首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary  Tree canopy water use and foliage net CO2 uptake (NPP) were simulated for a 31-year-old Pinus sylvestris (Scots pine) plantation near Hartheim, in the Upper Rhine Valley, Germany with a mechanistically-based, three-dimensional stand gas-exchange model (STANDFLUX) for a ten-day period during spring 1992. STANDFLUX was formulated to include the effects of penumbra caused by the fine structure of the needles on light distribution within crowns. Good correspondence was found between simulated rates of tree canopy water use when including penumbral effects and eddy-covariance ET and sap flow transpiration measurements. Water use was 8–13% lower and NPP was 10–17% lower in simulations for the ten-day period when penumbral effects were not included. Simulated water use and CO2 uptake were compared with similar outputs from a simplified layer canopy model (including or not including penumbra) which assumed horizontal homogeneity in canopy structure (GAS FLUX). Our results for the Pinus sylvestris stand indicate that penumbral effects were more important than the degree of model simplification with respect to foliage distribution (three-dimensional vs. layered structure) for estimating stand-level fluxes for these pines. Simulated maximum hourly NPP was similar to rates measured for other Pinus sylvestris stands using other methods. Predicted decreases in tree transpiration due to the modelled response of needle gas exchange to increasing vapour-pressure deficit agreed with measured changes in transpiration, and suggested that stomatal response may have been more important than decreasing soil water availability in controlling water flux to the atmosphere during this period. The overall results of the study demonstrate that current approaches in canopy modelling that separate light into sun versus shade intensities can be effective, but must be applied with caution when attempting to predict long-term water and carbon balances of forests. Received May 1, 1999 Revised November 9, 2000  相似文献   

2.
Summary The weekly increments under various conditions of a dozen of 30 to 60 years old Halep pines grown in the Lecce area have been measured during two years with a band dendrometer. The data have been compared with the X-ray density of a stem in radial direction, the weekly precipitations and the integrated temperature excess above 8°C. We have found thatgrowth rate behaviour is practically the same for all the pines considered. This indicate a strict dependence of growth on external factors such as climate and other environmental conditions. Vegetation activity does not seem to have regular dormancy periods: it stops when temperature and humidity become prohibitive and resumes as soon as they become favourable. The volume of wood formed in late-season (July–January) equals more or less that of early-season (February–June), whereas the wood mass and the number of cells in late-season is nearly double of that in early-season. During periods of high cambial activity one observes a lower cell lignification. However, on the whole, the photoperiodicity hypothesis in lignification seems to be confirmed. The growth rate appears inversely related to density. The lignification process appears to extend to the outer xylem layer of 1–2 mm and seems most effective during dry and warm seasons when cambial activity is low. Density wriggles appear to derive from combined variations of cambial activity, cell size and lignification, mostly corresponding to environmental events such as periods of drought or of cold weather. Finally, during the dry seasons we find that a precipitation event is generally followed within a time less than a week, by an increase of growth rate. Whereas during the wet season the growth rate variation is very similar to that of temperature excess.With 6 Figures  相似文献   

3.
Climate response functions for 125 Pinus contorta populations were updated to assess the impact of 16 climate change scenarios on forest productivity. Productivity was defined as the volume of wood expected per hectare at age 20 and was calculated as the product of predicted individual tree volumes, an initial stocking (1600 trees ha–1), and predicted survival. Impact was considered according to the transient effects of a changing climate governed by (1) physiological plasticity in the contemporary generation and (2) long-term evolutionary adjustments that provide adaptedness and optimize productivity in future generations. Direct short-term plastic responses were geographically complex and had repercussions throughout the species' distribution even when temperature fluctuations were small (± 1 ° C) and changes in distribution were inconsequential. Evolutionary adjustments ameliorated negative short-term impacts while enhancing the positive. Scenarios that encompassed predictions for global warming produced short-term impacts that were negative in the south and positive in the north, but subsequent evolutionary adjustments projected substantial increases in productivity. The long-term adjustments may require only 1 to 3 generations in the north but 6 to 12 generations in the south, thereby taking between 200 and 1200 years.  相似文献   

