共查询到18条相似文献,搜索用时 78 毫秒
1.
开垦对内蒙古温带草地土壤不同有机碳组分的影响(英文) 总被引:1,自引:2,他引:1
Cultivation is one of the most important human activities affecting the grassland ecosystem besides grazing, but its impacts on soil total organic carbon (C), especially on the liable organic C fractions have not been fully understood yet. In this paper, the role of cropping in soil organic C pool of different fractions was investigated in a meadow steppe region in Inner Mongolia of China, and the relationships between different C fractions were also discussed. The results indicated that the concentrations of different C fractions at steppe and cultivated land all decreased progressively with soil depth. After the conversion from steppe to spring wheat field for 36 years, total organic carbon (TOC) concentration at the 0 to 100 cm soil depth has decreased by 12.3% to 28.2%, and TOC of the surface soil horizon, especially those of 0-30 cm decreased more significantly (p<0.01). The dissolved organic carbon (DOC) and microbial biomass carbon (MBC) at the depth of 0-40 cm were found to have decreased by 66.7% to 77.1% and 36.5% to 42.4%, respectively. In the S.baicalensis steppe, the ratios of soil DOC to TOC varied between 0.52% and 0.60%, and those in the spring wheat field were only in the range of 0.18%-0.20%. The microbial quotients (qMBs) in the spring wheat field, varying from 1.11% to 1.40%, were also lower than those in the S. baicalensis steppe, which were in the range of 1.50%-1.63%. The change of DOC was much more sensitive to cultivation disturbance. Soil TOC, DOC, and MBC were significantly positive correlated with each other in the S. baicalensis steppe, but in the spring wheat field, the correlativity between DOC and TOC and that between DOC and MBC did not reach the significance level of 0.05. 相似文献
2.
贵州猫跳河流域土地利用变化和土壤侵蚀(英文) 总被引:2,自引:2,他引:2
Due to the extremely poor soil cover, a low soil-forming rate, and inappropriate intensive land use, soil erosion is a serious problem in Guizhou Province, which is located in the centre of the karst areas of Southwest China. In order to bring soil erosion under control and restore environment, the Chinese Government has initiated a serious of ecological rehabilitation projects such as the Grain-for-Green Programme and Natural Forest Protection Program and brought about tremendous influences on land-use change and soil erosion in Guizhou Province. This paper explored the relationship between land use and soil erosion in the Maotiao River watershed, a typical agricultural area with severe soil erosion in central Guizhou Province. In this study, we analyzed the spatio-temporal dynamic change of land-use type in Maotiao River watershed from 1973 to 2007 using Landsat MSS image in 1973, Landsat TM data in 1990 and 2007. Soil erosion change characteristics from 1973 to 2007, and soil loss among different land-use types were examined by integrating the Revised Universal Soil Loss Equation (RUSLE) with a GIS environment. The results indicate that changes in land use within the watershed have significantly affected soil erosion. From 1973 to 1990, dry farmland and rocky desertified land significantly increased. In contrast, shrubby land, other forestland and grassland significantly decreased, which caused accelerated soil erosion in the study area. This trend was reversed from 1990 to 2007 with an increased area of land-use types for ecological use owing to the implementation of environmental protection programs. Soil erosion also significantly varied among land-use types. Erosion was most serious in dry farmland and the lightest in paddy field. Dry farmland with a gradient of 6°-25° was the major contributor to soil erosion, and conservation practices should be taken in these areas. The results of this study provide useful information for decision makers and planners to take sustainable land use management and soil conservation measures in the area. 相似文献
3.
中国亚热带地区造林对土壤碳周转的影响 总被引:4,自引:1,他引:4
Afforestation in China’s subtropics plays an important role in sequestering CO2 from the atmosphere and in storage of soil carbon (C). Compared with natural forests,plantation forests have lower soil organic carbon (SOC) content and great potential to store more C. To better evaluate the effects of afforestation on soil C turnover,we investigated SOC and its stable C isotope (δ13C) composition in three planted forests at Qianyanzhou Ecological Experimental Station in southern China. Litter and soil samples were collected and analyzed for total organic C,δ13C and total nitrogen. Similarly to the vertical distribution of SOC in natural forests,SOC concentrations decrease exponentially with depth. The land cover type (grassland) before plantation had a significant influence on the vertical distribution of SOC. The SOC ?13C composition of the upper soil layer of two plantation forests has been mainly affected by the grass biomass 13C composition. Soil profiles with a change in photosynthetic pathway had a more complex 13C isotope composition distribution. During the 20 years after plantation establishment,the soil organic matter sources influenced both the δ13C distribution with depth,and C replacement. The upper soil layer SOC turnover in masson pine (a mean 34% of replacement in the 10 cm after 20 years) was more than twice as fast as that of slash pine (16% of replacement) under subtropical conditions. The results demonstrate that masson pine and slash pine plantations cannot rapidly sequester SOC into long-term storage pools in subtropical China. 相似文献
4.
