首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
NUMERICAL SIMULATION OF SEDIMENT RELEASE FROM RESERVOIRS   总被引:1,自引:0,他引:1  
1 INTRODUCTION Reservoirs sedimentation is a serious problem in many countries, including the I. R. of Iran. Accumulation of sediment deposits decreases worldwide reservoir storage capacity by one percent per year (Mahmood, 1987). The loss of reservoir st…  相似文献   

2.
《国际泥沙研究》2016,(2):139-148
Applications of sediment transport and water flow characteristics based sediment transport simulation models for a river system are presented in this study. An existing water–sediment model and a new sediment–water model are used to formulate the simulation models representing water and sediment movement in a river system. The sediment–water model parameters account for water flow characteristics embodying sediment transport properties of a section. The models are revised formulations of the multiple water inflows model describing water movement through a river system as given by the Muskingum principle. The models are applied to a river system in Mississippi River basin to estimate downstream sediment concentration, sediment discharge, and water discharge. River system and the river section parameters are estimated using a revised and the original multiple water inflows models by applying the genetic algorithm. The models estimate downstream sediment transport rates on the basis of upstream sediment/water flow rates to a system. Model performance is evaluated by using standard statistical criteria;downstream water discharge resulting from the original multiple water inflows model using the estimated river system parameters indicate that the revised models satisfactorily describe water movement through a river system. Results obtained in the study demonstrate the applicability of the sediment transport and water flow characteristics-based simulation models in predicting downstream sediment transport and water flow rates in a river system.  相似文献   

3.
4.
Physics‐based models have been increasingly developed in recent years and applied to simulate the braiding process and evolution of channel units in braided rivers. However, limited attention is given to lowland braided rivers where the transport of suspended sediment plays a dominant role. In the present study, a numerical model based on the basic physics laws of hydrodynamics and sediment transport is used to simulate the evolution process of a braided river dominated by suspended load transport. The model employs a fractional method to simulate the transport of graded sediments and uses a multiple‐bed‐layer approach to represent the sediment sorting process. An idealized braided river has been produced, with the hydrodynamic, sediment transport and morphological processes being analysed. In particular, the formation process of local pool–bar units in the predicted river has been investigated. A sensitivity analysis has also been undertaken to investigate the effects of grid resolution and an upstream perturbation on the model prediction. A variety of methods are applied to analyse the geometrical and topographical properties of the modelled river. Self‐organizing characteristics related to river geometry and topography are analysed by state‐space plots, which indicate a close relationship with the periodical erosion and deposition cycles of braiding. Cross‐sectional topography and slope frequency display similar geometries to natural rivers. Scaling characteristics are found by correlation analysis of bar parameters. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

5.
LINTRODUCTIONThesimulationofmorphodynamicsinestUariesandcoastalareasisbecauseofitSeconomicalmeritageononehandandofitSscientificcomplexityontheOtheranoutStalldingfieldofresearchanddeVelopment.TheFederalWaterwaysEngineeringandResearchinstitote(BAW)isthecentraladvisoryinstitutefortheGermanwaterwayauthority.ItisthereforereSPonsibletoprovidethescientificsuPPOrtforoptimalsedimentmanagemelltproceduresforWatCrwaymaill~ce.ThehydredynndcSystemanalysisisthemainaPProachtosupportengineeringd…  相似文献   

6.
A 2D depth-averaged model for hydrodynamic,sediment transport and river morphological adjustment is presented.The sediment transport submodel considers non-uniform sediment,bed surface armoring,impact of secondary flow on the direction of bed-load transport,and transverse slope of river bed.The bank erosion submodel incorporates a simple simulation method for updating bank geometry during either degradational or aggradational bed evolution.The model is applied to a 180°bend with a constant radius under unsteady flow conditions,and to Friedkin’s laboratory meander channels.The results are in acceptable agreement with measurements,confirming the two dimensional model’s potential in predicting the formation of river meandering and improving understanding of patterning processes.Future researches are needed to clarify some simplifications and limitations of the model.  相似文献   

7.
1 INTRODUCTIONUnderstanding the flow characters in open channel or other water area, whether natufal water bodies(such as rivers and estuaries) or man-made strUctures (such as navigational channels, harbors), isimportant for addressing numerous hydraulic engineering problems. These include the selechons ofsuitable waste disposal sites, contndnant transport, sediment transport and other ecological problems.The major difficulty for solving these problems is that it often requires an optimal…  相似文献   