4.
Tendencies of climatic variability indicate that northern Mexico will soon suffer from severe drought. Modeling the influence of climate and ecological processes would help researchers better understand the future implication of climatic variations. Here, we reconstructed historical seasonal precipitation using dendrochronological indices of Pinus cooperi and El Niño southern oscillation (ENSO). Correlation analysis was conducted to establish the precipitation response period; then a reconstruction model using independent variables was constructed using regression procedures. Available data were calibrated and verified to strengthen and validate the modeled reconstruction. Precipitation from the previous winter was best correlated with tree growth. Regression procedures showed that the residual chronology associated in a linear model with El Niño 3.4 explained 47 % of seasonal precipitation variability. This study contributes to a better understanding of historical variations in precipitation and the influence of ENSO in common tree species of northern Mexico to help land managers improve local forest management in a climate change scenario.  相似文献   

5.
以城市森林生态系统常绿树种为对象,测定了油松(Pinus tabuliformis)和侧柏(Platycladus orientalis)叶片对大气污染物(SO2、Cl2)和土壤重金属污染物(Cu、Zn、As、Hg和Pb、Cd和Cr)的吸滞作用与富集作用。结果表明:油松和侧柏具有较强吸滞污染物的作用,对污染物的吸滞能力受环境污染程度、不同生长季节的污染元素种类等因素的影响。其中,油松在秋季对S、Cu、Zn、Pb和Hg具有较高的吸附能力,针叶中S、Cu、Zn、Pb和Hg含量平均值分别为2158.75、6.31、31.46、4.05 mg·kg-1和0.08 mg·kg-1;侧柏在秋季对Cu、Zn、Hg和Cd具有较高的吸附能力,叶片中Cu、Zn、Hg、Cd含量平均值分别为4.47、22.47、0.09 mg·kg-1和0.20 mg·kg-1;在不同立地条件下,油松和侧柏对污染物的吸滞与富集量有所差异,其中在土壤污染较重的石景山松林园样地,油松对大气污染物SO2有较强的吸附能力,侧柏则表现出对Cl2有较强的吸附能力。对重金属污染物而言,油松和侧柏对Cu、Pb、Cr和As有较高的富集作用。  相似文献   

6.
7.
Sensitivity to climate change and anthropogenic disturbance is a typical feature of Mediterranean forests, which grow under dynamic and manipulated environmental conditions. In this study, we examine stone pine (Pinus pinea L.) along the Tyrrhenian coast of Italy to analyse the tree-growth variability on a temporal scale and to evaluate the radial growth response to climate trends over the last century. The analysis of tree ring widths at the decadal and multidecadal scale, which were standardised to remove the age trend, showed primarily significant downward trends and time periods with lower growth rates. Characterised by a clear decline in tree ring widths, the two periods of 20 years from the mid-1920s and the early 1970s appeared to be the least favourables for tree growth. Precipitation was the main factor driving growth, and the effect was cumulative over consecutive years because of the increase in soil water content. Including the current year of ring formation, correlations between decline in precipitation and tree growth were greatest with 3-year precipitation sums. The shifting influence of winter rainfall on tree ring growth toward not significant values during the last decades, together with the lack of significant correlation between the current year’s precipitation and growth decline from the 1970s, might suggest an increasingly dependence on long periods of water supply to utilise the water content stored due to the previous rainy years. The negative effect on tree-growth decline of summer and early-fall temperatures appeared as a forcing influence related to long-term changes in climate rather than high-frequency climate fluctuations.  相似文献   

8.
Recently a divergence between tree-ring parameters from temperature-limited environments and temperature records has been observed worldwide but comprehensive explanations are still lacking. From a dendroclimatic analysis performed on a high-altitude tree-ring network of Pinus cembra (L.) in the Central Italian Alps we found that site aspect influences non-stationary growth-climate relationships over time. A general increasing divergence between ring width and the summer temperature record (J–A) has been observed especially for chronologies from SW-facing slopes, whereas chronologies from N-facing sites showed stable relationships over time. The monthly analysis revealed that the decrease in sensitivity was mostly accounted for by the changes in the relationships with June temperature (decreasing correlations especially for S- and W-facing site chronologies), whereas trees from N-facing sites showed an increasing sensitivity to July temperatures. Our data suggest that at high altitudes, low temperatures at the beginning of the growing season no longer limit growth. We also found that our temperature-sensitive trees did not linearly respond in radial growth to the extreme heat event of summer 2003, and formed an annual ring of average width, resulting in a strong divergence from the temperature record. Our findings underline the importance of site ecology for tree-ring based climate reconstructions using temperature-sensitive ring-width chronologies, and may help in solving the ‘divergence problem’.  相似文献   

