首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aim of this study is to assess the availability and quality of data from the International GNSS Service (IGS) Global Positioning System (GPS) network in Africa, especially for retrieving zenith tropospheric delay (ZTD), from which precipitable water vapour (PWV) can be derived, in view of application to the African Monsoon Multidisciplinary Analysis (AMMA) project. Three major error sources for the GPS data analysis evaluating PWV in Africa are the accuracy of the satellite orbits, the correction for the radio delay induced by the ionosphere and the vertical site displacements due to ocean loading. The first part of this study examines these error sources and the validity of GPS data for meteorological applications in Africa in dedicated analyses spanning the year 2001. These analyses were performed using the IGS precise orbits. Weak degradation of baseline precision with increasing baseline lengths suggests that the average orbital error is not limiting the GPS analysis in Africa. The impact of the ionosphere has been evaluated during a maximum of solar activity in 2001. The loss of L2 data has actually been observed. It amounts to 2% on average for 2001, with maxima of 8% during magnetic storm events. A slight decrease in formal accuracy of ZTD seems to be related to the loss of L2 data at the end of the day. This indicates that scintillation effects are present in the GPS observations but however are not a major limitation. The impact of ocean loading is found to be significant on ZTD estimates (up to ±2 mm in equivalent PWV). The use of a proper ocean loading model eliminates this effect.The second aspect of this study concerns the IGS analysis quality for the African stations. The accuracy has been assessed through position dispersion between individual solutions and the most recent version of the IGS combined solution IGb00, and residuals from the transformation of the IGS combined solution into the International Terrestrial Reference Frame 2005. The positioning performance of the IGS analysis is consistent with an accuracy in ZTD of ±6 mm (±1 mm in PWV), as requested for meteorological applications such as planned in AMMA.  相似文献   

2.
The tropospheric zenith total delay (ZTD) derived from very long baseline interferometry (VLBI) is an important parameter of the atmosphere, reflecting various atmosphere-related processes and variations. In this paper, ZTD time series of the IVS rapid combined tropospheric product (2002–2006) with a 1-h resolution are used for the first time to investigate the diurnal and semidiurnal oscillations. Significant diurnal and semidiurnal variations of ZTD are found at all VLBI stations. The amplitude of the diurnal cycle S1 is 0.6–1.2 mm at most of the VLBI stations, and the amplitude of the semidiurnal cycle S2 is 0.2–1.9 mm, which nearly accord with the surface pressure tides S1/S2 and co-located GPS estimated S1/S2. The results indicate that the S1 and S2 behaviors are mainly dominated by the hydrostatic component, namely pressure tides. In general, the semidiurnal S2 amplitudes are slightly larger than the diurnal S1. While S1 shows no clear dependency on site altitude, S2 has a regular distribution with VLBI site altitude. The results are in accordance with predictions of the classic tidal theory [Chapman, S., Lindzen, R.S., 1970. Atmospheric Tides, Gordon and Breach, New York].  相似文献   

3.
A vertical crustal uplift rate of 39 mm yr? 1 is measured between 2003 and 2006 using Global Positioning System (GPS) measurements at the northeastern edge of the Southern Patagonia Icefield (SPI). This is the largest present-day glacial isostatic rate ever recorded. The combination of SPI's rapid melting and the unique regional slab-window tectonics that promotes a relatively low viscosity, is central to our interpretation of the observations. The two effects lead to a strong interaction of short relaxation times with ice loads that change on a comparable time scale. The profile of GPS observations link ice loss to the soft viscoelastic isostatic flow response over the time scale of the Little Ice Age (LIA), including ice loss in the period of observation. The agreement of the results with our model predictions strongly suggests the large crustal uplift in Patagonia is due an accelerated glacier wasting since the termination of the LIA and that the effective regional mantle viscosity is near 4.0–8.0 × 1018 Pa s. A century-long diminution of the icefields, at rates that are about 1/4 – 1/2 the contemporary loss rates, is consistent with multidecadal-scale temperature trends estimated for the past 50–100 years and is, in fact, a key feature in any model capable of explaining the uplift data.  相似文献   