Land use and cover change(LUCC) is an important indicator of the human-earth system under climate/environmental change,which also serves as a key impact factor of carbon balance,and a major source/sink of soil carbon cycles.The Heihe River Basin(HRB) is known as a typical ecologically fragile area in the arid/semi-arid regions of northwestern China,which makes it more sensitive to the LUCC.However,its sensitivity varies in a broad range of controlling factors,such as soil layers,LUCCs and calculation methods(e.g.the fixed depth method,FD,and the equivalent mass method,ESM).In this study,we performed a meta-analysis to assess the response of soil organic carbon(SOC) and total nitrogen(TN) storage to the LUCC as well as method bias based on 383 sets of SOC data and 148 sets of TN data from the HRB.We first evaluated the calculation methods and found that based on the FD method,the LUCC caused SOC and TN storage to decrease by 17.39% and 14.27%,respectively;while the losses estimated using the ESM method were 19.31% and 18.52%,respectively.The deviations between two methods were mainly due to the fact that the FD method ignores the heterogeneity of soil bulk density(BD),which may underestimate the results subsequently.We then analyzed the response of SOC and TN storage to various types of the LUCC.In particular,when woodland and grassland were converted into cultivated land or other land types,SOC and TN suffered from heavy losses,while other LUCCs had minor influences.Finally,we showed that increasing the depth of the soil layers would reduce the losses of SOC and TN storage.In summary,we identified a series of controlling factors(e.g.soil layer,the LUCC and calculation method) to evaluate the impact of the LUCC on SOC and TN storage in the HRB,which should be considered in future research. 相似文献
5.
Surface albedo is a primary causative variable associated with the process of surface energy exchange. Numerous studies have examined diurnal variation of surface albedo at a regional scale; however, few studies have analyzed the intra-annual variations of surface albedo in concurrence with different land cover types. In this study, we amalgamated surface albedo product data(MCD43) from 2001 to 2008, land-use data(in 2000 and 2008) and land cover data(in 2000); quantitative analyses of surface albedo variation pertaining to diverse land cover types and the effect of the presence/absence of ground snow were undertaken. Results indicate that intra-annual surface albedo values exhibit flat Gaussian or triangular distributions depending upon land cover types. During snow-free periods, satellite observed surface albedo associated with the non-growing season was lower than that associated with the growing season. Satellite observed surface albedo during the presence of ground snow period was 2–4 times higher than that observed during snow-free periods. Surface albedo reference values in typical land cover types have been calculated; notably, grassland, cropland and built-up land were associated with higher surface albedo reference values than barren while ground snow was present. Irrespective of land cover types, the lowest surface albedo reference values were associated with forested areas. Proposed reference values may prove extremely useful in diverse research areas, including ecological modeling, land surface process modeling and radiation energy balance applications. 相似文献
6.
草地生态系统群落生物量的分配模式对于研究生态系统碳储量和碳循环有着重要的意义。为了解内蒙古荒漠草地群落生物量垂直分配格局,从不同土地利用方式着手探讨群落生物量不同成层性分配规律并估算荒漠草地生物量碳密度。结果表明:(1)人工灌溉草地灌木层生物量明显高于放牧和原生草地,草本层生物量表现出灌溉草地>原生草地>放牧草地,而凋落物层表现出灌溉草地<放牧草地<原生草地,地上生物量集中在草本层(60%以上),地下0~10 cm生物量大于其他层生物量(P<0.05)。(2)灌木层生物量、草本层生物量、凋落物层间存在极显著的相关关系(P<0.0001);地下各层生物量之间存在极显著相关关系(P<0.0001);且灌溉草地与原生草地群落地上层生物量与地下层生物量之间存在显著相关关系(P<0.05),故可以建立生物量成层性分配模型。(3)生物量碳密度原生草地<放牧草地<灌溉草地。 相似文献
7.
