首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
2.
We analyse the magnetic support of solar prominences in two-dimensional linear force-free fields. A line current is added to model a helical configuration, well suited to trap dense plasma in its bottom part. The prominence is modeled as a vertical mass-loaded current sheet in equilibrium between gravity and magnetic forces.We use a finite difference numerical technique which incorporates both vertical photospheric and horizontal prominence magnetic field measurements. The solution of this mixed boundary problem generally presents singularities at both the bottom and top of the model prominence. The removal of the singularities is achieved by superposition of solutions. Together with the line current equilibrium, these three conditions determine the amplitude of the magnetic field in the prominence, the flux below the prominence and the current intensity, for a given height of the line current. A numerical check of accuracy in the removal of singularities, is done by using known analytical solutions in the potential limit.We have investigated both bipolar and quadrupolar photospheric regions. In this mixed boundary problem the polarity of the field component orthogonal to the prominence is mainly fixed by the imposed height of the line current. For bipolar regions above (respectively below) a critical height the configuration is inverse (respectively normal). For quadrupolar regions the polarity is reversed if we refer the prominence polarity to the closest photospheric polarities. We introduce the polarity of the component parallel to the prominence axis with reference to a sheared arcade. Increasing the shear with fixed boundary conditions can increase or decrease the mass supported depending on the configuration.  相似文献   

3.
Topology of Magnetic Field and Coronal Heating in Solar Active Regions   总被引:2,自引:0,他引:2  
Force-free magnetic fields can be computed by making use of a new numerical technique, in which the fields are represented by a boundary integral equation based on a specific Green's function. Vector magnetic fields observed on the photospheric surface can be taken as the boundary conditions of this equation. In this numerical computation, the following two points are emphasized: (1) A new method for data reduction is proposed, for removing uncertainties in boundary data and determining the parameter in this Green's function, which is important for solving the boundary integral equation. In this method, the transverse components of the observed boundary field are calibrated with a linear force-free field model without changing their azimuth. (2) The computed 3-D fields satisfy the divergence-free and force-free conditions with high precision. The alignment of these field lines is mostly in agreement with structures in Hα and Yohkoh soft X-ray images. Since the boundary data are calibrated with a linear force-free field model, the computed 3-D magnetic field can be regarded as a quasi-linear force-free field approximation. The reconstruction of 3-D magnetic field in active region NOAA 7321 was taken as an example to quantitatively exhibit the capability of our new numerical technique.  相似文献   

4.
On the maximum energy release in flux-rope models of Eruptive Flares   总被引:1,自引:0,他引:1  
We determine the photospheric boundary conditions which maximize the magnetic energy released by a loss of ideal-MHD equilibrium in two-dimensional flux-rope models. In these models a loss of equilibrium causes a transition of the flux rope to a lower magnetic energy state at a higher altitude. During the transition a vertical current sheet forms below the flux rope, and reconnection in this current sheet releases additional energy. Here we compute how much energy is released by the loss of equilibrium relative to the total energy release. When the flux-rope radius is small compared to its height, it is possible to obtain general solutions of the Grad-Shafranov equation for a wide range of boundary conditions. Variational principles can then be used to find the particular boundary condition which maximizes the magnetic energy released for a given class of conditions. We apply this procedure to a class of models known as cusp-type catastrophes, and we find that the maximum energy released by the loss of equilibrium is 20.8% of the total energy release for any model in this class. If the additional restriction is imposed that the photospheric magnetic field forms a simple arcade in the absence of coronal currents, then the maximum energy release reduces to 8.6%.  相似文献   

5.
The stability of turbulent accretion discs is considered, in which a magnetically influenced wind plays a major role in driving the inflow. The magnetic field is generated by a dynamo operating in the disc, involving radial shear and turbulence. The steady angular momentum balance is found to be linearly stable for a range of radial boundary conditions, and an expression is derived for the adjustment time-scale as a function of the equilibrium ratio of the magnetic and viscous disc torques.  相似文献   

