首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
During the northern hemisphere winter of 2005–2006, transient luminous events (TLEs) known as ‘sprites’ and ‘elves’ were imaged over thunderstorm cells in the eastern Mediterranean. Simultaneously, extremely low frequency (ELF) data (ELF: 3–3000 Hz) were recorded at two observation stations in Israel and Hungary in order to qualify and quantify parameters of the parent lightning discharge associated with the transient optical emissions in the upper atmosphere. In this study, we found that for 87% (Israel) and 77% (Hungary) of optically observed TLEs an intense ELF transient event was recorded. These stations are located some 500 and 2100 km, respectively, from the region of the TLEs. All ELF transients that were associated with TLEs were caused by lightning discharges with positive polarity. Calculation of the charge moment change showed values between 600 and 2800 C km with a peak around 1000 C km. Additionally, the time delay between the +CG and ensuing sprite was 76±34 ms and it was displaced up to 50 km from its parent CG.One of our objectives in the present study was to characterize, based on the ELF radiation from lightning, the electromagnetic (EM) waveforms of the lightning discharges which generate TLEs in the time and frequency domains, and to compare them with other lightning discharges occurring in the same thunderstorm cell at approximately the same time, but which did not produce TLEs. The survey for a typical EM waveform showed no unique ELF signature for lightning discharges associated with either sprites or elves.  相似文献   

2.
Two sprite-producing mesoscale convective systems above the South-Western part of France are studied. Three sprite events during the first night and seven during the second night were captured. Except for two events, the sprites could be associated with causative positive cloud-to-ground (+CG) discharges in the stratiform region of the storm. The analysis of lightning activity reveals that in both nights sprites occurred when lightning activity decreased rapidly and the ratio of +CGs to the total number of CGs decreased slightly. The average peak current of sprite-producing lightning was lower than 60 kA, in agreement with other observations. The delay times of sprites to their SPCGs varied from 57 to 140 m s and no correlation between events’ delay and shape was established.  相似文献   

3.
We have considered spatial distributions of positive lightning discharges in the east of Siberia for the summer seasons of 2003–2007 and properties of their electromagnetic signals with the ELF “slow tail”, which, as is known, can be accompanied by sprites. There are two main regions of positive discharges located in the south and west of Yakutsk. Two other “centers” (the northeastern and the eastern) are located in high-mountainous regions. In these regions the positive discharges intensity can exceed the negative discharge intensity.The electromagnetic signals in the ELF range (usually in the form of two half-cycles) were observed after the VLF atmospherics were recorded in the high-latitude regions. The delay of ELF pulses relative to the corresponding atmospherics was 0–7 ms. The long (up to 350 ms) events of quasi-periodic ELF oscillations with the period of about 7 ms (which corresponds to the quasi-period of ELF pulses) were revealed.  相似文献   

4.
The measurement of unusual winter sprites in the Hokuriku area (Japan Sea side) was performed as a primary target of the 2006/2007 winter campaign by means of coordinated optical and extremely low frequency (ELF)/very high-frequency (VHF) electromagnetic observations. We have also added the same observations for the sprites in the Pacific Ocean, to be compared with the characteristics of Hokuriku sprites. The following results have emerged from this campaign: (i) the predominance of column sprites in winter has been confirmed not only for the Hokuriku area but also in the Pacific Ocean (with the probability just above 60%), (ii) carrots are much more frequently observed in the Pacific Ocean (with a probability of ~28%) than in the Hokuriku area (~16%), (iii) a very unique property of Hokuriku sprites is the surprisingly long delay (average ~90 ms) of sprites from their parent lightning flashes and the delays for carrots and columns exhibit some significant difference (80 ms for columns and 100 ms for carrots) and (iv) the time delay of Pacific Ocean sprites is much shorter (~43 ms average) than that at Hokuriku, but there is no remarkable difference in delay between carrots and columns. Finally we discussed the importance of time delay studies to understand sprite generations and their parent lightning discharges, because the difference of time delays on the Japan Sea side and in the Pacific Ocean are thought to be causally related to the parameters of parent thunderstorms.  相似文献   

