首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present the first results of gravity wave signatures on polar mesospheric clouds (PMCs) during the summer of 2007, in the northern hemisphere polar region. The Cloud Imaging and Particle Size (CIPS) experiment has one of the three instruments on board the NASA Aeronomy of Ice in the Mesosphere (AIM) spacecraft, which was launched into a sun-synchronous orbit on April 25, 2007. CIPS is a four-camera, wide-field (120°×80°) imager designed to measure PMC morphology and particle properties. One of the objectives of AIM is to investigate gravity wave effects on PMC formation and evolution. CIPS images show distinct wave patterns and structures in PMCs that are similar to ground-based photographs of noctilucent clouds (NLCs). The observed horizontal wavelengths of the waves were found to vary between 15 and 320 km, with smaller-wavelength structures of less than 50 km being the most common. In this paper we present examples of individual quasi-monochromatic wave events observed by CIPS and statistics on the wave patterns observed in the northern hemisphere during the summer months of 2007, together with a map showing the geographic locations of gravity wave events observed from CIPS.  相似文献   

2.
The Cloud Imaging and Particle Size Experiment (CIPS) is one of three instruments aboard the Aeronomy of Ice in the Mesosphere spacecraft. CIPS provides panoramic ultraviolet images of the atmosphere over a wide range of scattering angles in order to determine the presence of polar mesospheric clouds, measure their spatial morphology, and constrain the parameters of cloud particle size distribution. The AIM science objectives motivate the CIPS measurement approach and drive the instrument requirements and design, leading to a configuration of four wide-angle cameras arrayed in a ‘+’ arrangement that covers a 120° (along orbit track)×80° (across orbit track) field of view. CIPS began routine operations on May 24, 4 weeks after AIM was launched. It measures scattered radiances from PMCs near 83 km altitude to derive cloud morphology and particle size information by recording multiple exposures of individual clouds to derive PMC scattering phase functions and detect nadir horizontal spatial scales to approximately 3 km. This paper describes the instrument design, its prelaunch characterization and calibration, and flight operations. Flight observations and calibration activities confirm performance inferred during ground test, verifying that CIPS exceeds its measurement requirements and goals. These results are illustrated with example flight images that demonstrate the instrument measurement performance.  相似文献   

3.
The Solar Occultation For Ice Experiment (SOFIE) was launched onboard the Aeronomy of Ice in the Mesosphere (AIM) satellite on 25 April 2007, and began science observations on 14 May 2007. SOFIE conducts solar occultation measurements in 16 spectral bands that are used to retrieve vertical profiles of temperature, O3, H2O, CO2, CH4, NO, and polar mesospheric cloud (PMC) extinction at wavelengths from 0.330 to 5.006 μm. SOFIE performs 15 sunset measurements at latitudes from 65° to 85°S and 15 sunrise measurements from 65° to 85°N each day. This work describes the SOFIE instrument, measurement approach, and retrieval results for the northern summer of 2007.  相似文献   

4.
The Solar Occultation For Ice Experiment (SOFIE) was launched onboard the Aeronomy of Ice in the Mesosphere (AIM) spacecraft to measure polar mesospheric clouds (PMCs) and their environment. This work describes methods for identifying PMCs in SOFIE observations and determining mass density, particle shape, particle effective radius, and the parameters of a Gaussian size distribution. Results using SOFIE measurements from the northern summer of 2007 are compared with concurrent observations by the ALOMAR lidar in northern Norway. Ice particle properties determined from SOFIE are in good agreement with the lidar results, considering the differences in instrument characteristics.  相似文献   