6.
In this paper, we reconstruct the finite energy force-free magnetic field of the active region NOAA 8100 on 4 November 1997 above the photosphere. In particular, the 3-D magnetic field structures before and after a 2B/X2 flare at 05:58 UT in this region are analyzed. The magnetic field lines were extrapolated in close coincidence with the Yohkoh soft X-ray (SXR) loops accordingly. It is found that the active region is composed of an emerging flux loop, a complex loop system with differential magnetic field shear, and large-scale, or open field lines. Similar magnetic connectivity has been obtained for both instants but apparent changes of the twisting situations of the calculated magnetic field lines can be observed that properly align with the corresponding SXR coronal loops. We conclude that this flare was triggered by the interaction of an emerging flux loop and a large loop system with differential magnetic field shear, as well as large-scale, or open field lines. The onset of the flare was at the common footpoints of several interacting magnetic loops and confined near the footpoints of the emerging flux loop. The sheared configuration remained even after the energetic flare, as demonstrated by calculated values of the twist for the loop system, which means that the active region was relaxed to a lower energy state but not completely to the minimum energy state (two days later another X-class flare occurred in this region).  相似文献   

7.
We study the magnetic field evolution and topology of the active region NOAA 10486 before the 3B/X1.2 flare of October 26, 2003, using observational data from the French–Italian THEMIS telescope, the Michelson Doppler Imager (MDI) onboard Solar and Heliospheric Observatory (SOHO), the Solar Magnetic Field Telescope (SMFT) at Huairou Solar Observation Station (HSOS), and the Transition Region and Coronal Explorer (TRACE). Three dimensional (3D) extrapolation of photospheric magnetic field, assuming a potential field configuration, reveals the existence of two magnetic null points in the corona above the active region. We look at their role in the triggering of the main flare, by using the bright patches observed in TRACE 1600 Å images as tracers at the solar surface of energy release associated with magnetic reconnection at the null points. All the bright patches observed before the flare correspond to the low-altitude null point. They have no direct relationship with the X1.2 flare because the related separatrix is located far from the eruptive site. No bright patch corresponds to the high-altitude null point before the flare. We conclude that eruptions can be triggered without pre-eruptive coronal null point reconnection, and the presence of null points is not a sufficient condition for the occurrence of flares. We propose that this eruptive flare results from the loss of equilibrium due to persistent flux emergence, continuous photospheric motion and strong shear along the magnetic neutral line. The opening of the coronal field lines above the active region should be a byproduct of the large 3B/X1.2 flare rather than its trigger.  相似文献   

8.
A class of magnetostatic equilibria with axial symmetry outside a unit sphere in the presence of plasma pressure and an r –2 gravitational field is constructed. The structure contains a localized current-carrying region confined by a background bipolar potential field, and the shape of the region changes subject to the variation of the electric current. The continuity requirement for the magnetic field and plasma pressures at the outer boundary of the cavity defines a free boundary problem, which is solved numerically using a spectral boundary scheme. The model is then used to study the expansion of the current-carrying region, caused by the buildup of magnetic shear, against the background confining field. The magnetic shear in our model is induced by the loading of an azimuthal field, accompanied by a depletion of plasma density.We show that due to the additional effect of confinement by the dense surrounding plasma, the energy of the magnetic field can exceed the energy of its associated open field, presumably a necessary condition for the onset of coronal mass ejections. (However, the plasma beta of the confining fluid is higher than that in the outer boundary of a realistic helmet-streamer structure.) Furthermore, under the assumption that coronal mass ejections are driven by magnetic buoyancy, the result from our model study lends further support to the notion of a suspended magnetic flux rope in the low-density cavity of a helmet-streamer as a promising pre-ejection configuration.The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   

9.
We describe how a local plasma structure can be changed by a transverse shear flow using numerical simulation to investigate the disturbance process near the magnetopause. The results show that magnetic field lines are bent by transverse shear flow disturbance near the current sheet region. There are multiple bipolar structures of the normal magnetic field in the numerical simulation. We term this new feature as K-point magnetic reconnection, realistic for discussing space observations.  相似文献   

