首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Continuous measurements of solar spectral radiation using the multifilter rotating shadow band radiometer (MFRSR-7) are performed at the Actinometric Station of the National Observatory of Athens (ASNOA). The present study utilizes 4 days of continuous observations, from local sunrise to sunset, in order to investigate the daily variation of the radiation components (diffuse and global) as well as their ratio (diffuse-to-global irradiance ratio, DGR) under different atmospheric conditions. DGR has received a great scientific interest, as well as the respective diffuse-to-direct-beam ratio especially for investigating solar irradiance modifications under different atmospheric conditions, aerosol load and optical properties. Apart from this, the present study shows that the DGR can also constitute a powerful tool for cloud screening, i.e. for removing perturbed data due to cloud contamination from automated sun scanning radiometers. The relationship between DGR at a specific wavelength with the respective ratio for the whole MFRSR band (300–1100 nm) is found to exhibit a curvature; this curvature is strongly modified when perturbed irradiance data (possibly caused by clouds) occur. Even though the perturbed data can also be easily identified from the diurnal irradiance variation, the present study is the first to show the effect of perturbed solar spectral data on the DGR.  相似文献   

2.
Total Atmospheric Transmittance in the UV and VIS Spectra in Athens,Greece   总被引:2,自引:0,他引:2  
This work investigates the seasonal and diurnal variation of total spectral transmittance of solar radiation. Such a study dealing with ultraviolet and visible wavelengths (310–575 nm) is carried out in Athens for the first time. The spectral values presented are averages over a number of records in a period of 42 days and have been calculated using ground-based spectral measurements of direct-beam irradiance. The data were recorded on selected days throughout a year by a simple pyrheliometer capable of performing spectral measurements. All data were recorded under clear-sky conditions in the city center of Athens and the total spectral atmospheric transmittance was estimated in the direction of local zenith to become independent of any optical mass effects. The comparison between seasons reveals that the atmospheric transmittance is higher in the cold period of the year than in the warm, simply because the photochemical pollution in the summer is more severe. Various features of seasonal and diurnal variation are also discussed with respect to emission sources, topographic peculiarities and wind regime.  相似文献   

3.
This work estimates the Ångström turbidity coefficients and investigates the variation of the aerosol optical depth (AOD) in the Athens area, during different atmospheric conditions. The AOD is estimated in the wavelength band of 400–670 nm from direct-beam spectral irradiance measurements using ground-based instrumentation, during an experimental campaign performed in the period 22 September–1 October 2002. All data were collected under clear-sky conditions near the city center of Athens; the AODs were estimated relative to the local zenith to avoid the influence of the optical air mass. The study shows that the AOD is influenced by wind regime and traffic in the Athens area. The Angstrom's turbidity coefficients and the AOD values were found to be higher under the influence of South-sector winds compared to those from the North-sector. Under South-sector low winds, the pollutants are accumulated in the Athens basin. On the contrary, the North-sector winds clean the atmosphere.  相似文献   

4.
This work investigates the spectral atmospheric transmittance due to aerosols in the urban environment of Athens during a period of one year. The spectral transmittance due to aerosols is derived using measurements of spectral direct-beam solar irradiance in the 310–575 nm spectral band. This derivation is accomplished by using a radiative transfer model for estimating the partial spectral atmospheric transmittance functions due to Rayleigh scattering, and absorption by ozone, nitrogen dioxide and water vapor. The seasonal and diurnal variation of the aerosol transmittance is investigated and the results are discussed with a view to air pollution sources, meteorological factors and topographic characteristics of the Athens basin.  相似文献   

5.
Solar radiation at wavelengths below 300 nm is almost completely absorbed by the Earth’s atmosphere, becoming the dominant direct energy source and playing a major role in the chemistry and dynamics. Even small changes in this incoming radiation field will have both direct and indirect influences on atmospheric processes, and perhaps will affect the Earth’s climate as well. Some of the very earliest space missions included devices to measure solar ultraviolet irradiance, but for the most part they lacked the necessary precision and accuracy to record true solar variability over long time periods. The technology has continued to improve, and today reliable measurements over time scales up to, and including, the 11-year solar cycle, are being obtained. This review provides a summary of measurements made during the most recent solar cycle (number 22 extending from 1986 1996), with emphasis on the spectral range 120-300 nm. Comparisons and validations of recent data sets are considered, together with an assessment of the present understanding of the solar variations. There is now general agreement that for solar cycle 22 the variation is as large as a factor of two at the shortest wavelengths, decreasing to roughly 10% near 200 nm. Proceeding to wavelengths above 200 nm the solar variability continues to decrease, and at about 300 nm it becomes smaller than the present measurement capability of about 1%.  相似文献   