4.
Weekly surface loading variations are estimated from a joint least squares inversion of load-induced GPS site displacements, GRACE gravimetry and simulated ocean bottom pressure (OBP) from the finite element sea-ice ocean model (FESOM).In this study, we directly use normal equations derived from reprocessed GPS observations, where station and satellite positions are estimated simultaneously. The OBP weight of the model in the inversion is based on a new error model, obtained from 2 FESOM runs forced with different atmospheric data sets.Our findings indicate that the geocenter motion derived from the inversion is smooth, with non-seasonal RMS values of 1.4, 0.9 and 1.9 mm for the X, Y and Z directions, respectively. The absolute magnitude of the seasonal geocenter motion varies annually between 2 and 4.5 mm. Important hydrological regions such as the Amazon, Australia, South-East Asia and Europe are mostly affected by the geocenter motion, with magnitudes of up to 2 cm, when expressed in equivalent water height.The chosen solar radiation pressure model, used in the GPS processing, has only a marginal effect on the joint inversion results. Using the empirical CODE model slightly increases the annual amplitude of the Z component of the geocenter by 0.8 mm. However, in case of a GPS-only inversion, notable larger differences are found for the annual amplitude and phase estimates when applying the older physical ROCK models. Regardless of the used radiation pressure model the GPS network still exhibits maximum radial expansions in the order of 3 mm (0.45 ppb in terms of scale), which are most likely caused by remaining GPS technique errors.In an additional experiment, we have used the joint inversion solution as a background loading model in the GPS normal equations. The reduced time series, compared to those without a priori loading model, show a consistent decrease in RMS. In terms of the annual height component, 151 of the 189 stations show a reduction of at least 10% in seasonal amplitude.On the ocean floor, we find a positive overall correlation (0.51) of the inversion solution with time series from globally distributed independent bottom pressure recorders.Even after removing a seasonal fit we still find a correlation of 0.45. Furthermore, the geocenter motion has a significant effect on ocean bottom pressure as neglecting it causes the correlation to drop to 0.42.  相似文献   

5.
Space-based tectonic studies on the western part of the North Anatolian Fault Zone (NAFZ) have been conducted over two decades. After the August 17, 1999, Izmit earthquake (Mw = 7.4), this region attracted greater scientific interest, and the collected data became more valuable. The Geodesy Department of the Kandilli Observatory and Earthquake Research Institute (KOERI) at Bogazici University established three micro-geodetic networks to the east of Akyazi, east of Iznik, and west of Lake Sapanca in the eastern part of the Marmara region; GPS data have been continually collected at these locations since 1994. The NAFZ branches out in the western part of the Marmara region and extends up to the Aegean Sea. Segments of the fault passing through the Marmara Sea are considered active, and this has increased concern regarding imminent earthquakes. Conventional geodetic measurements made between 1990 and 1994 are not sufficient for monitoring small movements. However, GPS has played a very important role in detecting such deformations in the area after 1994. The Iznik network, with 10 points, is bilaterally located on the Iznik-Mekece fault. Six years of GPS data for 2004–2010 collected for the monitoring of crustal deformation showed that the Iznik-Mekece fault segment moves westward at about 22 ± 1 mm/yr with respect to the Eurasia fixed reference frame. The GPS observations show that there is no strain accumulation in the area.  相似文献   