8.
Water and sediment qualities are studied by analyzing samples taking from the mouths of the Haihe, Duliujian, New Ziya and Beipai rivers in the Haihe river basin in north China in 2005 and 2001, in order to find the changes of water and sediment pollutions. The concentrations of heavy metals, arsenic, total nitrogen (TN) and total phosphorus (TP) are analyzed and results have been compared for the two times. The in-situ measurement for Dissolved Oxygen (DO) and Sediment Oxygen Demand (SOD) rates were carried at the Haihe and Duliujian river mouths in 2006. The results show that the waters of the 4 river mouths are still seriously polluted, though much improved in the case of the Haihe and Duliujian rivers. The main pollutants are TP and TN in the New Ziya and Beipai rivers and mercury (Hg) at all 4 river mouths. Compared with those in 2001, the concentrations of almost all metals and arsenic in the 4 river mouths have decreased. Water quality at Haihe and Duliujian shows an improving trend, while the water quality at Beipai is similar to that of 2001. In contrast, water at the New Ziya river mouth is more severely polluted. The sediments in the 4 river mouths are not seriously polluted by heavy metals but are polluted by nitrogen and phosphorus. Most of the pollutant contents in the sediments show little change between 2001 and 2005. The in-situ DO and SOD measurement shows that the waters at the Haihe river mouth is in the state of oxygen depletion, and SOD is important consumer of DO at the river mouths. The overall analysis shows that increasing water pollution and eutrophication in waters far from cities are ongoing causes of concern.  相似文献   

9.
An environmental study of Algeciras Bay is carried out through numerical modelling. First, a 2D barotropic model is applied to calculate tides and mean circulation. Results of this model are used by a sediment transport model which provides suspended matter concentrations and sedimentation rates in the Bay. It includes three particle classes. An effective diffusion coefficient has been calibrated simulating temperature distribution inside the Bay. An additional validation is obtained from an independent nitrate dispersion simulation. Then heavy metal dispersion patterns are investigated using a model which includes water-sediment metal interactions and uses the outputs of the hydrodynamic and sediment transport models. The metal transport model has been applied to simulate the dispersion of Zn, Cu and Ni. Results from the hydrodynamic, sediment and metal transport models have been compared with measurements. Model results also indicate that transport inside the Bay is relatively weak. Numerical experiments have been carried out to determine flushing times for conservative and non-conservative pollutants. Flushing time is about 20 days for a conservative tracer, and this value is mainly due to the M(2) residual current. Tides are not effective in removing pollutants.  相似文献   

10.
Numerical modelling of morphodynamics—Vilaine Estuary   总被引:1,自引:0,他引:1  
The main objective of this paper is to develop a method to simulate long-term morphodynamics of estuaries dominated by fine sediments, which are subject to both tidal flow and meteorologically induced variations in freshwater run-off and wave conditions. The method is tested on the Vilaine Estuary located in South Brittany, France. The estuary is subject to a meso–macrotidal regime. The semi-diurnal tidal range varies from around 2.5 to 5 m at neap and spring, respectively. The freshwater input is controlled by a dam located approximately 8 km from the mouth of the estuary. Sediments are characterised as mostly fines, but more sandy areas are also found. The morphology of the estuary is highly influenced by the dam. It is very dynamic and changes in a complicated manner with the run-off from the dam, the tide and the wave forcing at the mouth of the estuary. Extensive hydrodynamic and sediment field data have been collected in the past and provide a solid scientific basis for studying the estuary. Based on a conceptual understanding of the morphodynamics, a numerical morphological model with coupled hydrodynamic, surface wave and sediment transport models is formulated. The numerical models are calibrated to reproduce sediment concentrations, tidal flat altimetry and overall sediment fluxes. Scaling factors are applied to a reference year to form quasi-realistic hydrodynamic forcing and river run-off, which allow for the simulations to be extended to other years. The simulation results are compared with observed bathymetric changes in the estuary during the period 1998–2005. The models and scaling factors are applied to predict the morphological development over a time scale of up to 10 years. The influence of the initial conditions and the sequence of external hydrodynamic forcing, with respect to the morphodynamic response of the estuary, are discussed.  相似文献   

