首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 421 毫秒
1.
1961—2017年华北地区高温日数及高温热浪时空变化特征   总被引:1,自引:1,他引:0  
利用华北地区85个气象站1961—2017年逐日最高气温资料,统计分析了华北地区高温日数及高温热浪(频次、持续时间、强度)的时空变化特征。结果表明:① 华北地区年高温日数整体呈增加趋势,自20世纪90年代中期之后年均高温日数明显增多;高温多出现在华北地区的南部和西部,华北地区大部分站点的高温日数呈增加趋势。② 就气候平均态而言,高温初日有略提前趋势,高温终日则明显推迟;空间上,绝大多数台站的高温终日呈推迟的趋势,其中京津冀中北部地区尤为明显。③ 累计高温热浪次数、轻度和中度热浪次数均整体增加,并在1990年左右明显由少变多,重度热浪次数增加趋势更为显著;1987年之后,平均每次高温热浪事件的高温有效积温明显增加,表明高温热浪的平均强度增大。④ 不同等级高温热浪总频次的空间分布特征相近,高频次区域均集中在内蒙古西部、山西西南部和河北南部;热浪累计频次的变化趋势在内蒙和山西以增多为主,在京津冀地区以减少为主。除山西南部和河北南部的个别站点以外,绝大多数站点的热浪平均持续天数和平均高温有效积温的变化呈增多增强趋势。总体来看,华北大部分区域自20世纪90年代以来,高温日数及热浪事件明显增强,同时存在明显的空间差异,研究结果将有助于进一步认识华北高温的区域性特征。  相似文献   

2.
华北地区高温日数的气候特征及变化规律   总被引:2,自引:1,他引:1  
施洪波 《地理科学》2012,(7):866-871
基于1960~2009年华北地区90个台站逐日最高气温数据,采用趋势分析等方法分析近50 a华北地区高温日数的时空变化特征。结果表明,近50 a华北地区高温日数以海拔高度800 m等值线为界呈现南多北少的分布特点,南部主要呈减少趋势,北部主要呈增加趋势。同时它显现出明显的"多-少-多"年代际变化特征,与1960年代相比,2000年代高温日数在7月稍增加,5和8月有所减少。近50 a华北地区累计高温过程频次呈微弱的减少趋势,南北部高温过程集中的年代和月份也有所不同。  相似文献   

3.
1981-2010年西藏霜冻日数的变化特征   总被引:4,自引:0,他引:4  
利用西藏38 个气象站点1981-2010 年的逐日最低气温资料,采用气候倾向率、累积距平、信噪比和R/S 分析等气候统计方法,分析了霜冻日数的年际、年代际、异常、突变等气候变化特征。结果表明:西藏霜冻日数都表现为不同程度的减少趋势,减幅为3.3~14.6 d/10a(37个站P < 0.01);随着海拔高度的升高,霜冻日数减幅在增大。在10a 年际变化尺度上,大部分站点霜冻日数20 世纪80 年代为正距平、21 世纪初为负距平;90 年代霜冻日数以正距平居多。有8 个站点霜冻日数存在突变点,发生在20 世纪90 年代,以1997 年居多。特多霜冻日数发生频数为0~3 次,多发生在20 世纪80 年代;特少霜冻日数频数介于0~4 次,以21 世纪初居多。特多霜冻日数发生频次与经度、纬度和海拔高度的关系不密切,而特少霜冻日数发生频次与海拔高度呈极显著的负相关。  相似文献   

4.
石家庄市高温热浪与"三大火炉"城市的对比研究   总被引:1,自引:0,他引:1  
利用1956-2009年逐日气温资料,分析了石家庄和"三大火炉"城市的高温热浪气候特征与变化趋势.结果表明,石家庄比"三大火炉"城市极端气温高、强高温(日最高气温≥40℃)日数多,但闷热天气相对少,热浪持续时间短.在季节内分布上,石家庄高温热浪6月最多,而"三大火炉"城市集中在7-8月.从年高温日数和年极端最高温度变化趋势看,近54年来石家庄高温热浪发展态势比"三大火炉"城市更为严峻;近20年来4市高温热浪都呈显著增加趋势.石家庄和"三大火炉"城市的高温热浪特征差异主要是由于地理地形条件以及东亚季风系统的季节变化规律所致,而全球变暖和快速城市化加剧了高温热浪的程度.  相似文献   

5.
宁夏高温气候特征及其大气环流异常分析   总被引:1,自引:0,他引:1  
利用宁夏24个气象观测站1960-2009年逐日最高气温观测资料和NCEP/NCAR再分析高度场资料,分析了宁夏高温日数的空间分布及年际、年代际变化趋势,并对高温异常对应的大气环流背景进行了分析。结果表明,宁夏中北部地区高温相对多发,大武口和同心为两个高发中心;7月高温出现频率最大;1971、2000、2001年和2005年为高温日数最多的4个年份,而1962、1979年和1989年没有高温日出现;宁夏高温日数在20世纪90年代中期发生了年代际突变,1997年以来宁夏平均高温日数较1996年以前增加了3.4倍。高温日数的年际、年代际异常对应中高纬度大范围大气环流异常,即从西欧到白令海峡的大范围地区中高层高度异常场波列分布。亚洲中高纬度经向环流弱,高纬度冷空气不易南下,宁夏高温日数偏多。高温日数偏少年经向环流强,有利于北方冷空气南下。  相似文献   