6.
Since the discovery of the ozone depletion in Antarctic and the globally declining trend of stratospheric ozone concentration, public and scientific concern has been raised in the last decades. A very important consequence of this fact is the increased broadband and spectral UV radiation in the environment and the biological effects and heath risks that may take place in the near future. The absence of widespread measurements of this radiometric flux has lead to the development and use of alternative estimation procedures such as the parametric approaches. Parametric models compute the radiant energy using available atmospheric parameters. Some parametric models compute the global solar irradiance at surface level by addition of its direct beam and diffuse components. In the present work, we have developed a comparison between two cloudless sky parametrization schemes. Both methods provide an estimation of the solar spectral irradiance that can be integrated spectrally within the limits of interest. For this test we have used data recorded in a radiometric station located at Granada (37.180°N, 3.580°W, 660 m a.m.s.l.), an inland location. The database includes hourly values of the relevant variables covering the years 1994/95. The performance of the models has been tested in relation to their predictive capability of global solar irradiance in the UV range (290/385 nm). After our study, it appears that information concerning the aerosol radiative effects is fundamental in order to obtain a good estimation. The original version of SPCTRAL2 provides estimates of the experimental values with negligible mean bias deviation. This suggests not only the appropriateness of the model but also the convenience of the aerosol features fixed in it to Granada conditions. SMARTS2 model offers increased flexibility concerning the selection of different aerosol models included in the code and provides the best results when the selected models are those considered as urban. Although SMARTS2 provide slightly worse results, both models give estimates of solar ultraviolet irradiance with mean bias deviation below 5%, and root mean square deviation close to experimental errors.  相似文献   

7.
Error analysis of multi-wavelength sun photometry   总被引:6,自引:0,他引:6  
The error terms involved in precision multi-wavelength sun photometry, as used to study atmospheric aerosols, are analyzed. The error terms treated include instrumental errors, calibration errors, and errors imposed by the atmosphere. It is shown that in order to derive accurate aerosol parameters, one must exercise great care in the photometer calibration. A procedure for accurate calibration is described, based on an intercalibration between extrapolations of the extraterrestrial solar spectral irradiance and irradiance of a standard lamp. Methods are described to assess, and reduce, uncertainties brought about by diffuse radiation in the photometer's field of view, temporal variations in aerosol optical depth, and gaseous absorption features at the operating wavelength. It is shown that if care is taken sun photometry can be used to derive monochromatic aerosol optical depth to an accuracy of several thousandths.  相似文献   

8.
—This paper deals with a new broadband atmospheric model designed for predicting the total and diffuse solar radiation incident on the earth’s surface in medium or large-sized coastal or near-coastal cities, under a clear or cloudy sky. The revised solar spectrum is used. The atmospheric transmittance of each atmospheric parameter contributing to solar radiation depletion, water vapor, ozone, uniformly mixed gases, molecules and aerosols, is calculated using parameterized expressions resulting from integrated spectral transmittance functions. The beam and diffuse radiation components are obtained as a function of the specific atmospheric transmittances. The model requires the following parameters as inputs: total water vapor and ozone amount in a vertical column, sunshine duration and the surface albedo. The model has been used for validation purposes at two stations with slightly different characteristics (NOA and Penteli) in the Athens basin, where total and diffuse radiation measurements are available, for a period of 34 months for NOA and 23 for Penteli. The NOA station is located on a small hill (107 m a.m.s.l.) near the center of Athens, while the Penteli station (500 m a.m.s.l.) is situated in a relatively less polluted area in northern Athens. The clear sky part of the model was tested for 70 individual “clear” days with 2-minute intervals, while the whole model was checked with monthly “mean” days and mean hourly values. A close agreement between the calculated and the measured values of total and diffuse solar radiation is observed.  相似文献   

9.
Helicopter measurements of solar irradiance and meteorological data within the atmospheric boundary-layer were made in Lagos during February 1979. Filter samples of aerosols were collected both during flight in February 1979 and at ground level in December 1978. Profile data on spectral aerosol optical depth were obtained and, from these, the aerosol extinction coefficient at two wavelengths (0.5 and 0.88 m) were calculated. Precipitable water was low and was contained mainly within the 750 m layer above ground, suggesting the establishment of a deep unstable boundary layer. Calculated channel energy depletions by aerosols show that, within the first 750 m of the surface, the 0·88 m might be more efficient at attenuating solar energy than 0·5 m. The lagoon (maritime) aerosol sample indicated a more monodisperse size-distribution than the dusty harmattan aerosol sample.  相似文献   

