首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The problem of New Zealand‐Antarctic faunal relationships is discussed on the basis of echinoderm distribution. The limitations of the data upon which past zoogeographical speculations have been based are pointed out.

Macquarie Island (occupying an intermediate geographical position between the New Zealand Plateau and the Antarctic) shows definite relationships with New Zealand, and the submarine Macquarie Ridge may have provided a connecting migration route. However, only four species of echinoderms are shared between the Ross Sea‐Balleny Islands area (the New Zealand sector of the Antarctic Region) and the New Zealand Pliateau‐Macquarie Island area (the New Zealand Region). Although the as yet unsampled part of the Macquarie‐Balleny Ridge may reveal other faunal similarities, the present systematic sampling has made possible a sounder understanding of the zoogeographical affinities of the two regions.  相似文献   

2.
李凯  宋立军  东玉  李爱荣 《海洋学报》2019,41(3):96-105
塔斯曼海位于西南太平洋地区,处于印度-澳大利亚板块和西兰板块之间,大地构造背景复杂。该地区是全球油气资源勘探的重点海域之一,但是国内对该地区的研究相当匮乏。本文根据塔斯曼海海域的自由空气重力异常对塔斯曼海海域的构造单元进行了划分,前人关于塔斯曼海的研究主要集中在Resolution海岭北部,我们认为塔斯曼海的范围应包括Resolution海岭以南,麦夸里海岭以西,塔斯曼断裂带以东的区域(即南部次盆)。结果显示,塔斯曼海域及邻区包括3个一级构造单元:东澳大利亚陆缘、西兰板块和塔斯曼海盆,且塔斯曼海盆可进一步划分为西部次盆、东部次盆和南部次盆。本文基于塔斯曼海域90 Ma以来的洋壳年龄数据编制了构造演化图,将塔斯曼海的形成演化过程分为4个阶段:(1)中生代陆内裂谷期(90~83 Ma BP);(2)塔斯曼海扩张阶段(83~61 Ma BP);(3)塔斯曼海北部扩张停止阶段(61~52 Ma BP);(4)塔斯曼海南部改造阶段(52 Ma BP至今)。  相似文献   

3.
Macquarie Island is composed of rocks petrologically similar to those formed at accreting ocean ridges. For this reason a geophysical study of the island and the surrounding ocean was undertaken to examine the possible presence of sea-floor spreading magnetic anomalies. The marine magnetic phase of the study allowed sea-floor spreading anomalies from the Australian plate to be fentatively correlated across Macquarie Island. Macquaric Island occurring about anomaly 7 time (27 m.y.b.p.). The palaeomagnetic phase of the study produced an apparent palaeomagnetic pole for the island consistent with the above. Modelling of the on-land magnetics indicates that the on-land magnetic data reflect dominantly the remanent magnetic properties of the rocks. Exact identification of the time-reversal sequence was not possible, however, because of distruption caused by major faulting on the island.  相似文献   

4.
Concentrations of minerals on the sea floor around New Zealand occur in a manner which makes them economically significant as future mineral resources.

Three major environments of interest are beaches, the continental shelf, and the adjacent deep‐sea floor. New Zealand's west coast beaches are well known as mineral resources containing large quantities of iron and titanium ores. Similar concentrations representing fossil beaches are also known from the continental shelf. The deep‐sea floor adjacent to the continental shelf is formed around New Zealand by the New Zealand Plateau, an extensive submarine platform in 500–1,500 m. Terrigenous sedimentation is negligible in this environment where, as a result, pure calcareous oozes are common. Vigorous bottom currents and suitable reducing micro‐environments encourage glauconite formation. In the past, possibly from warmer waters of the early and mid Tertiary, phosphates were precipitated from seawater to form phosphorite nodules, a potential resource of phosphates. During late Tertiary or Quaternary, volcanicity at the Antipodes Islands and on the Macquarie Ridge resulted in the formation of manganese deposits. Manganese minerals also occur in bulk on the floor of the Southwestern Pacific Basin away from the New Zealand Plateau.