5.
The Aeronomy of Ice in the Mesosphere (AIM) mission was launched from Vandenberg Air Force Base in California at 4:26:03 EDT on April 25, 2007, becoming the first satellite mission dedicated to the study of noctilucent clouds (NLCs), also known as polar mesospheric clouds (PMC) when viewed from space. We present the first results from one of the three instruments on board the satellite, the Cloud Imaging and Particle Size (CIPS) instrument. CIPS has produced detailed morphology of the Northern 2007 PMC and Southern 2007/2008 seasons with 5 km horizontal spatial resolution. CIPS, with its very large angular field of view, images cloud structures at multiple scattering angles within a narrow spectral bandpass centered at 265 nm. Spatial coverage is 100% above about 70° latitude, where camera views overlap from orbit to orbit, and terminates at about 82°. Spatial coverage decreases to about 50% at the lowest latitudes where data are collected (35°). Cloud structures have for the first time been mapped out over nearly the entire summertime polar region. These structures include ‘ice rings’, spatially small but bright clouds, and large regions (‘ice-free regions’) in the heart of the cloud season essentially devoid of ice particles. The ice rings bear a close resemblance to tropospheric convective outflow events, suggesting a point source of mesospheric convection. These rings (often circular arcs) are most likely Type IV NLC (‘whirls’ in the standard World Meteorological Organization (WMO) nomenclature).  相似文献   

6.
The ultraviolet spectrometers (UVS) on the solar mesosphere explorer (SME) and student nitric oxide explorer (SNOE) measured scattered limb radiance at small and large scattering angles from polar mesospheric clouds (PMCs). The SME data are for the northern summer hemisphere (NH) in 1983 and 1984. The SNOE measurements are for the NH in 2000 and for the southern hemisphere (SH) in the 2000/2001 season. From this database, we deduce the modal particle size from the measured scattering angle asymmetry in radiance. This quantity is determined as a function of time within the PMC season, and latitude, assuming several scattering models depending on the adopted size distribution and particle shape. For assumed spherical particles with a Gaussian distribution of width of 14 nm, the results for SME show mode particle sizes that vary from about 35 to 60 nm throughout the season. The results for SNOE under the same assumption show that for high latitudes in the NH the particle size grows systematically from the seasonal onset, from about 25 nm to a maximum of about 45 nm at 30 days after solstice. Lower latitudes show a similar time dependence, but with smaller particle sizes. SH PMC particle sizes display a more complicated seasonal variability. Generally, variability in measured cloud height is anti-correlated with particle size for the seasons analyzed here. Particle sizes in the SH are generally smaller than those in the NH, consistent with the northern bias in PMC brightness, and with previous satellite studies. These results are interpreted in terms of our understanding of PMC microphysics and inter-hemispheric differences in temperature and dynamics. Our quantitative results for mode radius depend on the assumption of a constant distribution width. If the width varies with latitude or time, our calculated gradients of mode radius would be different.  相似文献   

7.
This work examines the first season of polar mesospheric cloud (PMC) observations from the Solar Occultation for Ice Experiment (SOFIE). SOFIE observations of temperature, water vapor, and PMC frequency, mass density, particle shape, and size distribution are used to characterize the seasonal evolution and altitude dependence of mesospheric ice and the surrounding environment. SOFIE indicates that ice is nearly always present during summer, and that the ice layer is continuous from about 81 km altitude to the mesopause and above. Ice particles are observed to be more aspherical above and below the extinction peak altitude, suggesting a relationship between particle shape and mass density. The smallest particles are observed near the top of the ice layer while the largest particles exist at low concentrations near cloud base. A strong correlation was found between water vapor and particle size with small particles existing when H2O is low. This relationship holds when examining variability in altitude, and variability over time at one altitude.  相似文献   

8.
We present the first measurement of polar mesospheric cloud (PMC) occurrence frequency over the diurnal cycle from a satellite. The observations are made during the 2007 northern hemisphere PMC season by the Spatial Heterodyne IMager for MEsospheric Radicals (SHIMMER), which views the limb near 309 nm typically between 34 and 98 km. The PMC diurnal variation is derived between 50 and 58°N, where local times at the tangent point precess by ~30 min/day allowing for observations between 0330 and 2130 local time during the PMC season. We find that the occurrence frequencies exhibit a strong semidiurnal behavior with peaks near 0600 and 1800 local time and a minimum between 0900 and 1600 during which they are on average an order of magnitude less. The semidiurnal dependence is strongly correlated with concurrent ground-based measurements of meridional winds and temperatures measured at the same latitude. Our results for PMC frequency over the diurnal cycle can be used to help reconcile observations from other satellites that only permit cloud measurements at discrete local times.  相似文献   