International trade is an important impact factor to the carbon emissions of a country.As the rapid development of Chinese foreign trade since its entry into the WTO in 2002,the effects of international trade on carbon emissions of China are more and more significant.Using the recent available input-output tables of China and energy consumption data,this study estimated the effects of Chinese foreign trade on carbon emissions and the changes of the effects by analyzing the emissions embodied in trade between 2002 and 2007.The re-sults showed a more and more significant exporting behavior of embodied carbon emissions in Chinese international trade.From 2002 to 2007,the proportion of net exported emissions and domestic exported emissions in domestic emissions increased from 18.32% to 29.79% and from 23.97% to 34.76%,respectively.In addition,about 22.10% and 32.29% of the total imported emissions were generated in processing trade in 2002 and 2007,respectively,which were imported and later exported emissions.Although,most of the sectors showed a growth trend in imported and exported emissions,sectors of electrical machinery and communication electronic equipment,chemical industry,and textile were still the biggest emission exporters,the net exported emissions of which were also the largest.For China and other developing countries,technology improvement may be the most favorable and acceptable ways to re-duce carbon emissions at present stage.In the future negotiations on emissions reduction,it would be more fair and reasonable to include the carbon emissions embodied in international trade when accounting the total emissions of an economy. 相似文献
8.
探究草地生态系统碳储量及其驱动因素对实现双碳目标具有重要意义,藏北高原作为我国重要的草地生态系统,其碳储量现状,空间格局以及驱动因素仍存在很大的争议。本文基于藏北高原150个实测样点数据,通过克里金插值和统计方法,评估分析了藏北高原草地生态系统的地上生物量碳密度、地下30 cm深度根系碳密度和土壤碳密度及其空间分布,以及各碳库的主要影响因素。结果表明:藏北高原地上生物量碳密度平均为0.038 kg C m-2,地下生物量碳密度平均为0.284 kg C m-2,土壤碳密度值最大,平均为7.445 kg C m-2。藏北高原草地生态系统总碳储量约为4.08 Pg C,其中植被碳库0.58 Pg C(包括地上生物量和地下生物量),土壤碳库2.58 Pg C (其余分布在裸地中),碳储量分布格局呈现出从东南向西北递减趋势。植被碳库0.58 Pg C(包括地上生物量和地下生物量),约占青藏高原植被碳库的28.29%;土壤碳库2.58 Pg C,约占青藏高原土壤碳库的26.60%。降水、温度和土壤质地均影响生态系统碳储量,其中降水... 相似文献
9.
中国不同区域能源消费碳足迹的时空变化(英文) 总被引:2,自引:2,他引:2
Study on regional carbon emission is one of the hot topics under the background of global climate change and low-carbon economic development, and also help to establish different low-carbon strategies for different regions. On the basis of energy consumption and land use data of different regions in China from 1999 to 2008, this paper established carbon emission and carbon footprint models based on total energy consumption, and calculated the amount of carbon emissions and carbon footprint in different regions of China from 1999 to 2008. The author also analyzed carbon emission density and per unit area carbon footprint for each region. Finally, advices for decreasing carbon footprint were put forward. The main conclusions are as follows: (1) Carbon emissions from total energy consumption increased 129% from 1999 to 2008 in China, but its spatial distribution pattern among different regions just slightly changed, the sorting of carbon emission amount was: Eastern China > Northern China > Central and Southern China > Southwest China > Northwest China. (2) The sorting of carbon emission density was: Eastern China > Northeast China > Central and Southern China > Northern China > Southwest China > Northwest China from 1999 to 2003, but from 2004 Central and Southern China began to have higher carbon emission density than Northeast China, the order of other regions did not change. (3) Carbon footprint increased significantly since the rapid increasing of carbon emissions and less increasing area of pro-ductive land in different regions of China from 1999 to 2008. Northern China had the largest carbon footprint, and Northwest China, Eastern China, Northern China, Central and Southern China followed in turn, while Southwest China presented the lowest area of carbon footprint and the highest percentage of carbon absorption. (4) Mainly influenced by regional land area, Northern China presented the highest per unit area carbon footprint and followed by Eastern China, and Northeast China; Central and Southern China, and Northwest China had a similar medium per unit area carbon footprint; Southwest China always had the lowest per unit area carbon footprint. (5) China faced great ecological pressure brought by carbon emission. Some measures should be taken both from reducing carbon emission and increasing carbon absorption. 相似文献
10.