The origin, bulk, and significance of these deposits are discussed.  相似文献   

5.
Wide-angle and multichannel seismic data collected on the Malpelo Ridge provide an image of the deep structure of the ridge and new insights on its emplacement and tectonic history. The crustal structure of the Malpelo Ridge shows a 14 km thick asymmetric crustal root with a smooth transition to the oceanic basin southeastward, whereas the transition is abrupt beneath its northwestern flank. Crustal thickening is mainly related to the thickening of the lower crust, which exhibits velocities from 6.5 to 7.4 km/s. The deep structure is consistent with emplacement at an active spreading axis under a hotspot like the present-day Galapagos Hotspot on the Cocos-Nazca Spreading Centre. Our results favour the hypothesis that the Malpelo Ridge was formerly a continuation of the Cocos Ridge, emplaced simultaneously with the Carnegie Ridge at the Cocos-Nazca Spreading Centre, from which it was separated and subsequently drifted southward relative to the Cocos Ridge due to differential motion along the dextral strike-slip Panama Fracture Zone. The steep faulted northern flank of the Malpelo Ridge and the counterpart steep and faulted southern flank of Regina Ridge are possibly related to a rifting phase that resulted in the Coiba Microplate’s separation from the Nazca Plate along the Sandra Rift.  相似文献   

6.
An analysis of the gravity field and geoid heights allowed us to distinguish a third buried basin filled with sediments located in the southwestern part of the sea in the regions adjacent to the Carlsberg Ridge. From the previously known basins, it is separated by saddles. The saddles correspond to a series of faults and are possibly related to the pulse character of the northwestward prograding of the spreading axes of the Carlsberg Ridge. The continental origin of the Laxmi ridge is confirmed. The results of an analysis of the gravity field and its transformants, together with the two-dimensional density modeling, agree with the possibility of the existence of a spreading type of the crust (I) in the region of the Laxmi Basin. An analysis of the geoid height anomalies allows us to suggest that, with respect to the upper layers of the lithosphere, the Laxmi Ridge is not connected with the Chagos-Laccadive Ridge.  相似文献   

7.
Poselov  V. A.  Verba  V. V.  Zholondz  S. M.  Butsenko  V. V. 《Oceanology》2019,59(5):732-746
Oceanology - Abstract—The main positive morphostructures of the Amerasia Basin — the Lomonosov Ridge, Alpha Ridge, Mendeleev Rise, Chukchi Plateau, and Northwind Ridge — are...  相似文献   

8.
The axes of the zones of the separation of the peripheral continental fragments of the Lomonosov Ridge (the Marvin Spur and the local block of the Alpha Ridge) from its main body in the part of the Makarov Basin near Greenland are restored. The Euler poles and the angles of rotation describing the separation process are determined. The depths of the conjugate isobaths are found to be different by hundreds of meters. This circumstance most likely reflects the fact of the different scale sliding of the peripheral areas of the continental crust from the main body of the Lomonosov Ridge down the lithospheric fault plane (and thereby the different scale dip during the separation) according to the modified B. Wernike model presented here. The primary bottom topography that existed before the separation of the sliding fragments from the ridge are restored based on the reconstruction. For the case of the part of the Lomonosov Ridge near Greenland, it is established that the initially peripheral sections from the part of the Lomonosov Ridge near Greenland towered over the main surface of the Lomonosov Ridge approximately by half a kilometer and higher.  相似文献   

9.
The Mendocino Fracture Zone, a 3,000-km-long transform fault, extends from the San Andreas Fault at Cape Mendocino, California due west into the central Pacific basin. The shallow crest of this fracture zone, known as the Mendocino Ridge, rises to within 1,100 m of the sea surface at 270 km west of the California Coast. Rounded basalt pebbles and cobbles, indicative of a beach environment, are the dominant lithology at two locations on the crest of Mendocino Ridge and a40Ar/39 Ar incremental heating age of 11.0 ± 1.0 million years was determined for one of the these cobbles. This basalt must have been erupted on the Gorda Ridge because the crust immediately to the south of the fracture zone is older than 27 Ma. This age also implies that the crest of Mendocino Ridge was at sea level and would have blocked Pacific Ocean eastern boundary currents and affected the climate of the North American continent at some time since the late Miocene. Basalts from the Mendocino Fracture Zone (MFZ) are FeTi basalts similar to those commonly found at intersections of mid-ocean ridges and fracture zones. These basalts are chemically distinct from the nearby Gorda Ridge but they could have been derived from the same mantle source as the Gorda Ridge basalts. The location of the 11 Ma basalt suggests that Mendocino Ridge was transferred from the Gorda Plate to the Pacific Plate and the southern end of Gorda Ridge was truncated by a northward jump in the transform fault of MFZ.  相似文献   