9.
Polar Mesospheric Cloud (PMC) observations from the Cloud Imaging and Particle Size (CIPS) instrument on the Aeronomy of Ice in the Mesosphere (AIM) spacecraft are used to investigate the role of planetary wave activity on global PMC variability in the summer polar mesosphere during the 2007 Northern hemisphere season. This is coupled with an analysis of contemporaneous measurements of atmospheric temperature by the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) instrument onboard the Thermosphere–Ionosphere–Mesosphere–Energetics and Dynamics (TIMED) spacecraft to characterize the importance of temperature as a dominant forcing mechanism of the dynamical state of the summer polar mesosphere. The study confirms results from a recent study using PMC data from the Student Nitric Oxide Explorer (SNOE) and temperature data from SABER, such that planetary wave activity is present in both PMCs and mesospheric temperature and that are strongly coherent and anti-correlated. The dominant wave present in the polar summer mesosphere in both PMCs and temperature is the 5-day wavenumber 1 Rossby normal mode. The maximum amplitude of the variation of the 5-day wave in temperature is small at 3 K but has a significant effect on PMC albedo. The phase relationship between PMC and temperature is variable between 150° and 180° out of phase, with PMC albedo reaching a maximum ~10 h before the minimum in temperature. We have identified two additional waves, the westward propagating 2-day wavenumber 2 (2DW2) and the eastward propagating 2-day wavenumber 1 (2DE1) are both present in PMC and temperature variability in the 2007 NH season. The 2DW2 wave is consistent with a Rossby normal mode excited by the instability in the zonal mean zonal wind. However, the source of the 2DE1 wave could be a nonlinear interaction of the 2DW2 with the migrating diurnal tide. This is the first time these two wave features have been detected in coincident PMC and temperature measurements. Analysis of the zonal variation of PMC occurrence and temperature shows they are also anti-correlated and supporting the conclusion that temperature is an important forcing mechanism in zonal variability.  相似文献   

10.
We study the solar dependence of the thermospheric dynamics based on more than 20 years Fabry–Perot interferometer O 6300 Å emission observation of polar cap thermospheric wind from three stations: Thule (76.53°N, 68.73°W, MLAT 86N), Eureka (80.06°N, 86.4°W, MLAT 89N), and Resolute (74.72°N, 94.98°W, MLAT 84N) in combination with the National Center for Atmospheric Research Thermosphere Ionosphere Electrodynamics General Circulation Model (NCAR-TIEGCM). All three stations showed a dominant diurnal oscillation in both the meridional and zonal components, which is a manifestation of anti-sunward thermospheric wind in the polar cap. The three-station observations and the TIEGCM simulation exhibit varying degree of correlations between the anti-sunward thermospheric wind and solar F10.7 index. The diurnal oscillation is stronger at Eureka (∼150 m/s) than that at Resolute (∼100 m/s) according to both observations and TIEGCM simulation. The semidiurnal oscillation is stronger at Resolute (∼20 m/s) than that at Eureka based (∼10 m/s) on data and model results. These results are consistent with a two-cell convection pattern in the polar cap thermospheric winds. The Thule results are less consistent between the model and observations. The simulated meridional wind diurnal and semidiurnal oscillations are stronger than those observed.  相似文献   

