucent cloud fields obtained for 2007–2012 by the AIM satellite, we analyzed temporal changes in the area of the global field of mesospheric noctilucent clouds. These clouds have been shown to be characterized by some common features that can be approximated mathematically by simple functions reflecting the seasonal course of the temperature and humidity regime of the high-latitude mesosphere, allowing a clear physical interpretation. We discuss the specific features of changes in the cloud field area for individual seasons.  相似文献   

16.
We present the first observational proof that polar mesospheric cloud (PMC) brightness responds to stratospheric gravity waves (GWs) differently at different latitudes by analyzing the Fe Boltzmann lidar data collected from the South Pole and Rothera (67.5°S, 68.0°W), Antarctica. Stratospheric GW strength is characterized by the root-mean-square (RMS) relative density perturbation in the 30–45 km region and PMC brightness is represented by the total backscatter coefficient (TBC) in austral summer from November to February. The linear correlation coefficient (LCC) between GW strength and PMC brightness is found to be +0.09 with a 42% confidence level at the South Pole and ?0.49 with a 98% confidence level at Rothera. If a PMC case potentially affected by a space shuttle exhaust plume is removed from the Rothera dataset, the negative correlation coefficient and confidence level increase to ?0.61 and 99%, respectively. The Rothera negative correlation increases when shorter-period waves are included while no change is observed in the South Pole correlation. Therefore, observations show statistically that Rothera PMC brightness is negatively correlated with the stratospheric GW strength but no significant correlation exists at the South Pole. A positive correlation of +0.74 with a confidence level of 99.98% is found within a distinct subset of the South Pole data but the rest of the dataset exhibits a random distribution, possibly indicating different populations of ice particles at the South Pole. Our data show that these two locations have similar GW strength and spectrum in the 30–45 km region during summer. The different responses of PMC brightness to GW perturbations are likely caused by the latitudinal differences in background temperatures in the ice crystal growth region between the PMC altitude and the mesopause. At Rothera, where temperatures in this region are relatively warm and supersaturations are not as large, GW-induced temperature perturbations can drive subsaturation in the warm phase. Thus, GWs can destroy growing ice crystals or limit their growth, leading to negative correlation at Rothera. Because the South Pole temperatures in the mesopause region are much colder, GW-perturbed temperature may never be above the frost point and have less of an impact on crystal growth and PMC brightness. The observed phenomena and proposed mechanisms above need to be understood and verified through future modeling of GW effects on PMC microphysics and ray modeling of GW propagation over the South Pole and Rothera.  相似文献   

17.
Measurements show that the polar mesospheric clouds (PMC) can vary, in the zonal mean, with periods around 1 month [Bailey et al., 2005. Observations of polar mesospheric clouds by the Student Nitric Oxide Explorer. J. Geophys. Res. 110, D13203, doi:10.1029/2004JD005422]. This observation has been the impetus for the present paper, where we describe corresponding temperature oscillations generated by the Numerical Spectral Model (NSM). Our numerical results are taken from the 3D and 2D versions of the NSM, which produce inter-annual and long-term variations in the polar mesopause region, as discussed in the accompanying paper (Part I). In the NSM, the intra-seasonal temperature variations with periods around 2 months are generated by the meridional winds that in turn are accelerated by the momentum deposition from small-scale gravity waves (GW) propagating north/south. The wave-driven dynamical process underlying the oscillations is intrinsically non-linear like that generating the quasi-biennial oscillation (QBO). Our analysis demonstrates that the seasonal annual and semi-annual variations excite the oscillation frequencies through non-linear cascading.  相似文献   

18.
Recondensed meteoric material, so-called meteoric smoke, has long been considered the main candidate for condensation nuclei for mesospheric ice formation. Recently however, model studies have shown that meteoric smoke particles are transported away from the polar region, where ice phenomena such as noctilucent clouds occur, before they can grow large enough to serve as ice condensation nuclei. In the accompanying paper it is argued that charging of the meteoric smoke particles may solve this dilemma by significantly altering the efficiency of the particles as condensation nuclei. In the present paper, the feasibility of this idea is investigated more quantitatively, by analysing the time scales of processes such as charging, recombination, and particle growth. Despite large uncertainties, especially in the charging efficiency of the smallest smoke particles, we show that reasonable assumptions yield number densities of charged condensation nuclei that are consistent with what is expected for mesospheric ice phenomena.  相似文献   

19.
We present an analysis of systematic visual and photographic observations of noctilucent clouds seen from Lithuania in the years 1973–2009. The main trends in the noctilucent cloud occurrence frequency and the mean brightness are derived from statistical and correlation analysis. A clear signature of the solar activity cycle is imprinted on the noctilucent cloud occurrence frequency and mean brightness, both showing distinct anti-correlation with the sunspot numbers; however, no statistically significant increase of either noctilucent cloud occurrence frequency or brightness has been detected at least over past 19 yr (1991–2009). The only statistically significant positive trend is established for the numbers of very bright noctilucent cloud displays in the years 1973–2009. The most recent noctilucent cloud observations are linked to variations of local mesospheric temperatures, measured by the Aura satellite.  相似文献   

20.
利用ICESat数据解算南极冰盖冰雪质量变化   总被引:5,自引:4,他引:1       下载免费PDF全文
南极冰盖冰雪质量变化反映了全球气候变化,并且直接影响着全球海平面变化.ICESat测高卫星的主要任务之一就是要确定南北两极冰盖的质量变化情况并评估其对全球海平面变化的影响.本文利用2003年10月至2008年12月的ICESat测高数据,针对南极DEM分辨率有限的特殊性,通过求解坡度改正值,解决重复轨道地面脚点不重合的问题,计算了南极大陆(86°S以北区域,后文所述南极冰盖均不包括86°S以南区域)在这5年里的冰雪质量变化情况,得到东南极冰盖的质量变化为-18±20Gt/a,西南极-26±6Gt/a,南极冰盖的冰雪质量变化为-44±21Gt/a,对全球海平面上升的影响约为0.12mm·a~(-1).解算结果表明,南极冰盖质量亏损主要集中在西南极阿蒙森海岸附近冰川以及东南极波因塞特角区域.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号