5.
Continuous observations of sprites in the Hokuriku area of Japan were performed from two optical sites during the three winter periods. The purpose of this observation is to study the major effect in the appearance of sprites and in determining the morphology of sprites (columns or carrots). Detailed analysis is performed based on the estimation of the height of ?10 °C at the time of sprite occurrence. When the height of ?10 °C is lower than 1800 m, the occurrence of sprites is infrequent, and the dominant shape is column. Then when it is increased (1800–3000 m), a new situation takes place, namely the occurrence of sprites is very enhanced and more spectacular shapes like carrots tend to be frequently observed in addition to column sprites. These sprite characteristics are first compared with those of parent lightning in the Hokuriku area and with our latest computer simulations on sprite initiation.  相似文献   

6.
Spectrograms and ELF power spectra of magnetic variations originated from sprite-producing lightning discharges have been analyzed to extract both parent lightning and sprite parameters. Some of the spectrograms and power spectra have been found to have approximately quasi-oscillatory shape in the frequency range 0–40 Hz with maximum repetition period about 15–20 Hz. A theory predicts that this interesting peculiarity of the power spectra can be due to interference between electromagnetic fields originated from the parent lightning discharge and from the sprite. A smooth envelope of the power spectrum was shown to have a form of damped oscillations with period close to reciprocal value of sprite lag time. A technique of extracting sprite parameters based on the sprite-producing lightning power spectrum is proposed. The lack of the first Schumann resonance and other features occasionally observed in spectral resonance structure were also discussed.  相似文献   

7.
Sprites are newly discovered optical emissions in the mesosphere over large thunderstorms. This paper is the observational summary of winter sprites in the Hokuriku area of Japan and their parent lightning in the winter of 2004/2005, by using the coordinated optical and electromagnetic (VHF and ELF) measurements in Japan. As the results of optical observations at two stations, we have found that this campaign has yielded a variety of sprite shapes; V-angle shaped structures have been often observed (25%) in addition to columnar structures familiar for us. All of the sprite events are found to be associated with +CG lightning, as seen from the macroscopic information by ELF data at Moshiri. However, examining the microscopic properties of parent lightning as seen from the VHF SAFIR lightning detection network, has suggested very complicated characteristics of parent lightning discharges inducing sprites, as compared with the ELF data. One half of the sprite events are also found to be associated with +CG by the SAFIR observation, but another half has yielded rather new results as compared with earlier results. Four events are definitely associated with -CG and the remaining three events, inter-cloud flashes. The overall picture for Japanese winter sprites and their parent lightning discharges, is significantly different from that for the summer-time, continental sprites. This is indicative of complexity of winter lightning in the Hokuriku area of Japan and this would provide new information on the sprite generation mechanism.  相似文献   

8.
Recent Results from Studies of Electric Discharges in the Mesosphere   总被引:3,自引:3,他引:0  
The paper reviews recent advances in studies of electric discharges in the stratosphere and mesosphere above thunderstorms, and their effects on the atmosphere. The primary focus is on the sprite discharge occurring in the mesosphere, which is the most commonly observed high altitude discharge by imaging cameras from the ground, but effects on the upper atmosphere by electromagnetic radiation from lightning are also considered. During the past few years, co-ordinated observations over Southern Europe have been made of a wide range of parameters related to sprites and their causative thunderstorms. Observations have been complemented by the modelling of processes ranging from the electric discharge to perturbations of trace gas concentrations in the upper atmosphere. Observations point to significant energy deposition by sprites in the neutral atmosphere as observed by infrasound waves detected at up to 1000 km distance, whereas elves and lightning have been shown significantly to affect ionization and heating of the lower ionosphere/mesosphere. Studies of the thunderstorm systems powering high altitude discharges show the important role of intracloud (IC) lightning in sprite generation as seen by the first simultaneous observations of IC activity, sprite activity and broadband, electromagnetic radiation in the VLF range. Simulations of sprite ignition suggest that, under certain conditions, energetic electrons in the runaway regime are generated in streamer discharges. Such electrons may be the source of X- and Gamma-rays observed in lightning, thunderstorms and the so-called Terrestrial Gamma-ray Flashes (TGFs) observed from space over thunderstorm regions. Model estimates of sprite perturbations to the global atmospheric electric circuit, trace gas concentrations and atmospheric dynamics suggest significant local perturbations, and possibly significant meso-scale effects, but negligible global effects.  相似文献   