11.
The results of experiments which characterise the optically stimulated luminescence (OSL) signals of an ash sample (BI07-TL-05) from Barren Island are presented. The infrared stimulated luminescence signal decreases to 5% of its initial value when preheated at 150 °C for 10 s, suggesting that the infrared stimulated luminescence signal associated with the 290–390 nm emission in this sample arises from a single trap evicted by heating to 150 °C. The post-IR blue stimulated luminescence emission has greater thermal stability and arises from traps which are emptied by heating to temperatures between 120 °C and 240 °C. Dose recovery experiments demonstrate that a laboratory dose can be reliably determined to within 5% for the post-IR blue stimulated luminescence signal. However, the fading rate for the post-IR blue stimulation is high, and the g-value is estimated to be (9.6 ± 3.5)% per logarithmic decade for BI07-TL-05.  相似文献   

12.
All-sky camera (ASC), Global Positioning System (GPS), and ionosonde measurements were used to investigate the upper atmospheric variations at mid-latitude during the strong geomagnetic storm on October 29–31, 2003. An arc-shaped 630.0 nm emission was observed in the northern sky on all-sky images taken at Mt. Bohyun (36.2°N, 128.9°E, GMLAT=29°N) in Korea during 17:48–8:58 UT in the main phase of the geomagnetic storm on October 29. The NmF2 and hmF2 from the ionosonde show strong disturbances at that time. The vertical profiles of electron densities, calculated by the ionospheric tomographic method using ground-based GPS slant total electron contents measurements, show the largest value at ∼440 km height at 18:30 UT on October 29 when the enhancements of OI 630.0 nm emission were observed. The arc-shaped red emission observed during the main phase of the magnetic storm is likely a low-latitude red aurora due to its short duration of ∼1 h. The result implies that the plasmapause was at L=1.4–1.6 during the geomagnetic storm. The fact that the arc did not follow a constant L-value appears to suggest that neutral precipitation and a traveling ionospheric disturbance could also be the cause of the arc.  相似文献   

13.
We compare measurements from the Aeronomy of Ice in the Mesosphere (AIM) Cloud Imaging and Particle Size (CIPS) experiment to the NOAA-17 solar backscatter ultraviolet (SBUV/2) instrument during the 2007 Northern Hemisphere polar mesospheric cloud (PMC) season. Daily average Rayleigh scattering albedos determined from identical footprints from the CIPS nadir camera and SBUV/2 agree to better than ~5% throughout the season. Average PMC brightness values derived from the two instruments agree to within ±10%. PMC occurrence frequencies are on average ~5% to nearly a factor of two higher in CIPS, depending on latitude. Agreement is best at high latitudes where clouds are brighter and more frequent. The comparisons indicate that AIM CIPS data are valid for scientific analyses. They also show that CIPS measurements can be linked to the long time series of SBUV/2 data to investigate long-term variability in PMCs.  相似文献   

14.
《Journal of Geodynamics》2010,49(3-5):253-259
We observe the Earth tidal fields at diurnal and semi-diurnal periods using Kinematic Precise Point Positioning (KPPP) GPS analysis. Our KPPP GPS solutions compare well with super-conducting gravimeter (SG) observations and a theoretical Earth tidal model, that includes both ocean tide loading model and body tides. We make a high resolution map of the observed Earth tidal response fields using the Japanese GEONET GPS network which consists of 1200 sites. We find that: (1) the average phase of GPS data lags 0.11 ± 0.04° from our theoretical Earth tidal model, (2) the average amplitude ratio between GPS and the theoretical Earth tidal model is 1.007 ± 0.003, (3) the amplitude in the Kyushu district is about 1.0–1.5 ± 0.3% larger than in the Hokkaido district, and (4) the amplitude at the Japan Sea side is about 0.5 ± 0.2% larger than that at the Pacific Ocean side. These results suggest that we may be able to place constraints on Earth structure using GPS-derived tidal information.  相似文献   