6.
GPS data from Crustal Movement Observation Network of China (CMONOC) are used to derive far-field co-seismic displacements induced by the Mw 9.0 Tohoku Earthquake. Significant horizontal displacements about 30 mm, 10 mm, and 20 mm were caused by this large event in northeast China, north China, and on the Korean peninsula respectively. Vectors of relatively large horizontal displacements with dominant east components pointed to the epicenter of this earthquake. The east components show an exponential decay with the longitude, which is characteristic of the decay of the co-seismic horizontal displacements associated with earthquakes of thrust rupture. The exponential fit of the east components shows that the influence of the co-seismic displacements can be detected by GPS at a distance of about 3200 km from the epicenter of the earthquake. By considering the capability of the far field displacements for constraining the inversion of the fault slip model of the earthquake, we use spherically stratified Earth models to simulate the co-seismic displacements induced by this event. Using computations and comparisons, we discuss the effects of parameters of layered Earth models on the results of dislocation modeling. Comparisons of the modeled and observed displacements show that far field GPS observations are effective for constraining the fault slip model. The far field horizontal displacements observed by GPS are used to modify the slips and seismic moments of fault slip models. The result of this work is applicable as a reference for other researchers to study seismic source rupture and crustal deformation.  相似文献   

7.
The goal of this paper is to study the velocity field and deformation parameters in Southern Spain and surrounding areas (Ibero-Maghrebian region) using GPS episodic measurements. Results are compared to those previously published as well as deformation parameters derived from seismic data. For this purpose, a geodetic GPS network of 12 stations was observed during eight field campaigns from 1998 to 2005 by the San Fernando Naval Observatory (ROA), Spain. Relative GPS velocities in the Gulf of Cadiz with respect to the stable part of Eurasia are ~4.1 mm/yr in a NW–SE to NNW–SSE direction. In the Betics, Alboran Sea and North of Morocco, velocities are ~4.4 mm/yr in a NW–SE direction, and they are ~2.3 mm/yr in a N–S direction in the eastern part of the Iberian Peninsula. These results are in agreement with the anticlockwise rotation of the African plate. GPS strain tensors are determined from the velocity model, to obtain a more realistic crustal deformation model. The Gulf of Cadiz is subjected to uniform horizontal compression in a NNW–SSE direction, with a rotation to N–S in the Alboran Sea and Northern Morocco. An extensional regime in a NW–SE direction, which rotates to W–E, is present in the Internal Betics area. In the Betic, Alboran Sea and North of Morocco regions we compare seismic deformation rates from shallow earthquakes with the determined GPS deformation rates. The comparison indicates a seismic coupling of 27%, while the remaining 73% might be generated in aseismic processes. Deformations measured in the Ibero-Maghrebian region with GPS could be interpreted in terms of either elastic loading or ductile deformation.  相似文献   

8.
In this study, we present new GPS observations in Azerbaijan to provide an improved basis for determining the distribution of crustal deformation throughout the country and surrounding areas. The deformation field in the region has been analyzed with a dense GPS network configuration and a reliable quantification of the ongoing deformation was achieved. Results show that while contraction is dominant over the whole region, it is mostly concentrated on the middle and eastern parts of Caucasus Thrust Fault reaching up to 6.4 ± 0.2 mm/yr and Lesser Caucasus Fault does no accommodate more than 1–2 mm/yr of contraction. New network also clearly substantiates that the West Caspian Fault, which is a continuation of Caucasus Thrust Fault in the south, accommodates right-lateral slip rates of 7.1 ± 0.3 mm/yr in addition to 5.5 ± 0.3 mm/yr contraction rates.  相似文献   

9.
Both coastal and global mean sea level rise by about 3.0 ± 0.5 mm/year from January 1993 to December 2004. Over shorter intervals the coastal sea level rises faster and over longer intervals slowly than the global mean, which trend is almost constant for each interval and is equal to 2.9 ± 0.5 mm/year in 1993–2008. The different trends are due to the higher interannual variability of coastal sea level, caused by the sea level regional variability, that is further averaged out when computing the global mean.Coastal sea level rise is well represented by a selected set of 267 stations of the Permanent Service for Mean Sea Level and by the corresponding co-located altimeter points. Its departure from coastal sea level computed from satellite altimetry in a 150 km distance from coast, dominated by a large rise in the Eastern Pacific, is due to the regional interannual variability.Regionally the trends of the coastal and open-ocean sea level variability are in good agreement and the main world basins have a positive averaged trend. The interannual variability is highly correlated with the El Nino Southern Oscillation (SO) and the North Atlantic Oscillation (NAO) climatic indices over both the altimeter period and the interval 1950–2001. Being the signal of large scale a small number of stations with good spatial coverage is needed. The reconstruction of the interannual variability using the spatial pattern from altimetry and the temporal patterns from tide gauges correlated to NAO and SOI restitutes about 50% of the observed interannual variability over 1993–2001.  相似文献   