10.
Summary Results of the measurements of the polarization of reffected solar radiation in the visible region over various land, sea and cloud surfaces carried out from a high altitude aircraft are presented. It is shown that the measurable polarization can be used as a sensitive parameter to determine atmospheric turbidity and the aerosol content.  相似文献   

11.
Agriculture crop residue burning in tropics is an important source of atmospheric aerosols and monitoring their long-range transport is an important element in climate change studies. Synchronous measurements using micro-pulsed lidar, MICROTOPS-II sun photometer, multi-filter rotating shadow band radiometer (MFRSR) on aerosol optical depth and ground reaching solar irradiance were carried at an urban location in central region of India. Aerosol backscatter profiles obtained from micro-pulse lidar showed elevated aerosol layers up to ~3 km on certain days during October 2007. Satellite data observations on aerosol properties suggested transport of particles from agriculture crop residue burning in Indo-Gangetic Plains over large regions. Radiative forcing of aerosols estimated from SBDART model with input information on aerosol chemical properties, aerosol optical depth and single scattering albedo and broadband solar irradiance measurements using MFRSR showed good correlation (R=0.98).  相似文献   

12.
SOLAR2000 is a collaborative project for accurately characterizing solar irradiance variability across the spectrum. A new image- and full-disk proxy empirical solar irradiance model, SOLAR2000, is being developed that is valid in the spectral range of 1–1,000,000 nm for historical modeling and forecasting throughout the solar system. The overarching scientific goal behind SOLAR2000 is to understand how the Sun varies spectrally and through time from X-ray through infrared wavelengths. This will contribute to answering key scientific questions and will aid national programmatic goals related to solar irradiance specification. SOLAR2000 is designed to be a fundamental energy input into planetary atmosphere models, a comparative model with numerical/first principles solar models, and a tool to model or predict the solar radiation component of the space environment. It is compliant with the developing International Standards Organization (ISO) solar irradiance standard. SOLAR2000 captures the essence of historically measured solar irradiances and this expands our knowledge about the quiet and variable Sun including its historical envelope of variability. The implementation of the SOLAR2000 is described, including the development of a new EUV proxy, E10.7, which has the same units as the commonly used F10.7. SOLAR2000 also provides an operational forecasting and global specification capability for solar irradiances and information can be accessed at the website address of http://www.spacenvironment.net.  相似文献   

13.
—?This work estimates the Ångström coefficients, assuming a linear behavior of the natural logarithm of aerosol optical thickness, ln δα(λ), versus the natural logarithm of wavelength, ln λ, in the urban environment of Athens for a period of one year. The calculation of the coefficients α, β, was carried out using records of spectral beam irradiance in the 320–575?nm spectral range. The seasonal and diurnal variation of the coefficients shows different features with generally higher values of β and lower values of α in summertime. The Ångström coefficients are investigated with respect to various wind regimes and the results are discussed with a view to air pollution sources, climatic and topographic characteristics of the Athens basin. A similar study is also carried out for the Schüepp's turbidity parameter.  相似文献   

14.
Summary The paper focuses on the applicability of simple optimizing methods to determining the aerosol structure based on the measured values of the spectral optical thickness of aerosol δ(λ). The necessary conditions leading to a stable solution are assessed. By applying the particle distribution function in the form of summations of modified gamma functions we obtain the simple form of δ(λ). It is not suitable for proving Gaussian functions. The application of approximate methods to determine the aerosol structure from spectral optical thickness of atmospheric aerosol is based on measurements of the direct spectral solar radiation flux density which formed a part of the radiation experiment conducted in Zingst (Germany) on the coast of the Baltic Sea in 1987. on leave from the Astronomical Institute, Slovak Academy of Sciences  相似文献   