15.
New Late Cretaceous paleomagnetic results from the Okhotsk-Chukotka Volcanic Belt in the Kolyma-Omolon Composite Terrane yield stable and consistent remanent directions. The Late Cretaceous (86–81 Ma) ignimbrites from the Kholchan and Ola suites were sampled at 19 sites in the Magadan area (60.4° N, 151.0° E). We isolated the characteristic paleomagnetic directions from 16 sampled sites using an alternating field demagnetization procedure. The primary nature of these directions is ascertained by dual polarities and positive fold tests. A tilt-corrected mean direction (D = 42.8°, I = 84.7°, k = 46.0, α95 = 10.0°) yields a paleomagnetic pole of 66.7° N, 168.5° E (A95 = 18.8°) which appears almost identical to the 90–67 Ma pole reported from the Lake El’gygytgyn area of the Okhotsk-Chukotka Volcanic Belt (Chukotka Terrane). This consistency suggests that the Kolyma-Omolon Composite Terrane and Chukotka Terrane has acted as a single tectonic unit since 80 Ma without any significant internal deformation. Accordingly, we calculate a combined 80 Ma characteristic paleomagnetic pole (Long. = 164.7° E, Lat. = 68.0°, A95 = 10.9°, N = 12) for the Kolyma-Omolon-Chukotka Block which falls 16.5–17.5° south of the same age poles from Europe and East Asia. We ascribe this discrepancy in pole positions to tectonic activity in the area and infer a southward displacement of 1640 ± 1380 km for the Kolyma-Omolon-Chukotka Block with respect to the North American and Eurasian blocks since 80 Ma; more than 260 km of it is attributed to tectonic displacement in the Arctic Ocean due to the opening of the Canadian Basin.  相似文献   

16.
The total solar eclipse of 29 March, 2006 which was visible at Ibadan (7.55°N, 4.56°E), south-western Nigeria was utilized to document atmospheric surface-layer effects of the eclipse for the first time in Nigeria. The meteorological parameters measured are global radiation, net radiation, wind speed (at different heights), atmospheric pressure and soil temperature (5, 10 and 30 cm), moisture and heat flux and rainfall. The results revealed remarkable dynamic atmospheric effects. The observations showed that the incoming solar radiation, net radiation and air temperature were significantly affected.There was an upsurge of wind speed just before the first contact of the eclipse followed by a very sharp decrease in wind speed due to the cooling and stabilization of the atmospheric boundary layer. The atmospheric pressure lags the eclipse maximum by 1 h 30 min, while the soil temperature at 5 and 10 cm remain constant during the maximum phase of the eclipse.  相似文献   

17.
Diamond bearing kimberlite pipes are exposed across the north-central part of the Siberian platform. Three main time intervals are considered to be the age of emplacement: the Devonian–Early Carboniferous, Triassic, and Cretaceous. However, isotopic age data from of the pipes are scattered and provide a very broad age interval for the magmatic activity. New paleomagnetic poles from four kimberlite pipes (Eastern Udachnaya, Western Udachnaya, International and Obnazhennaya) are obtained to estimate their paleomagnetic age. The mean primary magnetization directions for the pipes are as follows: D = 4.3°, I =  44.5° (k = 29.4, α95 = 7.4°, N = 14); D = 340.5°, I =  65.6° (k = 12.9, α95 = 19.4°, N = 6); D = 291.1°, I =  78.1° (k = 27.5, α95 = 14.9°, N = 5); and D = 306.7°, I =  82.6° (k = 38.4, α95 = 5.8°, N = 17), respectively. On the basis of a comparison with the Siberian apparent polar wander path (APWP) we estimate the age of kimberlite magmatism, assuming primary magnetizations in these rocks. The paleomagnetic ages are as follows: 428 ± 13 Ma for Eastern Udachnaya; 251 ± 30 Ma for International pipe; and 168 ± 11 Ma for Obnazhennaya pipe. The Western Udachnaya pipe was remagnetized and no clear paleomagnetic age could be determined. The ages of magmatic activity span the Early Silurian to Middle Late Jurassic. Early Silurian magmatism could be associated with the formation of the Viluy rift. Middle to Late Jurassic magmatic activity is most likely related to subduction related to the accretion of surrounding terranes to Siberia.  相似文献   