10.
The 1.0 Ma Kidnappers supereruption (~ 1200 km3 DRE) from Mangakino volcanic centre, Taupo Volcanic Zone, New Zealand, produced a large phreatomagmatic fall deposit followed by an exceptionally widespread ignimbrite. Detailed sampling and analysis of glass shards and mineral phases have been undertaken through a proximal 4.0 m section of the fall deposit, representing the first two-thirds of erupted extra-caldera material. Major and trace element chemistries of glass shards define three distinct populations (types A, B and C), which systematically change in proportion through the fall deposit and are inferred to represent three magma types. Type B glass and biotite first appear at the same level (~ 0.95 m above base) in the fall deposit suggesting later tapping of a biotite-bearing magma. Plagioclase and Fe–Ti oxide compositions show bimodal distributions, which are linked to types A and B glass compositions. Temperature and pressure (T–P) estimates from hornblende and Fe–Ti oxide equilibria from each magma type are similar and therefore the three magma bodies were adjacent, not vertically stacked, in the crust. Most hornblende model T–P estimates range from 770 to 840 °C and 90 to 170 MPa corresponding to storage depths of ~ 4.0–6.5 km. Hornblende model T–P estimates coupled with in situ trace element fingerprinting imply that the magma bodies were individually well mixed, and not stratified. Compositional gaps between the three glass compositional types imply that no mixing between these magmas occurred. We interpret these data, coupled with the systematic changes in shard compositional proportions through the fall deposit, to reflect that three independent melt-dominant bodies of magma contributed large (A, ~ 270 km3), medium (B, ~ 90 km3) and small (C, ~ 40 km3) volumes (as reflected in the fall deposits) and were systematically tapped during the eruption. We propose that the systematic evacuation of the three independent magma bodies implies that there was tectonic triggering and linkage of eruptions. Our results show that supereruptions can be generated by near simultaneous multiple eruptions from independent magma chambers rather than the evacuation of a large single unitary magma chamber.  相似文献   

11.
The period of direct groundwater storage measurements is often too short to allow reliable inferences of groundwater storage trends at catchment scales. However, as groundwater storage sustains low flows in catchments during dry periods, groundwater storage can also be estimated indirectly from daily streamflow based on hydraulic groundwater theory; this idea was applied herein to 17 selected Australian catchments to examine their long-term (half a century or longer) groundwater storage trends. On average, over past 45 years, groundwater storage exhibited negative trends in all the selected catchments, except in the Katherine River catchment located in the Northern Territory. These negative trends persisted over longer periods, close to 100 years in some catchments and the strongest decreasing trend of 0.241 mm per year was observed in the Barron River catchment in New South Wales. However, groundwater storage exhibited different trends over the different shorter periods. Thus, while during the period of 1997–2007, 15 out of the 17 catchments showed negative trends in groundwater storage, during the period of 1980–2000, 12 out of the 17 catchments exhibited positive trends in groundwater storage; this underscores the fact that record lengths of one or even two decades are inadequate to derive meaningful trends. Strong consistencies in the trends exist across most catchments, indicating that groundwater storage is affected by large-scale climate factors.  相似文献   