15.
The ground track of the annular eclipse of 3 October 2005 crossed the Iberian Peninsula. The main objective of this work was to analyze the variability of the solar irradiance and the total ozone column during the course of this event at El Arenosillo (Southwestern Spain). For achieving this goal, two Kipp & Zonen broadband radiometers (one for measuring total solar irradiance and other for measuring ultraviolet erythemal solar irradiance), one NILU-UV multi-band instrument and one Brewer spectroradiometer were used in this work. Total irradiance (310–2800 nm), and ultraviolet erythemal radiation (UVER) were recorded at a high frequency of 5 s, showing a strong reduction (higher than 80%) of the irradiance at the maximum solar obscuration which was of 79.6%. The irradiance decrease during the course of the eclipse was positively correlated with the percentage of eclipse obscuration, showing a very high agreement (R2~0.99). The irradiance recorded at selected wavelengths from the NILU-UV instrument shows a more pronounced decrease in the UV irradiance at the lower wavelengths during the solar eclipse. Finally, the evolution of the total ozone column (TOC) derived from Brewer and NILU instruments during the eclipse presented an opposite behavior: while the Brewer derived TOC values increase about 15 DU, the NILU derived TOC values decrease about 11 DU. This opposite behavior is mainly related to an artifact in the spectral irradiances recorded by the two instruments.  相似文献   

16.
UV-B solar irradiance and meteorological variables were measured at the C.I.B.A. site (Low Atmosphere Research Laboratory), University of Valladolid, Spain, between January 2003 and March 2006. Calculated Ångström turbidity and aerosol optical thickness values were evaluated from the direct downward irradiance, surface pressure, air temperature and relative humidity values. Monthly turbidity β values for an average year showed minimum values in winter and maximum values in summer. The obtained values are according to an aerosol standard atmosphere between mean and clean continental model. UV-B model calculations were performed using a radiative transfer tropospheric model, TUV 4.1a; measured and calculated UV-B irradiance values were compared in order to establish possible values of single scattering albedo. The results show that calculated single scattering albedo values are according to an aerosol standard atmosphere between mean and polluted continental model.  相似文献   

17.
Despite substantial progress in atmospheric modeling, the agreement of the simulated atmospheric response to decadal scale solar variability with the solar signal in different atmospheric quantities obtained from the statistical analysis of the observations cannot be qualified as successful. An alternative way to validate the simulated solar signal is to compare the sensitivity of the model to the solar irradiance variability on shorter time scales. To study atmospheric response to the 28-day solar rotation cycle, we used the chemistry–climate model SOCOL that represents the main physical–chemical processes in the atmosphere from the ground up to the mesopause. An ensemble simulation has been carried out, which is comprised of nine 1-year long runs, driven by the spectral solar irradiance prescribed on a daily basis using UARS SUSIM measurements for the year 1992. The correlation of zonal mean hydroxyl, ozone and temperature averaged over the tropics with solar irradiance time series have been analyzed. The hydroxyl has robust correlations with solar irradiance in the upper stratosphere and mesosphere, because the hydroxyl concentration is defined mostly by the photolysis. The simulated sensitivity of the hydroxyl to the solar irradiance changes is in good agreement with previous estimations. The ozone and temperature correlations are more complicated because their behavior depends on non-linear dynamics and transport in the atmosphere. The model simulates marginally significant ozone response to the solar irradiance variability during the Sun rotation cycle, but the simulated temperature response is not robust. The physical nature of this is not clear yet. It seems likely that the temperature (and partly the ozone) daily fields possess their own internal variability, which is not stable and can differ from year to year reflecting different dynamical states of the system.  相似文献   

18.
A theoretical model based on some physical assumptions has been integrated to study the scattering of solar radiation by aerosol particulates of any size present in the atmosphere. Using this model, which incorporates multiple scattering, scattered fluxes of radiation with varying optical depths and also the optical depth versus wavelengths are computed. The present results are found to be in close agreement with the observations of the Pre-Indian Ocean Experiment (INDOEX) 1996. This provides evidence of the direct effect of aerosol particulates on the radiative forcing of the atmosphere.  相似文献   

19.
Total solar irradiance has been monitored from space for nearly two decades. These space-borne observations have established conclusively that total solar irradiance changes over a wide range of periodicities—from minutes to the 11-year solar cycle. Since the total energy flux of the Sun is the principal driver for all Earths atmospheric phenomena, the accurate knowledge of the solar radiation received by the Earth and its variations is an extremely important issue. In this paper we review the long-term variations of total solar irradiance during solar cycles 21 and 22. We conclude that, within the current accuracy and precision of the measurements, the minimum level of total solar irradiance is about the same for both solar cycles 21 and 22.  相似文献   

20.
Summary The vertical profile of the aerosol attenuation coefficient can be calculated from the measurements of the spectral flux density of direct solar radiation and spectral radiance in a clear sky in a certain sun aureola by using the theory applied in this article. The process of solar radiation scattering is solved up to third order.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号