18.
Two silicate-rich dust layers were found in the Dome Fuji ice core in East Antarctica, at Marine Isotope Stages 12 and 13. Morphologies, textures, and chemical compositions of constituent particles reveal that they are high-temperature melting products and are of extraterrestrial origin. Because similar layers were found ~ 2000 km east of Dome Fuji, at EPICA (European Project for Ice Coring in Antarctica)-Dome C, particles must have rained down over a wide area 434 and 481 ka. The strewn fields occurred over an area of at least 3 × 106 km2. Chemical compositions of constituent phases and oxygen isotopic composition of olivines suggest that the upper dust layer was produced by a high-temperature interaction between silicate-rich melt and water vapor due to an impact explosion or an aerial burst of a chondritic meteoroid on the inland East Antarctic ice sheet. An estimated total mass of the impactor, on the basis of particle flux and distribution area, is at least 3 × 109 kg. A possible parent material of the lower dust layer is a fragment of friable primitive asteroid or comet. A hypervelocity impact of asteroidal/cometary material on the upper atmosphere and an explosion might have produced aggregates of sub-μm to μm-sized spherules. Total mass of the parent material of the lower layer must exceed 1 × 109 kg. The two extraterrestrial horizons, each a few millimeters in thickness, represent regional or global meteoritic events not identified previously in the Southern Hemisphere.  相似文献   

19.
We invert measurements of coseismic displacements from 139 continuously recorded GPS sites from the 2010, Jiashian, Taiwan earthquake to solve for fault geometry and slip distribution using an elastic uniform stress drop inversion. The earthquake occurred at a depth of ~ 23 km in an area between the Western Foothills fold-and-thrust belt and the crystalline high mountains of the Central Range, providing an opportunity to examine the deep fault structure under Taiwan. The inferred rupture plane is oblique to the prominent orientation of thrust faults and parallel to several previously recognized NW-striking transfer zones that appear to connect stepping thrusts. We find that a fault striking 318°–344° with dip of 26°–41° fits the observations well with oblique reverse-sinistral slip under a low stress drop of about 0.5 MPa. The derived geodetic moment of 2.92 × 1018 N-m is equivalent to a Mw = 6.24 earthquake. Coseismic slip is largely concentrated within a circular patch with a 10-km radius at the depth between 10 and 24 km and maximum slip of 190 mm. We suggest this earthquake ruptured the NW-striking Chishan transfer fault zone, which we interpret as a listric NE-dipping lateral ramp with oblique slip connecting stepping thrust faults (ramps). The inferred slip on the lateral ramp is considerably deeper than the 7–15 km deep detachment identified in previous studies of western Taiwan. We infer an active basal detachment under western Taiwan at a depth of at least ~ 20–23 km based on these inversion results. The earthquake may have nucleated at the base of the lateral ramp near the intersection with the basal detachment. Coulomb stress change calculations suggest that this earthquake moved several NE-striking active thrust faults in western Taiwan nearer to failure.  相似文献   

20.
The propagation features of nighttime whistlers to low-latitude station, Suva (−18.2°, 178.3°, geomag. lat. −22.1°, geomag. long. 253.5°, L=1.15), Fiji, from preliminary observations made during the period from September 2003–2005, are reported. The observations of ELF–VLF signals commenced in September 2003 using the VLF set-up of World Wide Lightning Location Network at our station. The whistlers were observed during the severe magnetic storm of 20–22 November 2003 and moderate magnetic storm of 17–19 July 2005. A whistler with dispersion D=12.7 s1/2 occurred on 22 November at 00:11 h LT. On 20 July at 01:00 h LT, a short whistler with dispersion D=20.9 s1/2 and two whistler events having two-component whistlers with D=15.8, 16.7 s1/2 and 16.7, 17.3 s1/2 were observed. Non-ducted pro-longitudinal mode of the whistler propagation supported by negative latitudinal electron density gradients in the ionosphere that are enhanced by magnetic storms, seems most likely mode of propagation for the whistlers with dispersion of 12.7–17.3 s1/2 to this low-latitude station.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号