9.
10.
11.
A three-step methodology to assess the carbon sequestration and the environmental impact of afforestation projects in the framework of the Flexible Mechanisms of the Kyoto Protocol (Joint Implementation and Clean Development Mechanism) was developed and tested using a dataset collected from the Jonkershoek forest plantation, Western Cape, South Africa, which was established with Pinus radiata in former native fynbos vegetation and indigenous forest. The impact of a change in land use was evaluated for a multifunctional, a production and a non-conversion scenario. First, the carbon balance was modelled with GORCAM and was expressed as (1) C sequestration in tC ha−1 year−1 in soil, litter, and living biomass according to the rules of the first commitment period of the Kyoto Protocol, and (2) CO2 emission reductions in tC ha−1 year−1, which includes carbon sequestered in the above-mentioned pools and additionally in wood products, as well as emission reductions due to fossil fuel substitution. To estimate forest growth, three data sources were used: (1) inventory data, (2) growth simulation with a process-based model, and (3) yield tables. Second, the effects of land use change were assessed for different project scenarios using a method related to Life Cycle Assessment (LCA). The method uses 17 quantitative indicators to describe the impact of project activities on water, soil, vegetation cover and biodiversity. Indicator scores were calculated by comparing indicator values with reference values, estimated for the climax vegetation. The climax vegetation is the site-specific ecosystem phase with the highest exergy content and the highest exergy flow dissipation capacity. Third, the land use impact per functional unit of 1 tC sequestered was calculated by combining the results of step 1 and step 2. The average baselines to obtain carbon additionality are 476 tC ha−1 for indigenous forest and 32 tC ha−1 for fynbos. Results show that the influence of the growth assessment method on the magnitude of C sequestration and hence on the environmental impact per functional unit is large. When growth rate is assessed with the mechanistic model and with the yield table, it is overestimated in the early years and underestimated in the long term. The main conclusion of the scenario analysis is that the production forest scenario causes higher impacts per functional unit than the multifunctional scenario, but with the latter being less efficient in avoiding CO2 emissions. The proposed method to assess impacts on diverse components of the ecosystem is able to estimate the general tendency of the adverse and positive effects of each scenario. However, some indicators, more specifically about biodiversity and water balance, could be improved or reinterpreted in light of specific local data about threat to biodiversity and water status.  相似文献   

12.
13.
树轮记录的贺兰山北部近208年5—7月温度变化   总被引:1,自引:0,他引:1       下载免费PDF全文
利用2008年10月采自贺兰山北部的油松树轮样本建立了贺兰山北部区域树轮密度年表。相关分析表明:贺兰山北部的树轮早材平均密度与银川气象站5—7月平均最高温度具有较好的正相关关系,相关系数为0.67。用贺兰山北部的区域早材平均密度差值年表重建贺兰山北部1801—2008年的5—7月平均最高温度,58年 (1951—2008年) 重建值对实测值的解释方差为44.9%;2008年的贺兰山北部温度重建序列平均值为27.40℃。在最近20年,贺兰山树轮早材平均密度出现了明显的上升趋势,通过比对贺兰山北部重建序列的低温年份和全球火山爆发数据,发现在大规模火山爆发后的28个偏冷年温度平均值为26.90℃,较重建序列平均值下降0.50℃。多窗谱分析表明:贺兰山北部温度重建序列具有120年、8.1年、6.5年、3.2年、2.9年、2.1年的准周期变化。贺兰山北部早材平均密度与甘肃石门山、昌灵山油松的早材平均密度有良好的相关性。  相似文献   

14.
15.
16.
The dendrochronological use of the parameter maximum density (MXD) in Pinus Sylvestris L., at high latitudes, has provided valuable insights into past summer temperature variations. Few long MXD chronologies, from climatically coherent regions, exist today, with the exception being in northern Europe. Five, 500-year-long, Fennoscandian, MXD chronologies were compared with regard to their common variability and climate sensitivity. They were used to test Signal-free standardization techniques, to improve inferences of low-frequency temperature variations. Climate analysis showed that, in accordance with previous studies on MXD in Fennoscandia, the summer temperature signal is robust (R 2?>?50 %) and reliable over this climatically coherent region. A combination of Individual standardization and regional curve standardization is recommended to refine long-term variability from these MXD chronologies and relieve problems arising from low replication and standardization end-effects.  相似文献   