11.
The saltation regime is very important for understanding the sediment transport mechanism. However,there is no consensus on a model for the saltation regime. This study answers several questions raised with respect to the Eulerian-Lagrangian modeling of sediment transport. The first question is why the previous saltation models that use different combinations of hydrodynamic forces yielded acceptable results? The second question is which shear lift model(i.e. a shear lift expression and its coefficient) is more appropriate? Another important question is which hydrodynamic forces have greater contributions to the saltation characteristics of a sediment particle? The last question is what are the contributions of the turbulence fluctuations as well as effects of using two-and three-dimensional(2 D and 3 D) models on the simulation results? In order to fairly answer these questions, a systematic study was done by considering different scenarios. The current study is the first attempt to clearly discuss these issues. A comprehensive 3 D saltation model for non-cohesive sediment was developed that includes all the hydrodynamic forces acting on the particle. The random nature of sediment transport was included using turbulent flow and bed-particle collision models. The eddy interaction model was applied to generate a3 D turbulent flow field. Bed-particle collisions were considered using the concept of a contact zone and a corresponding contact point. The validation of the model was done using the available experimental data for a wide range of sediment size(0.03 to 4.8 cm). For the first question, the results indicated that some of the hydrodynamic effects show opposing trends and some have negligible effects. With these opposing effects it is possible to adjust the coefficients of different models to achieve acceptable agreement with the same experimental data while omitting some aspects of the physics of the process. A suitable model for the shear lift force was developed by linking the lift coefficient to the drag coefficient and the contributions of the hydrodynamic forces and turbulence fluctuations as well as the consequences of using of 2 D and 3 D models were studied. The results indicate that the shear lift force and turbulent flow fluctuations are important factors for the saltation of both sand and gravel, and they cannot be ignored.  相似文献   

12.
Natural tidal channels often need deepening for navigation purposes (larger vessels). The depth increase may lead to tidal amplification, salt intrusion over longer distances, and increasing sand and mud import. Increasing fine sediment import, in turn, may start a process in which the sediment concentration progressively increases until the river becomes hyper-turbid, which may lead to increased dredging volumes and to decreased ecological values. These effects can be modeled and studied using detailed 3D models. Reliable simplified models for a first quick engineering evaluation are however lacking. In this paper, we apply both simplified and detailed 3D models to analyze the effects of channel deepening in prismatic and weakly converging tidal channels with saturated mud flow. The objective is to gain quantitative understanding of the effects of channel deepening on mud transport. We developed a simplified tidal mud model describing most relevant processes and effects in saturated mud flows with only minor horizontal transport gradients (quasi uniform conditions). The simplified model is not valid for non-saturated mud flow conditions. This model can either be used in standalone mode or in post-processing mode with computed near-bed velocities from a 3D hydrodynamic model as an input. The standalone model has been compared to various field data sets. Mud transport processes in the mouth region of muddy tidal channels can be realistically represented by the simplified model, if sufficient salinity and sediment data are available for calibration. The simulation of tidal mud transport and the behavior of an estuarine turbidity maximum (ETM) in saturated and non-saturated mud flow conditions cannot be represented by the simplified model and requires the application of a detailed 3D model.  相似文献   

13.
This paper describes delta development processes with particular reference to Cimanuk Delta in Indonesia. Cimanuk river delta, the most rapidly growing river delta in Indonesia, is located on the northern coast of Java Island. The delta is subject to ocean waves of less than 1 m height due to its position in the semi‐enclosed Java Sea in the Indonesian archipelago. The study has been carried out using a hydrodynamic model that accounts for sediment movement through the rivers and estuaries. As an advanced approach to management of river deltas, a numerical model, namely MIKE‐21, is used as a tool in the management of Cimanuk river delta. From calibration and verification of hydrodynamic model, it was found that the best value of bed roughness was 0·1 m. For the sediment‐transport model, the calibration parameters were adjusted to obtain the most satisfactory results of suspended sediment concentration and volume of deposition. By comparing the computed and observed data in the calibration, the best values of critical bed shear stress for deposition, critical bed shear stress for erosion and erosion coefficient were 0·05 N m?2, 0·15 N m?2, and 0·00001 kg m?2 s?1, respectively. The calibrated model was then used to analyse sensitivity of model parameters and to simulate delta development during the periods 1945–1963 and 1981–1997. It was found that the sensitive model parameters were bed shear stresses for deposition and erosion, while the important model inputs were river suspended sediment concentration, sediment characteristics and hydrodynamic. The model result showed reasonable agreement with the observed data. As evidenced by field data, the mathematical model proves that the Cimanuk river delta is a river‐dominated delta because of its protrusion pattern and very high sediment loads from the Cimanuk river. It was concluded that 86% of sediment load from the Cimanuk river was deposited in the Cimanuk delta. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