The agricultural reclamations in the Xiliao River Valley since the Holocene have led to a huge landscape change from grassland to farmland. In this paper we reconsider the man-land relationship in the Xiliao River Valley by analyzing three major agricultural reclamations in prehistory, the Liao-Jin Dynasty and the period since the Qing Dynasty. We argue that when the demographic pressure appears in this area, especially during the last reclamation, the intraregional migration (second migration) is the major response to relieve such pressure, which also distinguishes two different settlement locations: "the initial area" and "the secondary area". Due to the environmental differences between these two areas, the cultivation on the latter one has caused more serious disturbance to the local environment. Thus the secondary area has become the key region which needs environmental management seri-ously. 相似文献
11.
放牧对内蒙古羊草群落土壤呼吸的影响 总被引:11,自引:0,他引:11
采用静态暗箱法,比较测定了放牧对内蒙古锡林河流域羊草群落土壤呼吸的影响以及水热等相关环境因子与土壤呼吸的关系。结果表明:放牧没有改变羊草群落土壤呼吸的季节性变化特征,但降低了土壤呼吸速率的年幅度;生长季放牧样地土壤呼吸速率显著低于封育样地,非生长季两样地土壤呼吸强度均处于较低水平,而且出现负通量的现象,放牧使羊草群落土壤呼吸年总量下降了约33.95%;从全年来看,无论是围栏还是放牧样地,封育样地和放牧样地土壤呼吸与温度因子均显著正相关(p<0.01,n=15),其中与10cm处地温相关性最好,但放牧降低了土壤呼吸对温度变化的敏感性;生长季水分影响作用高于温度,围栏封育样地0~10cm土壤含水量的变化可以解释土壤呼吸变异的87.4%,放牧样地10~20cm和20~30cm土壤含水量的变化共同可以解释土壤呼吸变异的74.9%。 相似文献
12.
内蒙古典型草原区土壤硬度与土壤水分的空间变化分析——以锡林浩特为例 总被引:2,自引:0,他引:2
近些年来,内蒙古草原及其变化已经受到有关方面的关注,通过研究调查内蒙古草原区的几个典型植被类型,共49个样地的土壤硬度与土壤水分。土壤硬度测量深度为0~20 cm,土壤水分测量深度为0~40 cm(10 cm取一个土样),并分析了两者的空间分布规律。分析结果显示,典型草原三种植被类型的土壤硬度随其深度增加而增加,而就全部样地来说,土壤水分随其土壤深度增加没有明显的变化。土壤硬度与土壤水分的相关性不强。通过49个样地的四层硬度进行PCA分析,显示出四层硬度对测量点第一主成分的作用差不多,这样,可以求取四层硬度的平均值作为该测量点的硬度,利用Arcinfo软件形成硬度分布图,看出本研究区的土壤硬度大致可以分成3区域:北部硬度较大,中部其次,南部沙地硬度较小。 相似文献
13.
Soil organic carbon (SOC) stocks in terrestrial ecosystems vary considerably with land use types. Grassland, forest, and cropland coexist in the agro-pastoral ecotone of Inner Mongolia, China. Using SOC data compiled from literature and field investigations, this study compared SOC stocks and their vertical distributions among three types of ecosystems. The results indicate that grassland had the largest SOC stock, which was 1.5- and 1.8-folds more than stocks in forest and cropland, respectively. Relative to the stock in 0–100 cm depth, grassland held more than 40% of its SOC stock in the upper 20 cm soil layer; forest and cropland both held over 30% of their respective SOC stocks in the upper 20 cm soil layer. SOC stocks in grazed grasslands were remarkably promoted after ≥20 years of grazing exclusion. Conservational cultivation substantially increased the SOC stocks in cropland, especially in the 0–40 cm depth. Stand ages, tree species, and forest types did not have obvious impacts on forest SOC stocks in the study area likely due to the younger stand ages. Our study implies that soil carbon loss should be taken into account during the implementation of ecological projects, such as reclamation and afforestation, in the arid and semi-arid regions of China. 相似文献
14.