9.
Superposed epoch analysis (SEA) was used to examine ionospheric drift velocities measured by a digital ionosonde located at the mid-latitude station Bundoora (145.1°E, 37.7°S geographic), near Melbourne. The control times for the SEA were the times of cloud-to-ground (CG) lightning strokes measured from August 2003 to August 2004 by the World Wide Lightning Location Network (WWLLN). Statistically, regions of concentrated lightning activity migrated from west to east across Bundoora, and the stroke frequency was higher the day prior the activity reached the station, and lower on the day after it passed to the east. For the SEA, CG strokes were separated into four directional quadrants centred on north, south, east and west. No SEA results are shown for the south quadrant due to the relatively low detection frequency of strokes across the Southern Ocean (6% of all events). The strongest downward vertical perturbations in F-region drifts, ?4.5 m s?1, were found for lightning located towards the west during ?30 to ?16 h (i.e., the afternoon prior the activity passed near the station at t=0 h). The downward perturbation decreased in amplitude to ?1.5 m s?1 for lightning located towards the north during ?6–+6 h, and was weakest (?0.7 m s?1) for lightning located towards the east during +16–+28 h (i.e., the next afternoon). There were directionally consistent perturbations in the drift azimuths associated with the lightning located in their respective quadrants; lightning located to the west of the station caused eastward azimuth enhancements, northward lightning caused southward enhancements, and eastward lightning caused westward enhancements. Velocity magnitudes and fluctuations tended to increase during the passage of lightning. The observed responses were stronger when the SEA was performed with data selected using time windows of <2 min on either side of each lightning stroke. However, they persisted at longer time scales and were strong when thunderstorm onsets (instead of lightning times) were used as controls. Our results can be explained by thunderstorm-generated atmospheric gravity waves (AGWs) which subsequently gave rise to medium-scale travelling ionospheric disturbances (MSTIDs), with the lightning strokes acting merely as a proxy for this coupling. The prevailing thermospheric winds were flowing from east to west across the study region, and may have acted as a directional ‘filter’ for the MSTIDs, allowing waves generated in the west quadrant to reach the station and preventing those generated in other quadrants. Displacement of the MSTIDs in the direction anti-parallel to mean neutral wind flow has been observed by (Waldock, J.A., Jones, T.B., 1986. HF Doppler observations of medium-scale travelling ionospheric disturbances at mid-latitudes. Journal of atmospheric and terrestrial physics 48(3), 245–260).  相似文献   

10.
A detailed analysis of the VLF/ELF wave data obtained during a whistler campaign under All India Coordinated Program of Ionosphere Thermosphere Studies (AICPITS) at our low latitude Indian ground station Jammu (geomag. lat. = 22° 26′ N, L = 1.17) has yielded two types of unusual and unique whistler-triggered VLF/ELF emissions. These include (1) whistler-triggered hook emissions and (2) whistler-triggered long enduring discrete chorus riser emissions in VLF/ELF frequency range during night time. Such types of whistler-triggered emissions have not been reported earlier from any of the ground observations at low latitudes. In the present study, the observed characteristics of these emissions are described and interpreted. Dispersion analysis of these emissions show that the whistlers as well as emissions have propagated along a higher geomagnetic field line path with L-values lying ∼L = 4, suggesting that these triggered emissions are to be regarded as mid-latitude emissions. These waves could have propagated along the geomagnetic field lines either in a ducted mode or in a pro-longitudinal (PL) mode. The measured intensity of the triggered emissions is almost equal to that of the source waves and does not vary throughout the period of observation on that day. It is speculated that these emissions may have been generated through a process of resonant interaction of the whistler waves with energetic electrons. Parameters related to this interaction are computed for different values of L and wave amplitude. The proposed mechanism explains some aspects of the dynamic spectra.  相似文献   