12.
Temporal mass variations in the continental hydrosphere and in the atmosphere lead to changes in the gravitational potential field that are associated with load-induced deformation of the Earth’s crust. Therefore, models that compute continental water storage and atmospheric pressure can be validated by measured load deformation time series. In this study, water mass variations as computed by the WaterGAP Global Hydrology Model (WGHM) and surface pressure as provided by the reanalysis product of the National Centers for Environmental Prediction describe the hydrological and atmospheric pressure loading, respectively. GPS observations from 14 years at 208 stations world-wide were reprocessed to estimate admittance factors for the associated load deformation time series in order to determine how well the model-based deformation fits to real data. We found that such site-specific scaling factors can be identified separately for water mass and air pressure loading. Regarding water storage variation as computed by WGHM, weighted global mean admittances are 0.74 ± 0.09, 0.66 ± 0.10, 0.90 ± 0.06 for the north, east and vertical component, respectively. For the dominant vertical component, there is a rather good fit to the observed displacements, and, averaged over all sites, WGHM is found to slightly overestimate temporal variations of water storage. For Europe and North America, with a dense GPS network, site-specific admittances show a good spatial coherence. Regarding regional over- or underestimation of WGHM water storage variations, they agree well with GRACE gravity field data. Globally averaged admittance estimates of pre-computed atmospheric loading displacements provided by the Goddard Geodetic VLBI Group were determined to be 0.88 ± 0.04, 0.97 ± 0.08, 1.13 ± 0.01 for the north, east and vertical, respectively. Here, a relatively large discrepancy for the dominant vertical component indicates an underestimation of corresponding loading predictions.  相似文献   

13.
Data from the Wettzell ring laser gyroscope are combined with Very Long Baseline Interferometry observations in order to estimate polar motion and Universal Time with hourly resolution. The combination is done at the normal equation level. Data from the period 1 May to 14 October, 2010, are used. We find that the impact of the ring laser data is normally relatively small since presently the accuracy of VLBI is about one order of magnitude better than the accuracy of the ring laser measurements. However, in cases when the accuracy of VLBI is of the order of 1 mas or worse the ring laser improves the accuracy of the estimated parameters, especially for y-pole and Universal Time. For the whole period, the combination on average improves y-pole by 16% and Universal Time by 12% compared to when using only VLBI data.  相似文献   

14.
The hydrology of the Bay of Biscay was investigated using the regional ocean model MARS3D (Model for Application at Regional Scale). The simulated hydrology is compared to a set of various data encompassing monthly climatology, remote sensing SST, CTD casts, and coastal salinity measurements. Special focus was put on the validation over the continental shelf. This paper reports that despite some misfits, the climatological hydrology and its seasonal variability are correctly simulated. Various statistics computed over the period from 1999–2004 highlight different aspects of the hydrology. The biases and root mean square errors (RMSE) remain very weak at all depths when comparing salinity (<0.1 and <0.6 psu respectively). The predicted temperature shows a global overestimation of temperature (bias of around 0.8 °C) and the maximum errors are located near the thermocline (rmse of 1 °C at 20–40 m). The model is shown to properly reproduce the annual dynamics of sea surface temperature, as well as the dynamics of large river plumes observed by high frequency time series from coastal salinity gauges. The misfits highlighted by these various comparisons between model and observations are attributed to heat fluxes and mixing parameterisation.  相似文献   