14.
One-dimensional numerical models are popularly used in sediment transport research because they can be easily programmed and cost less time compared with two- and three-dimensional numerical models. In particular, they possess greater capacity to be applied in large river basins with many tributaries. This paper presents a one-dimensional numerical model capable of calculating total-load sediment transport. The cross-section-averaged sediment transport capacity and recovery coefficient are addressed in the suspended load model. This one-dimensional model, therefore, can be applied to fine suspended loads and to hyperconcentrated flows in the Yellow River. Moreover, a new discretization scheme for the equation of unsteady non-uniform suspended sediment transport is proposed. The model is calibrated using data measured from the Yantan Reservoir on the Hongshui River and the Sanmenxia Reservoir on the Yellow River. A comparison of the calculated water level and river bed deformation with field measurements Shows that the improved numerical model is capable of predicting flow, sediment transport, bed changes, and bed-material sorting in various situations, with reasonable accuracy and reliability.  相似文献   

15.
Mountain ranges are frequently subjected to mass wasting events triggered by storms or earthquakes and supply large volumes of sediment into river networks. Besides altering river dynamics, large sediment deliveries to alluvial fans are known to cause hydro‐sedimentary hazards such as flooding and river avulsion. Here we explore how the sediment supply history affects hydro‐sedimentary river and fan hazards, and how well can it be predicted given the uncertainties on boundary conditions. We use the 2D morphodynamic model Eros with a new 2D hydrodynamic model driven by a sequence of flood, a sediment entrainment/transport/deposition model and a bank erosion law. We first evaluate the model against a natural case: the 1999 Mount Adams rock avalanche and subsequent avulsion on the Poerua river fan (West Coast, New Zealand). By adjusting for the unknown sediment supply history, Eros predicts the evolution of the alluvial riverbed during the first post‐landslide stages within 30 cm. The model is subsequently used to infer how the sediment supply volume and rate control the fan aggradation patterns and associated hazards. Our results show that the total injected volume controls the overall levels of aggradation, but supply rates have a major control on the location of preferential deposition, avulsion and increased flooding risk. Fan re‐incision following exhaustion of the landslide‐derived sediment supply leads to sediment transfer and deposition downstream and poses similar, but delayed, hydro‐sedimentary hazards. Our results demonstrate that 2D morphodynamics models are able to capture the full range of hazards occurring in alluvial fans including river avulsion aggradation and floods. However, only ensemble simulations accounting for uncertainties in boundary conditions (e.g., discharge history, initial topography, grain size) as well as model realization (e.g., non‐linearities in hydro‐sedimentary processes) can be used to produce probabilistic hazards maps relevant for decision making. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

16.
A large number of rivers are frozen annually, and the river ice cover has an influence on the geomorphological processes. These processes in cohesive sediment rivers are not fully understood. Therefore, this paper demonstrates the impact of river ice cover on sediment transport, i.e. turbidity, suspended sediment loads and erosion potential, compared with a river with ice‐free flow conditions. The present sediment transportation conditions during the annual cycle are analysed, and the implications of climate change on wintertime geomorphological processes are estimated. A one‐dimensional hydrodynamic model has been applied to the Kokemäenjoki River in Southwest Finland. The shear stress forces directed to the river bed are simulated with present and projected hydroclimatic conditions. The results of shear stress simulations indicate that a thermally formed smooth ice cover diminishes river bed erosion, compared with an ice‐free river with similar discharges. Based on long‐term field data, the river ice cover reduces turbidity statistically significantly. Furthermore, suspended sediment concentrations measured in ice‐free and ice‐covered river water reveal a diminishing effect of ice cover on riverine sediment load. The hydrodynamic simulations suggest that the influence of rippled ice cover on shear stress is varying. Climate change is projected to increase the winter discharges by 27–77% on average by 2070–2099. Thus, the increasing winter discharges and possible diminishing ice cover periods both increase the erosion potential of the river bed. Hence, the wintertime sediment load of the river is expected to become larger in the future. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