10.
In 1989–1990 the SeaMARC II side-looking sonar and swath bathymetric system imaged more than 80 000 km2 of the seafloor in the Norwegian-Greenland Sea and southern Arctic Ocean. One of our main goals was to investigate the morphotectonic evolution of the ultra-slow spreading Knipovich Ridge from its oblique (115° ) intersection with the Mohns Ridge in the south to its boundary with the Molloy Transform Fault in the north, and to determine whether or not the ancient Spitsbergen Shear Zone continued to play any involvement in the rise axis evolution and segmentation. Structural evidence for ongoing northward rift propagation of the Mohns Ridge into the ancient Spitsbergen Shear Zone (forming the Knipovich Ridge in the process) includes ancient deactivated and migrated transforms, subtle V-shaped-oriented flank faults which have their apex at the present day Molloy Transform, and rift related faults that extend north of the present Molloy Transform Fault. The Knipovich Ridge is segmented into distinct elongate basins; the bathymetric inverse of the very-slow spreading Reykjanes Ridge to the south. Three major fault directions are detected: the N-S oriented rift walls, the highly oblique en-echelon faults, which reside in the rift valley, and the structures, defining the orientation of many of the axial highs, which are oblique to both the rift walls and the faults in the axial rift valley. The segmentation of this slow spreading center is dominated by quasi stationary, focused magma centers creating (axial highs) located between long oblique rift basins. Present day segment discontinuities on the Knipovich Ridge are aligned along highly oblique, probably strike-slip faults, which could have been created in response to rotating shear couples within zones of transtension across the multiple faults of the Spitsbergen Shear Zone. Fault interaction between major strike slip shears may have lead to the formation of en-echelon pull apart basins. The curved stress trajectories create arcuate faults and subsiding elongate basins while focusing most of the volcanism through the boundary faults. As a result, the Knipovich Ridge is characterized by Underlapping magma centers, with long oblique rifts. This style of basin-dominated segmentation probably evolved in a simple shear detachment fault environment which led to the extreme morphotectonic and geophysical asymmetries across the rise axis. The influence of the Spitsbergen Shear Zone on the evolution of the Knipovich Ridge is the primary reason that the segment discontinuities are predominantly volcanic. Fault orientation data suggest that different extension directions along the Knipovich Ridge and Mohns Ridge (280° vs. 330°, respectively) cause the crust on the western side of the intersection of these two ridges to buckle and uplift via compression as is evidenced by the uplifted western wall province and the large 60 mGal free air gravity anomalies in this area. In addition, the structural data suggest that the northwards propagation of the spreading center is ongoing and that a `normal' pure shear spreading regime has not evolved along this ridge. This revised version was published online in November 2006 with corrections to the Cover Date.  相似文献   

11.
The Blake Outer Ridge is a 480–kilometer long linear sedimentary drift ridge striking perpendicular to the North American coastline. By modeling free-air gravity anomalies we tested for the presence of a crustal feature that may control the location and orientation of the Blake Outer Ridge. Most of our crustal density models that match observed gravity anomalies require an increase in oceanic crustal thickness of 1–3 km on the southwest side of the Blake Outer Ridge relative to the northeast side. Most of these models also require 1–4 km of crustal thinning in zone 20–30 km southwest of the crest of the Blake Outer Ridge. Although these features are consistent with the structure of oceanic fracture zones, the Blake Outer Ridge is not parallel to adjacent known fracture zones. Magnetic anomalies suggest that the ocean crust beneath this feature formed during a period of mid-ocean ridge reorganization, and that the Blake Outer Ridge may be built upon the bathymetric expression of an oblique extensional feature associated with ridge propagation. It is likely that the orientation of this trough acted as a catalyst for sediment deposition with the start of the Western Boundary Undercurrent in the mid-Oligocene.  相似文献   

12.
The continental margin of SW Africa is typical of a volcanic rifted margin associated with a hotspot trail characterized by a large volcanic ridge, the Walvis Ridge, defining the hotspot migration, and extensive extrusive volcanism that produced seaward-dipping reflectors (SDR). Previously unpublished seismic data show two significant anomalies of the SW African Margin when compared to other typical volcanic rifted margins: (1) Hyaloclastitic outer highs are rare, and (2) the SDR in the North dip towards the Walvis Ridge. We explain these anomalies by a major transform segment close to the centre of volcanism combined with pulsed volcanism. The Walvis Ridge represents an east-west striking extrusive centre which produced a SDR sequence. Following break-up the northern boundary of the Walvis Ridge became a left lateral transform fault. Our data support the idea that a transform fault system interacting with a ridge jump were responsible for the accretion of the São Paulo Plateau to the American plate.  相似文献   