15.
Geological, geodetic and seismological data have been analyzed in order to frame the Lipari–Vulcano complex (Aeolian archipelago, southern Italy) into the geodynamic context of the southeastern Tyrrhenian Sea. It is located at the northern end of a major NNW–SSE trending right-lateral strike-slip fault system named “Aeolian–Tindari–Letojanni” which has been interpreted as a lithospheric discontinuity extending from the Aeolian Islands to the Ionian coast of Sicily and separating two different tectonic domains: a contractional one to the west and an extensional one to the north-east. Structural field data consist of structural measurements performed on well-exposed fault planes and fractures. The mesostructures are mostly represented by NW–SE striking normal faults with a dextral-oblique component of motion. Minor structures are represented by N–S oriented joints and tension gashes widespread over the whole analyzed area and particularly along fumarolized sectors. The analyzed seismological dataset (from 1994 to 2013) is based on earthquakes with magnitude ranging between 1.0 and 4.8. The hypocenter distribution depicts two major alignments corresponding to the NNW–SSE trending Aeolian–Tindari–Letojanni fault system and to the WNW–ESE oriented Sisifo–Alicudi fault system. GPS data analysis displays ∼3.0 mm/yr of active shortening between the two islands, with a maximum shortening rate of about 1.0 × 10−13 s−1, between La Fossa Caldera and south of Vulcanello. This region is bounded to the north by an area where the maximum values of shear strain rates, of about 0.7 × 10−13 s−1 are observed. This major change occurs in the area south of Vulcanello that is also characterized by a transition in the way of the vertical axis rotation. Moreover, both the islands show a clear subsidence process, as suggested by negative vertical velocities of all GPS stations which exhibit a decrease from about −15 to −7 mm/yr from north to south. New data suggest that the current kinematics of the Lipari–Vulcano complex can be framed in the tectonic context of the eastward migrating Sisifo–Alicudi fault system. This is dominated by transpressive tectonics in which contractional and minor extensional structures can coexist with strike-slip motion.  相似文献   

16.
《Journal of Geodynamics》2009,47(3-5):182-193
A new method to estimate the vertical crustal motion from satellite altimetry over land was developed. The method was tested around Hudson Bay, where the observed vertical motion is largely caused by the incomplete glacial isostatic adjustment (GIA) as a result of the Laurentide ice sheet deglaciation since the last glacial maximum (LGM). Decadal (1992–2003) TOPEX/POSEIDON radar altimetry data over land surfaces were used. The results presented here are improved compared to a previous study (Lee, H., Shum, C.K., Kuo, C.Y., Yi, Y., Braun, A., 2008. Application of TOPEX altimetry for solid Earth deformation studies. Terr. Atmos. Ocean. Sci. 19, 37–46. doi:10.3319/TAO.2008.19.1-2.37(SA).) which estimated vertical motion only over relatively flat land surfaces (standard deviation of the height variation <40 cm). In this study, we extended the concept of traditional 1-Hz (one-per-frame) radar altimeter ocean stackfiles to build 10-Hz (10-per-frame) land stackfiles over Hudson Bay land regions, and succeeded in obtaining vertical motion estimates over much rougher surfaces (standard deviation of the height variation <2 m). 90-m C-band Shuttle Radar Topography Mission (SRTM) Digital Elevation Model (DEM) is used as a reference surface to select an optimal waveform retracker, to correct surface gradient errors, and to calculate land surface anomalies. Here, we developed an alternative retracker, called the modified threshold retracker, resulting in decadal vertical motion time series over a 1500 km by 1000 km region covering northern Ontario, northeastern Manitoba, and the Great Lakes region which is at the margin of the former Laurentide ice sheet. The average of the estimated uncertainties for the vertical motion is 2.9 mm/year which is comparable to 2.1 mm/year of recent GPS solutions. The estimated vertical motion is compared with other geodetic observations from GPS, tide gauge/altimetry, GRACE, and several GIA models. The data agree best with the laterally varying 3D GIA model, RF3S20 (β = 0.4) whereas the combination of land altimetry solution with other measurements match best with the models RF3S20 (β = 0.0) or RF3S20 (β = 0.2) in terms of mean and standard deviation of the differences. It is anticipated that this innovative technique could potentially be used to provide additional constraints for GIA model improvement, and be applied to other geodynamics studies.  相似文献   

17.
《Journal of Geodynamics》2010,49(3-5):253-259
We observe the Earth tidal fields at diurnal and semi-diurnal periods using Kinematic Precise Point Positioning (KPPP) GPS analysis. Our KPPP GPS solutions compare well with super-conducting gravimeter (SG) observations and a theoretical Earth tidal model, that includes both ocean tide loading model and body tides. We make a high resolution map of the observed Earth tidal response fields using the Japanese GEONET GPS network which consists of 1200 sites. We find that: (1) the average phase of GPS data lags 0.11 ± 0.04° from our theoretical Earth tidal model, (2) the average amplitude ratio between GPS and the theoretical Earth tidal model is 1.007 ± 0.003, (3) the amplitude in the Kyushu district is about 1.0–1.5 ± 0.3% larger than in the Hokkaido district, and (4) the amplitude at the Japan Sea side is about 0.5 ± 0.2% larger than that at the Pacific Ocean side. These results suggest that we may be able to place constraints on Earth structure using GPS-derived tidal information.  相似文献   