17.
Processes of soil erosion and sediment transport are strongly influenced by land use changes so the modelling of land use changes is important with respect to the simulation of soil degradation and its on‐site and off‐site consequences. The reliability of simulation results from erosion models is circumscribed by considerable spatial variation in many parameters. However, most of the currently widely used erosion models at the mesoscale are semidistributed, which leads to difficulties in incorporating a high degree of spatial information, especially land use information, so that the effects of land use changes on soil erosion have hitherto not been investigated in detail using these models. In this article, a grid‐based distributed erosion and sediment transport model is introduced, which simulates the spatial pattern of erosion and deposition rates and sediment transport processes in river channels. In this model, land use affects soil erosion through altering soil loss and influencing sediment delivery. Simulated soil erosion for events recorded in 1989 and 1996 in the Lushi basin in China was analyzed by comparing it with historical land use maps. The results indicated that even relatively minor land use changes had a significant effect on regional soil erosion rates and sediment transport to rivers. The average erosion rate increased from 1989 to 1996, after the transformation of forest to farmland. The results of the study suggest that the proposed soil erosion model can be applied in similar river basins. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

18.
This paper presents an analytical solution for calculating the initiation of sediment motion and the risk of river bed movement. It thus deals with a fundamental problem in sediment transport, for which no complete analytical solution has yet been found. The analytical solution presented here is based on forces acting on a single grain in state of initiation of sediment motion. The previous procedures for calculating the initiation of sediment motion are complemented by an innovative combination of optical surface measurement technology for determining geometrical parameters and their statistical derivation as well as a novel approach for determining the turbulence effects of velocity fluctuations. This two aspects and the comparison of the solution functions presented here with the well known data and functions of different authors mainly differ the presented solution model for calculating the initiation of sediment motion from previous approaches. The defined values of required geometrical parameters are based on hydraulically laboratory tests with spheres. With this limitations the derivated solution functions permit the calculation of the effective critical transport parameters of a single grain, the calculation of averaged critical parameters for describing the state of initiation of sediment motion on the river bed, the calculation of the probability density of the effective critical velocity as well as the calculation of the risk of river bed movement. The main advantage of the presented model is the closed analytical solution from the equilibrium of forces on a single grain to the solution functions describing the initiation of sediment motion.  相似文献   

19.
A computational modeling analysis of the flow and sediment transport, and deposition in meandering-river models was performed. The Reynolds stress transport model of the FLUENTTM code was used for evaluating the river flow characteristics, including the mean velocity field and the Reynolds stress components. The simulation results were compared with the available experimental data of the river model and discussed. The Lagrangian tracking of individual particles was performed, and the transport and deposition of particles of various sizes in the meandering river were analyzed. Particular attention was given to the sedimentation patterns of different size particles in the river-bend model. The flow patterns in a physical river were also studied. A Froude number based scale ratio of 1:100 was used, and the flow patterns in the physical and river models are compared. The result shows that the mean-flow quantities exhibit dynamic similarity, but the turbulence parameters of the physical river are different from the model. More strikingly, the particle sedimentation features in the physical and river models do not obey the expected similarity scaling.  相似文献   

20.
Aggregation processes of fine sediments have rarely been integrated in numerical simulations of cohesive sediment transport in riverine systems. These processes, however, can significantly alter the hydrodynamic characteristics of suspended particulate matter (SPM), modifying the particle settling velocity, which is one of the most important parameters in modelling suspended sediment dynamics. The present paper presents data from field measurements and an approach to integrate particle aggregation in a hydrodynamic sediment transport model. The aggregation term used represents the interaction of multiple sediment classes (fractions) with corresponding multiple deposition behaviour. The k–ε–turbulence model was used to calculate the coefficient of vertical turbulent mixing needed for the two‐dimensional vertical‐plane simulations. The model has been applied to transport and deposition of tracer particles and natural SPM in a lake‐outlet lowland river (Spree River, Germany). The results of simulations were evaluated by comparison with field data obtained for two levels of river discharge. Experimental data for both discharge levels showed that under the prevailing uniform hydraulic conditions along the river reach, the settling velocity distribution did not change significantly downstream, whereas the amount of SPM declined. It was also shown that higher flow velocities (higher fluid shear) resulted in higher proportions of fast settling SPM fractions. We conclude that in accordance with the respective prevailing turbulence structures, typical aggregation mechanisms occur that continuously generate similar distribution patterns, including particles that settle toward the river bed and thus mainly contribute to the observed decline in the total SPM concentration. In order to determine time‐scales of aggregation and related mass fluxes between the settling velocity fractions, results of model simulations were fitted to experimental data for total SPM concentration and of settling velocity frequency distributions. The comparison with simulations for the case of non‐interacting fractions clearly demonstrated the practical significance of particle interaction for a more realistic modelling of cohesive sediment and contaminant transport. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号