10.
In this paper we present a quantitative evaluation of the shear in the magnetic field along the neutral line in an active region during an epoch of flare activity. We define shear as the angular difference in the photosphere between the potential magnetic field, which fits the boundary conditions imposed by the observed line-of-sight field, and the observed magnetic field. For the active region studied, this angular difference (shear) is non-uniform along the neutral line with maxima occurring at the locations of repeated flare onsets. We suggest that continued magnetic evolution causes the field's maximum shear to exceed a critical value of shear, resulting in a flare around the site of maximum shear. Evidently, the field at the site of the flare must relax to a state of shear somewhat below the critical value (but still far from potential), with subsequent evolution returning the field to the critical threshold. We draw this inference because several flares occurred at sites of maximum photospheric shear which were persistent in location.NOAA, Boulder, Colorado.  相似文献   

11.
We show that a steady mean-field dynamo in astrophysical rotators leads to an outflow of relative magnetic helicity and thus magnetic energy available for particle and wind acceleration in a corona. The connection between energy and magnetic helicity arises because mean-field generation is linked to an inverse cascade of magnetic helicity. To maintain a steady state in large magnetic Reynolds number rotators, there must then be an escape of relative magnetic helicity associated with the mean field, accompanied by an equal and opposite contribution from the fluctuating field. From the helicity flow, a lower limit on the magnetic energy deposited in the corona can be estimated. Steady coronal activity including the dissipation of magnetic energy, and formation of multi-scale helical structures therefore necessarily accompanies an internal dynamo. This highlights the importance of boundary conditions which allow this to occur for non-linear astrophysical dynamo simulations. Our theoretical estimate of the power delivered by a mean-field dynamo is consistent with that inferred from observations to be delivered to the solar corona, the Galactic corona, and Seyfert 1 AGN coronae.  相似文献   

12.
We investigate the formation and evolution of isothermal collapse nonuniformity for rotating magnetic interstellar clouds. The initial and boundary conditions correspond to the statement of the problem of homogeneous cloud contraction from a pressure equilibrium with the external medium. The initial uniform magnetic field is collinear with the angular velocity. Fast and slow magnetosonic rarefaction waves are shown to be formed and propagate from the boundary of the cloud toward its center in the early collapse stages. The front of the fast rarefaction wave divides the gas mass into two parts. The density, angular velocity, and magnetic field remain uniform in the inner region and have nonuniform profiles in the outer region. The rarefaction wave front surface can take both prolate and oblate shapes along the rotation axis, depending on the relationship between the initial angular velocity and magnetic field. We derive a criterion that separates the two regimes of rarefaction wave dynamics with the dominant role of electromagnetic and centrifugal forces. Based on analytical estimations and numerical calculations, we discuss possible scenarios for the evolution of collapse nonuniformity for rotating magnetic interstellar clouds.  相似文献   

13.
Kitchatinov  L.L.  Mazur  M.V. 《Solar physics》2000,191(2):325-340
We analyse stability and equilibrium of a unipolar large-scale magnetic field pervading a plane horizontal subphotospheric layer with the possible implications for sunspots in mind. Eddy diffusivity is applied to account for the effects of the small-scale convective turbulence. Diffusivity quenching by magnetic field results in a secondary large-scale instability. A linear stability analysis is performed to define the marginal stability boundary in parametric space and the unstable mode structure. The nonlinear dynamics of the unstable modes are followed numerically. The original state of a uniform vertical magnetic field is transformed via the instability into the nonlinear dynamical equilibrium with a highly intermittant distribution of the magnetic field. Magnetic flux is concentrated in a relatively small area surrounded by an almost field-free region. The role of the fluid motion in the hydromagnetic equilibrium is emphasized. Although the relevance of the instability to the process of sunspot formation is rather questionable, the resulting equilibrium structures are similar to mature spots in their thermal and magnetic properties. Also, the simulated flow structure agrees with helioseismic tomography results.  相似文献   

14.
The temperature and density are obtained for coronal plasma in thermal and hydrostatic equilibrium and located in a force-free magnetic arcade. The isotherms are found to be inclined to the magnetic field lines and so care should be taken in inferring the magnetic structure from observed emission.When the coronal pressure becomes too great, the equilibrium ceases to exist and the material cools to form a quiescent prominence. The same process can be initiated at low heating rates when the width or shear of the arcade exceeds a critical value.We suggest that the prominence should be modelled as a dynamic structure with plasma always draining downwards. Material is continually sucked up along field lines of the ambient arcade and into the region lacking a hot equilibrium, where it cools to form new prominence material.  相似文献   