11.
Narrow bipolar events (NBEs) are a distinct class of intra-cloud lightning discharge. In this paper we present observations of 10 negative and 67 positive such events in East China. Positive NBEs occurred at 7–12 km altitude above mean sea level (MSL) with a mean altitude of 9.5 km, and negative NBEs occurred at 14–16 km altitude. Electrical/channel characteristics of these events were derived from NBE pulse waveforms based on the transmission-line model. On average, the peak current moment and the charge moment change of a NBE event is 15 kA km, and 0.12 C km, respectively. The mean time for the propagation of current front along the channel is 2.2 μs. The upper limit on channel length for NBEs in this study is 510–1060 m, the lower limit on discharge current amplitude is 12.5–43.2 kA, and the minimum charge transfer is 0.1–0.3 C.  相似文献   

12.
13.
Variations in the global atmospheric electric circuit are investigated using a wide range of globally spaced instruments observing VLF (∼10 kHz) waves, ELF (∼300 Hz) waves, Schumann resonances (4–60 Hz), and the atmospheric fair weather electric field. For the ELF/VLF observations, propagation effects are accounted for in a novel approach using established monthly averages of lightning location provided by the Lightning Image Sensor (LIS) and applying known frequency specific attenuation parameters for daytime/nighttime ELF/VLF propagation. Schumann resonances are analyzed using decomposition into propagating and standing waves in the Earth-ionosphere waveguide. Derived lightning activity is compared to existing global lightning detection networks and fair weather field observations. The results suggest that characteristics of lightning discharges vary by region and may have diverse effects upon the ionospheric potential.  相似文献   

14.
The preliminary results of observation of the lightning electrical characteristics during tropical summer thunderstorms locally known as “Nor-Wester”, at a hilly place in North-East India (23.50°N, 91.25°E) are reported here. Some distinct peaks are observed in the VLF range between 1.5 to 6 kHz. Average cloud conductivity is found to be 8.12×10?10 S m?1. Specific characteristics of integrated field intensity of sferics (IFIS) at 14 and 17 kHz are also studied. Average enhancement of electrical activity during thunderstorms is found to be 170 dB kHz?1 compared to the normal weather sferics intensity.  相似文献   

15.
Mid-latitude Digisonde Doppler velocities, auroral electrojet (AE) indices and cloud-to-ground (CG) lightning strokes during August 2003–2004 were used to study the perturbations in the F-region vertical drift associated with terrestrial thunderstorms. A superposed epoch analysis (SEA) showed that the F-region vertical drifts Vz had a net descent of ~0.6 m s?1 peaking ~3 h after lightning. Stronger downward perturbations of up to ~0.9 m s?1 were observed in the afternoon on the day prior to lightning days. The perturbations were less significant on the day after and insignificant during the remaining intervals up to 144 h on either side of the lightning. The stronger responses on the day before are consistent with causality because the lightning times were merely proxies for the physical mechanisms involved. The actual causes are unclear, but we discuss the possible roles of lightning-induced ionisation enhancements, intense electric fields penetrating upward from electrified clouds, and atmospheric gravity waves (AGWs) radiated from thunderstorms or from the accompanying tropospheric fronts. There is no doubt that the behaviour of the mid-latitude F-region is controlled by the thermospheric winds and the solar wind-magnetosphere electrical generators, but our results suggest that electrified clouds also account for a significant, albeit relatively small component of the ionospheric variability.  相似文献   

16.
This work investigates the occurrence of disturbances across a wide range of VLF and LF frequencies received prior to a seismic event (Mw = 4), that took place on May 12th 2012, the epicenter of which was very close (14 km) to the VLF/LF station. The signals analyzed were emitted from five VLF and five LF European transmitters. This seismic event produced precursory ionospheric disturbances, identified as spectral distortion, three days before its occurrence, providing a distinct pattern open to further investigation. Although the basis of the ionosphere interaction with seismic phenomena has been well documented in previous studies, the close proximity of the receiver to the seismic event provides a new perspective to this study. The monitored signals have undergone normalization and then they have been processed by means of the Hilbert-Huang Transform. Diagrams of the signals relevant to the phenomena are presented and the disturbances that are present in the raw data are accentuated through further processing.  相似文献   