13.
The northern parts of the Prathap and Laccadive Ridge system, eastern Arabian Sea, consist of three parallel basement ridge peaks at varied depths. The topographic highs are associated with either well-developed or subdued magnetic signatures. Model studies, constrained by seismic results, determine the varied nature and depth to the top of the causative basement bodies. Similarities of the geophysical signatures of the ridges and their structural resemblance perhaps point to their common origin. Hence we propose that the Prathap Ridge complex may be a part of the Chagos-Laccadive Ridge system and formed because of the Reunion hotspot activity.  相似文献   

14.
The Carlsberg Ridge lies between the equator and the Owen fracture zone. It is the most prominent mid-ocean ridge segment of the western Indian Ocean, which contains a number of earthquake epicenters. Satellite altimetry can be used to infer subsurface geological structures analogous to gravity anomaly maps generated through ship-borne survey. In this study, free-air gravity and its 3D image have been generated over the Carlsberg Ridge using a very high resolution data base, as obtained from Geosat GM, ERS-1, Seasat and TOPEX/POSEIDON altimeter data. As observed in this study, the Carlsberg Ridge shows a slow spreading characteristic with a deep and wide graben (average width ∼15 km). The transform fault spacing confirms variable slow to intermediate characteristics with first and second order discontinuities. The isostatically compensated region of the Carlsberg Ridge could be demarcated with near zero contour values in the free-air gravity anomaly images over and along the Carlsberg Ridge axes and over most of the fracture zone patterns. Few profiles have been generated across the Carlsberg Ridge and the characteristics of slow/intermediate spreading ridge of various orders of discontinuity could be identified. It has also been observed in zero contour image as well as in the characteristics of valley patterns along the ridge from NW to SE that different spreading rates, from slow to intermediate, are occurring in different parts of the Carlsberg ridge. It maintains the morphology of a slow spreading ridge in the NW, where the wide and deep axial valley (∼1.5–3 km) also implies the pattern of a slow spreading ridge. However, a change in the morphology/depth of the axial valley from NW to SE indicates the nature of the Carlsberg Ridge as a slow to intermediate spreading ridge. For the prevailing security restrictions, lat./lon. coordinates have been omitted in few images.  相似文献   

15.
The northern Alboran Ridge margin depicts fault-bounded, structural blocks tilted downward to the basins. Post-Messinian sequences fill depressions on these blocks with thick depositional wedges thinning basinward. A change in the stress field after the Early Pliocene produced structural inversions and generalized uplifting of the Alboran Ridge from the Late Pliocene to Recent time.  相似文献   

16.
《Marine Geology》2006,225(1-4):265-278
The first seismic reflection data from the shallowest part of the submarine Lomonosov Ridge north of Arctic Canada and North Greenland comprise two parallel single channel lines (62 and 25 km long, offset 580 m) acquired from a 10 day camp on drifting sea ice. The top of southern Lomonosov Ridge is bevelled (550 m water depth) and only thin sediments (< 50 ms) cover acoustic basement. We suggest erosion of a former sediment drape over the ridge crest was either by a grounded marine ice sheet extending north from Ellesmere Island and/or deep draft icebergs. More than 1 km of sediments are present at the western entrance to the deep passage between southern Lomonosov Ridge and the Lincoln Sea continental margin. Here, the uppermost part (+ 0.3 s thick) of the section reflects increased sediment input during the Plio–Pleistocene. The underlying 0.7 s thick succession onlaps the slope of a subsiding Lomonosov Ridge. An unconformity at the base of the sedimentary section caps a series of NW–SE grabens and mark the end of tectonic extension and block faulting of an acoustic basement represented by older margin sediments possibly followed by minor block movements in a compressional regime. The unconformity may relate to termination of Late Cretaceous deformation between Lomonosov Ridge and Alpha Ridge or be equivalent to the Hauterivian break-up unconformity associated with the opening of the Amerasia Basin. A flexure in the stratigraphic succession above the unconformity is most likely related to differential compaction, although intraplate earthquakes do occur in the area.  相似文献   