18.
The ionospheric slab thickness, the ratio of the total electron content (TEC) to the F2-layer peak electron density (NmF2), is closely related to the shape of the ionospheric electron density profile Ne (h) and the TEC. Therefore, the ionospheric slab thickness is a significant parameter representative of the ionosphere. In this paper, the continuous GPS observations in South Korea are firstly used to study the equivalent slab thickness (EST) and its seasonal variability. The averaged diurnal medians of December–January–February (DJF), March–April–May (MAM), June–July–August (JJA) and September–October–November (SON) in 2003 have been considered to represent the winter, spring, summer and autumn seasons, respectively. The results show that the systematic diurnal changes of TEC, NmF2 and EST significantly appeared in each season and the higher values of TEC and NmF2 are observed during the equinoxes (semiannual anomaly) as well as in the mid-daytime of each season. The EST is significantly smaller in winter than in summer, but with a consistent variation pattern. During 14–16 LT in daytime, the larger EST values are observed in spring and autumn, while the smaller ones are in summer and winter. The peaks of EST diurnal variation are around 10–18 LT which are probably caused by the action of the thermospheric wind and the plasmapheric flow into the F2-region.  相似文献   

19.
The North Anatolian Fault Zone (NAFZ), which marks the boundary between Anatolia and the Eurasian plate, is one of the world's most seismically active structures. Although the eastern part of NAFZ has high seismic hazard, there is a lack of geodetic information about the present tectonics of this region. Even though many scientists would like to study this area, geographical and logistical problems make performing scientific research difficult. In order to investigate contemporary neotectonic deformation on the eastern NAFZ and in its neighborhood, a relatively dense Global Positioning System (GPS) monitoring network was established in 2003. Geodetic observations were performed in three GPS campaigns in an area of 350 km × 200 km with 12-month intervals. In addition, 14 new GPS stations were measured far from the deforming area. Since this region includes the intersection of the NAFZ and the East Anatolian Fault Zone (EAFZ), deformation is complex and estimating seismic hazard is difficult. One important segment is the Yedisu segment and it has not broken since the 1784 earthquake. After the 1992 Erzincan and 2003 Pulumur earthquakes, the Coulomb stress loading on the Yedisu segment of the NAFZ has increased significantly, emphasizing the need to monitor this region. We computed the horizontal velocity field with respect to Eurasia and strain rates field as well. GPS-derived velocities relative to Eurasia are in the range of 16–24 mm/year, which are consistent with the regional tectonics. The principal strain rates were derived from the velocity field. Results show that strain is accumulating between the NAFZ and EAFZ along small secondary fault branches such as the Ovacik Fault (OF).  相似文献   

20.
Relative sea level variations in the north-western part of the Arabian Gulf have been estimated in the past using no more than 10 to 15 years of observations. In this study, we have almost doubled the period to 28.7 years by examining all available tide gauge data in the area and constructing a mean gauge time-series from seven coastal tide gauges. We found for the period 1979–2007 a relative sea level rise of 2.2 ± 0.5 mm/year. Using the subsidence observed at 6 GPS stations within a radius of 100 km of the tide gauges as an indication of the vertical land motion, the corresponding absolute sea level rise is 1.5 ± 0.8 mm/year that is in agreement with the global estimate of 1.9 ± 0.1 mm/year (Church and White, 2011) for the same studied period. By taking into account the temporal correlations we conclude that previous published results underestimate the true sea level rate uncertainty in this area by a factor of 5–10.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号