15.
We have developed a new numerical scheme for obtaining structures of rapidly rotating stars with strong magnetic fields. In our scheme, both poloidal and toroidal magnetic fields can be treated for stars with compressibility and infinite conductivity. By introducing the vector potential and its integral representation, we can treat the boundary condition for the magnetic fields across the surface properly. We show structures and distributions of magnetic fields as well as the distributions of the currents of rotating magnetic polytropic stars with polytropic index   N = 1.5  . The shapes of magnetic stars are oblate as long as the magnetic vector potential decreases as 1/ r when   r →∞  . For extremely strong magnetic fields, equilibrium configurations can be of toroidal shapes.  相似文献   

16.
The present model is proposed to study the effect of thickness of Harris sheet and strength of guide field on the evolution of magnetic islands and generation of turbulence in magnetic reconnection sites. The governing model equation has been derived using EMHD model in the presence of the equilibrium magnetic field, consisting of guide field and shear field in the Harris sheet. We have carried out a numerical simulation of the dynamical equation for magnetopause region parameters. Simulation results reveal that as the thickness of Harris sheet increases, the intensity of evolution of magnetic islands decreases, but with increasing strength of guide field, intensity gradually increases and at later times irregular structures are formed. These structures give the indication of turbulence in magnetic reconnection site. Further, we have calculated power spectrum, which follows power index \({\sim}\,{-}1.5\) in the inertial range.  相似文献   

17.
Murray Sciffer 《Solar physics》1996,166(1):173-193
The slow dynamical evolution of solar atmospheric magnetic field structures via the equilibrium equation has been the subject of a number of investigations. In many of these studies the quasi-static evolution of the field and the associated plasma has been investigated for a single arcade structure. In this paper we present results for multiple arcade structures. For multiple arcades we do not find bifurcations and the consequent multiple solutions as the field is evolved through a sequence of equilibrium states, in contrast to the findings for single arcade. Further we show that particular polarity arrangements within a pair of arcade structures lead to quite different topologies of the field as it is evolved. When new flux emerges from the photospheric boundary under a pre-existing magnetic arcade the results suggest that such a mechanism will initiate coronal mass ejection.  相似文献   

18.
The equilibrium structure of normal-polarity, quiescent prominences is investigated and the influence of magnetic shear in response to a slow, shearing, photospheric velocity discussed. The results show that the overall field structure predicted by Fiedler and Hood (1992) is largely unaffected but that magnetic shear reduces the plasma beta and lengthens and flattens the magnetic field when viewed from the side. The flatness of the field suggests that the initial condensation can form and, when the mass is sufficient, deform the field slightly into the equilibrium structure calculated here. Thus, it is postulated that the field must be highly sheared for the radiation (or condensation) time to be less than the free-fall time along the field. A simple estimate predicts that the field must lie close to the polarity inversion line with an angle in agreement with observations. Hence, it is apparent that normal polarity prominences will always be observed with a highly sheared field.It is shown that the line-of-sight field component depends on the imposed shear profile and the viewing angle and in certain cases it is possible for this field component to appear to increase with height. Any observed increase of the line-of-sight magnetic field with height may then be due to the angle of the prominence to the line of sight.  相似文献   

19.
We study the turbulent behaviour induced by the magnetic shear instability for a magnetized, incompressible fluid in a spherical shell. A differential rotation that is decreasing outwards but hydrodynamically stable according to the Rayleigh criterion is prescribed, and an external, uniform magnetic field is imposed parallel to the rotation axis. Our main concern in this paper is the fully global treatment of this magnetohydrodynamical system, so we focus particular attention on the influence of the boundary conditions. Non-linear, steady solutions are presented for stress-free as well as for rigid boundary conditions for one specific model with a fixed strength of the external magnetic field and a fixed differential rotation rate. We calculate the eddy viscosity νT and the viscosity alpha αSS resulting from the total stress tensor. These turbulence parameters turn out to differ drastically depending on the boundary conditions for the flow. An investigation of the radial structure of the viscosity alpha (whilst varying the differential rotation law) shows that the enhanced generation of turbulence takes place mainly in the boundary layers of the shell.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号