17.
The propagation features of nighttime whistlers to low-latitude station, Suva (−18.2°, 178.3°, geomag. lat. −22.1°, geomag. long. 253.5°, L=1.15), Fiji, from preliminary observations made during the period from September 2003–2005, are reported. The observations of ELF–VLF signals commenced in September 2003 using the VLF set-up of World Wide Lightning Location Network at our station. The whistlers were observed during the severe magnetic storm of 20–22 November 2003 and moderate magnetic storm of 17–19 July 2005. A whistler with dispersion D=12.7 s1/2 occurred on 22 November at 00:11 h LT. On 20 July at 01:00 h LT, a short whistler with dispersion D=20.9 s1/2 and two whistler events having two-component whistlers with D=15.8, 16.7 s1/2 and 16.7, 17.3 s1/2 were observed. Non-ducted pro-longitudinal mode of the whistler propagation supported by negative latitudinal electron density gradients in the ionosphere that are enhanced by magnetic storms, seems most likely mode of propagation for the whistlers with dispersion of 12.7–17.3 s1/2 to this low-latitude station.  相似文献   

18.
The observations of subionospheric VLF waves from the Australian VLF transmitter NWC (frequency=19.8 kHz) at the Japanese receiving stations Chofu, Chiba and Kochi have been utilized to identify a possible precursor of ionospheric perturbations to the huge Sumatra earthquake of 26 December 2004. The VLF amplitude data at Japanese stations have indicated the depression in amplitude and also the enhancement in nighttime amplitude fluctuation before the earthquake. The nighttime fluctuation is composed of wave-like structures, and the wavelet analysis and cross-correlation analyses have been performed for those fluctuations. A significant enhancement in the fluctuation spectra in the period 20–30 min to ∼100 min (the frequency range of atmospheric gravity waves) is observed only before the earthquake. Then, the wave-like structures tend to propagate from the NWC–Kochi path to NWC–Chiba path with the time delay of ∼2 h, and so the wave propagation speed is estimated as ∼20 m/s. This finding might be important when we think of lithosphere–ionosphere coupling mechanism.  相似文献   

19.
We demonstrate that narrowband measurements can be used for rudimentary ranging of cloud-to-ground lightning flashes. The system at present responds to both intra-cloud and cloud-to-ground lightning; ranging is demonstrated for a subset of flashes known to be cloud-to-ground lightning. The system uses a ferrite-core antenna with a length of about 4 cm and diameter 4 mm, and operates on a narrow band at about 1 MHz, close to the HF band (3–30 MHz). It downmixes the signal to audio frequencies and operates in a manner which is very similar to an AM radio. The system triggers on all impulses which exceed a given adjustable threshold above the ambient noise level, and records 1 s of data. Such a system was used to collect lightning-caused electromagnetic disturbances during summer 2006 in Finland. The output is compared to two scientifically verified references: a flat-plate broadband antenna measuring the vertical electric field and a commercial lightning location network giving flash location. A key aim of the system is to reduce the information to as few parameters as possible. Peak intensity and full-flash energy were used as simple parameters. It is shown that accurate flash-by-flash ranging is not possible with this method; however, it is shown that the method can be used to track clusters of ground flashes within a range of about 50–100 km with an accuracy of about 10 km.  相似文献   

20.
Narrow bipolar pulses (NBPs) are considered as isolated intracloud events with higher peak amplitude and strong high frequency emission compared to the first return strokes and other intracloud discharges. From 182 NBPs recorded in Malaysia in the tropic, 75 were narrow negative bipolar pulses (NNBPs) while 107 were narrow positive bipolar pulses (NPBPs). The mean duration of NNBPs was 24.6±17.1 μs, while 30.2±12.3 μs was observed for NPBPs. The mean full-width at half-maximum (FWHM) was 2.2±0.7 and 2.4±1.4 μs for NNBPs and NPBPs, respectively. The mean peak amplitude of NPBPs normalized to 100 km was 22.7 V/m, a factor of 1.3 higher than that of NNBPs which is 17.6 V/m. In contrast to the previous studies, it was observed that the electric field change was characterized by a bipolar pulse with a significant amount of fine structures separated by a few tens of nanoseconds intervals, embedded on it.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号