17.
Analysis of the multi-channel seismic reflection, magnetic and bathymetric data collected along a transect, 1110 km long parallel to 13° N latitude across the Bay of Bengal was made. The transect is from the continental shelf off Madras to the continental slope off Andaman Island in water depths of 525 m to 3350 m and across the Western Basin (bounded by foot of the continental slope of Madras and 85° E Ridge), the 85° E Ridge, the Central Basin (between the 85° E Ridge and the Ninetyeast Ridge), the Ninetyeast Ridge and the Sunda Arc. The study revealed eight seismic sequences, H1 to H8 of parallel continuous to discontinuous reflectors. Considering especially depth to the horizons, nature of reflection and on comparison with the published seismic reflection results of Currayet al. (1982), the early Eocene (P) and Miocene (M) unconformities and the base of the Quaternary sediments (Q) are identified on the seismic section. Marked changes in velocities also occur at their boundaries.In the Western Basin the acoustic basement deepening landward is inferred as a crystalline basement overlain by about 6.7 km of sediment. In the Central Basin possibly thicker sediments than in the Western Basin are estimated. The sediments in the Sunda Arc area are relatively thick and appears to have no distinct horizons. But the entire sedimentary section appears to be consisting of folded and possibly faulted layers.The comparatively broader wavelength magnetic anomalies of the Central Basin also indicate deeper depth of their origin. Very prominent double humped feature of the 85° E Ridge and broad basement swell of the Ninetyeast Ridge are buried under about 2.8 km thick sediments except over the prominent basement high near 92° E longitude. The positive structural relief of the buried 85° E Ridge in the area is reflected in magnetic signature of about 450 nT amplitude. Flexural bulge of the 85° E Ridge and subsidence of the Ninetyeast Ridge about 24 cm my–1 rate since early Eocene period have been inferred from the seismic sequence analysis.  相似文献   

18.
The junction between oceanic crust generated, within the Antarctic plate, at the Southeast Indian Ridge and the Southwest Indian Ridge has been studied using a SEABEAM swathe bathymetry mapping system and other geophysical techniques between the Indian Ocean Triple Junction (approximately 25°S, 70° E), and a point some 500 km to the southwest (at 28°25 S, 66°35 E). The morphotectonic boundary which marks this trace of the ridge-ridge-ridge triple junction is complex and varies with age. Recent theories proposing a cyclicity of volcanic and tectonic processes at this mode of triple junctions appear to be supported by a series of regularly spaced, en echelon escarpments facing the slowly spreading (0.6 to 0.8 cm a-1, half rate) Southwest Indian Ridge axis. The en echelon escarpments intersect at approximately right angles with the regularly spaced oceanic spreading fabric formed on the Antarctic plate at the Southeast Indian Ridge and together locally flank uplifted northward-pointing corner sections of ocean floor. The origins for the localised elevations are unclear, but may relate to intermittent and/or alternating rifting and volcanic episodes. Variations of degree of asymmetry and/or obliquity in spreading on the Central Indian Ridge and the Southwest Indian Ridge are suggested to explain detailed structural changes along the triple junction trace. It is suggested that discontinuities of the trace may be related to an intermittent development of new spreading centres beneath the most easterly part of the Southwest Indian Ridge, coupled with a more continuous process beneath the faster spreading Central Indian Ridge (2 to 2.5 cm a-1) and the Southeast Indian Ridge (2.5 to 3 cm a-1). A detailed history of triple junction evolution may be thus inferred from basic morphological and structural mapping along the three triple junction traces.  相似文献   

19.
Keeton  J. A.  Searle  R. C.  Peirce  C.  Parsons  B.  White  R. S.  Sinha  M. C.  Murton  B. J.  Parson  L. M. 《Marine Geophysical Researches》1997,19(1):55-64
We present a series of 1:200,000 scale maps of the bathymetry of the Reykjanes Ridge. The data are divided into four maps, extending 630 km along the ridge axis and between 30 and 100 km off-axis. This compilation of bathymetry data is extremely detailed, gridded at approximately 100 m resolution, and with almost no gaps. The Reykjanes Ridge is one of the best examples of a hotspot-dominated ridge, whose characteristics are influenced by its proximity to the Iceland plume. Many fundamental questions may be addressed at the Reykjanes Ridge, which is why the BRIDGE programme identified it as one of its four regional projects. These maps represent a BRIDGE contribution to the general scientific community.  相似文献   

20.
本文研究了亚丁-欧文-卡尔斯伯格脊(AOC)三联点邻近洋脊的玄武岩样品在主量、微量元素和Pb-Sr-Nd同位素特征上的差异和联系并分析其原因。结果表明,AOC附近卡尔斯伯格脊和希巴洋脊的玄武岩均为正常型洋脊玄武岩(N-MORB),起源自亏损地幔,其中卡尔斯伯格脊的样品较希巴洋脊样品更亏损;欧文洋脊玄武岩样品为洋岛玄武岩(OIB)特征,其地幔源区可能有残余陆块物质的混染;亚丁洋脊玄武岩样品类型包括N-MORB、E-MORB和可能的大陆玄武岩,与洋壳形成过程中大陆岩石圈物质的贡献程度有关。除了卡尔斯伯格脊外,阿法热点对各洋脊的岩浆均有一定程度的影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号