Modeling the effects of land-use optimization on the soil organic carbon sequestration potential 总被引:1,自引:2,他引:1
Increasing soil organic carbon (SOC) sequestration is not only an efficient method to address climate change problems but also a useful way to improve land productivity. It has been reported by many studies that land-use changes can significantly influence the sequestration of SOC. However, the SOC sequestration potential (SOCP, the difference between the saturation and the existing content of SOC) caused by land-use change, and the effects of land-use optimization on the SOCP are still not well understood. In this research, we modeled the effects of land-use optimization on SOCP in Beijing. We simulated three land-use optimization scenarios (uncontrolled scenario, scale control scenario, and spatial restriction scenario) and assessed their effects on SOCP. The total SOCP (0–20 cm) in Beijing in 2010 was estimated as 23.82 Tg C or 18.27 t C/ha. In the uncontrolled scenario, the built-up land area of Beijing would increase by 951 km2 from 2010 to 2030, and the SOCP would decrease by 1.73 Tg C. In the scale control scenario, the built-up land area would decrease by 25 km2 and the SOCP would increase by 0.07 Tg C from 2010 to 2030. Compared to the uncontrolled scenario, the SOCP in 2030 of Beijing would increase by 0.77 Tg C or 0.64 t C/ha in the spatial restriction scenario. This research provides evidence to guide planning authorities in conducting land-use optimization strategies and estimating their effects on the carbon sequestration function of land-use systems. 相似文献
15.
以黑河下游荒漠河岸林区3种典型植物(苦豆子(Sophora alopecuroides)、胡杨(Populus euphratica)、柽柳(Tamarix ramosissima))群落下的土壤为研究对象,分析了0~280 cm土层土壤碳氮含量特征,运用Pearson相关分析、通径分析方法揭示了土壤碳氮含量与其他理化性质的关系。结果表明:(1)苦豆子、胡杨、柽柳群落下的土壤平均碳含量分别为16.35、20.23、17.23 mg·g-1,平均氮含量分别为0.47、0.69、0.61 mg·g-1,植被类型导致的土壤碳氮含量的差异主要表现在0~10 cm表层。(2)荒漠河岸林区0~160 cm土壤碳储量柽柳(444.64 t·hm-2)>胡杨(398.60 t·hm-2)>苦豆子(368.95 t·hm-2),土壤氮储量柽柳(12.46 t·hm-2)>胡杨(11.88 t·hm-2)>苦豆子(10.60 t·hm-2 相似文献
16.
In this study, seasonal variation characteristics of surface soil microbial biomass carbon (MBC) and soil microbial biomass nitrogen (MBN) of an artificial vegetation area located in Shapotou for different time periods were studied using the chloroform fumigation method, and the results were compared with those of near-natural vegetation areas and mobile dunes. Results showed that the MBC and MBN levels in the 0-5 cm soil layer were higher in autumn than in summer and spring. As the prolongation of vegetation restoration raised the MBC and MBN levels in summer and autumn, no clear variation was found in spring. However, the MBC and MBN in 5-20 cm had no obvious seasonal variation. During summer and autumn, the variation trend of MBC and MBN in the vertical direction was shown to be 0-5 〉 5-10 〉 10-20 cm in the vegetation area, while for mobile dunes, the MBC and MBN levels increased as the depth increased. The natural vegetation area was shown to possess the highest MBC and MBN levels, and yet mobile dunes have the lowest MBC and MBN levels. MBC and MBN levels in artificial sand-binding vegetation increased with the prolongation of vegetation restoration, indicating that the succession of sand-binding vegetation will result in the ac- cumulation of soil carbon and nitrogen, as well as the restoration of soil fertility. 相似文献
17.
Small-scale vegetation dynamics were followed for ecotones and in uniform stands inArtemisia-dominated steppe vegetation under grazing and when recovering from heavy grazing. Species composition was followed annually for 5 years in 1 m2and 0·25 m2plots for (1) presence–absence; (2) density; and (3) biomass.More rapid vegetation dynamics, in terms of change of type of vegetation and distance moved in DCA species space between sampling occasions, were observed in smaller plots and in early seral stages, where species were few and alpha diversity low. Only the plots recently protected from grazing showed a directional vegetation change; those protected for more than 3 years and those under continued grazing showed, at this scale, non-directional dynamics. 相似文献
18.
The impact of land use and cover change on soil organic carbon and total nitrogen storage in the Heihe River Basin: A meta-analysis 总被引:1,自引:1,他引:1
Journal of Geographical Sciences - Land use and cover change (LUCC) is an important indicator of the human-earth system under climate/environmental change, which also serves as a key impact factor... 相似文献