17.
Lodgepole pine (Pinus contorta Dougl.) is a widely distributed species in the Pacific Northwest of North America. The extent that the current distribution of this species may be altered under a changing climate is an important question for managers of wood supply as well as those interested in conservation of subalpine ecosystems. In this paper, we address the question, how much might the current range of the species shift under a changing climate? We first assessed the extent that suboptimal temperature, frost, drought, and humidity deficits affect photosynthesis and growth of the species across the Pacific Northwest with a process-based model (3-PG). We then entered the same set of climatic variables into a decision-tree model, which creates a suite of rules that differentially rank the variables, to provide a basis for predicting presence or absence of the species under current climatic conditions. The derived decision-tree model successfully predicted weighted presence and absence recorded on 12,660 field survey plots with an accuracy of ~70%. The analysis indicated that sites with significant spring frost, summer temperatures averaging <15°C and soils that fully recharged from snowmelt were most likely to support lodgepole pine. Based on these criteria, we projected climatic conditions through the twenty-first century as they might develop without additional efforts to reduce carbon emissions using the Canadian Climate Centre model (CGCM2). In the 30-year period centered around 2020, the area suitable for lodgepole pine in the Pacific Northwest was projected to be reduced only slightly (8%). Thereafter, however, the projected climatic conditions appear to progressively favor other species, so that by the last 30 years of twenty-first century, lodgepole pine could be nearly absent from much of its current range. We conclude that process-based models, because they are highly sensitive to seasonal variation in solar radiation, are well adapted to identify the importance of different climatic variables on photosynthesis and growth. These same variables, once indentified, and run through a decision-tree model, provide a reasonable approach to predict current and future patterns in a species?? distribution.  相似文献   

18.
Laboratory experiments under controlled environmental conditions are a useful tool to investigate the influence of different environmental parameters on VOC emissions from plants individually. Before using the obtained results to interpret measurements under ambient conditions, it has to be ensured that the laboratory system is suitable for performing emission rate measurements under ambient-like conditions to derive algorithms describing the emissions of volatile organic compounds as a function of physical variables like temperature and light intensity. Here we compare results from monoterpene emission rate measurements with Scots pines (Pinus sylvestris L.) under both ambient environmental conditions using a mobile plant enclosure chamber, and under controlled laboratory conditions in a continuously stirred tank reactor. The different analytical instruments to quantify monoterpene emissions were compared in an intercalibration experiment. Measurements of the mixing ratios of -pinene, -pinene, 3-carene, camphene, and limonene on the order of some hundred parts per trillion differed by less than 20%. The laboratory system has proven capable of providing ambient-like conditions and results of monoterpene emission rate measurements under laboratory conditions could be extrapolated to the natural environment. Monoterpene emission rate measurements with identical specimens of Scots pines conducted within small temporal differences under similar laboratory and outdoor conditions agreed well. Both laboratory and outdoor experiments clearly showed that distinct and constant values neither exist for the standard emission rates nor for the emission pattern of monoterpenes from Scots pine. Temporal variations in the standard emission rates from identical specimens and plant-to-plant variations were on the order of one magnitude.  相似文献   

19.
1农业气象灾害预警技术研究 2002年是"十五"国家科技攻关计划项目"农林重大病虫害和农业气象灾害的预警及控制技术研究"之第13课题(编号:2001BA509B13)实质性研究的一年,在收集资料、田间试验和模型研制等方面取得了较好的阶段性进展.年内广泛收集了环流、海温、气候及田间试验等各类资料.开展了干旱对小麦影响盆栽试验和油菜盆栽淹水试验,并在荔枝和香蕉园建立自动气象站,进行小气候观测.初步研制出4种灾害的长期统计预测模型和华南寒害短期数值天气预报模式,建立了基于东北玉米、华北小麦和夏玉米以及江淮小麦、油菜生长过程的动态模拟模式,探讨了实现作物模型区域化的方法,开展了区域气候模式与东北下垫面嵌套,生成作物模式所需预报值的方法试验.  相似文献   

20.
由中国气象科学研究院主持,江苏农业科学院、广东气候应用研究所、吉林气象科学研究所、国家气候中心科研人员参加的“十五”国家科技攻关项目“农林重大病虫害和农业气象灾害的预警及控制技术研究”13课题“农业气象灾害预警技术研究”经过近3年的研究取得了大量成果,并于2003年12月顺利通过农业部项目办公室组织的专家验收,得到专家一致好评。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号