6.
上海极端气温变化特征及其对城市化的响应   总被引:14,自引:2,他引:12  
利用上海气象站逐日最高和最低气温资料,分析上海极端气温时间变化特征及对上海城市化的响应过程.结果表明上海1873~2007年极端最高气温总体上无显著变化趋势,极端最低气温以0.27℃/10 a的线性倾向率显著增加,2001~2007年,上海高温日数最多,低温日数最少.1960~2007年,上海极端最高气温和高温日数在市区增加较多,近郊和远郊增加较少;极端最低气温和低温日数市区和近郊减少较多,远郊减少较少.  相似文献   

7.
杨阳  赵娜  岳天祥 《地理科学》2022,42(3):536-547
基于全国2 419个气象站1980—2018年逐日气象观测资料,利用Mann-Kendall突变检验、滑动t检验、空间自相关及标准差椭圆等方法,选取4个典型的极端高温指数,分析了中国极端高温事件时空格局演变特征。结果表明:① 中国近40 a来夏天日数、热夜日数、暖夜日数和暖昼日数均呈显著的上升趋势,4个指数均在20世纪80、90年代偏少,2000年以后逐渐增加,4个极端高温指数均在2000年左右发生显著变化。② 4种极端高温指数的空间自相关主要是以高?高和低?低2种空间聚集形态为主,夏天日数和热夜日数的聚集性较强,近40 a来暖夜日数和暖昼日数的空间聚集性先增强后减弱,且空间聚集性分布格局由高?高包围低?低转变为低?低包围高?高。③ 4个指数变化率最大的站点均位于南方地区,其中夏天日数变化率最大的站点呈东西向分布格局,其余3个指数变化率最大的站点呈南北向分布格局,西南、西北地区交界地带夏天日数和暖昼日数在近40 a来变化率均显著高于全国其他地区,华东沿海地区暖夜日数的变化趋势方向性分布最明显,且变化趋势高于全国其他地区。  相似文献   

8.
利用西安市1951-2013年63 a的日最高气温(Tmax≥35℃)资料,对高温日数的月、季、年际、年代际变化特征进行了分析,计算了1980-2013年闷热指数(THI),在此基础上定义了酷热日,比较了高温日数及酷热日数的变化特征和相互联系。结果表明:高温天气具有明显的年代际变化,20世纪50、60年代高温日数较多,分别为24.7 d·a-1,26.5 d·a-1,70年代开始逐渐减少为21.8 d·a-1,80年代进入低谷期14.5 d·a-1,90年代开始增多为23.3 d·a-1,21世纪(2001-2013年)达到最多27.5 d·a-1;高温天气出现的开始日期具有提前趋势,结束日期具有推后的趋势。酷热天气出现的频率明显少于高温天气出现的频率,高温天气出现在4~9月,酷热天气出现在6~9月,而高温酷热出现最多的月份是7月。当酷热日天气出现时,87.5%的酷热日与高温日相对应,最高气温在32.4℃以上,相对湿度比较大。通过对高温及酷热天气的前10个个例环流形势的分析发现,酷热天气除与高温有关外还与副热带高压的西伸北抬带来的暖湿气流有关,中高层为下沉气流,低层为暖湿气流,形成高温高湿的闷热天气,而单纯的高温天气多与大陆高压或青藏高压的控制密切有关,以深厚的干暖下沉气流为主,天气以晴朗干燥天气为主。  相似文献   

9.
分析极端气温变化对气候变化研究具有重要意义。本文基于秦岭地区31个站点1960—2013年的逐日最高气温、最低气温和平均气温资料,获得秦岭地区16种极端气温指数,采用线性倾向估计法、M-K检验和主成分分析法,研究各指数变化特征,以揭示极端气温变化规律及其对区域变暖的影响。结果表明:(1)近55 a秦岭地区极端气温呈上升趋势,且日最高气温的升幅大于日最低气温;极端气温暖指数升高,冷指数降低,且暖指数的变化幅度大于冷指数。(2)日最高(低)气温极高值、日最高(低)气温极低值和气温日较差的升幅分别为0.14(0.06)、0.38(0.11)、0.08℃/10 a,夏季日数、热夜日数、暖昼日数、暖夜日数、暖持续日数和生物生长季分别以3.91、1.89、2.59、2.24、1.29、3.15 d/10 a的趋势在增加,而冰冻日数、霜冻日数、冷昼日数、冷夜日数和冷持续日数以-0.7、-3.01、-1.79、-2.05、-0.45 d/10 a的趋势在减小。(3)近55 a秦岭地区极端气温指数变化趋势与全球及全国基本相同,但变化幅度相对偏小,突变时间主要集中在20世纪90年代。(4)近55 a秦岭地区气候变暖与极端气温指数的变化关系密切,其中夏季日数、热夜日数、暖昼日数、暖夜日数和冷昼日数是秦岭地区气候变暖的主要贡献者。  相似文献   

10.
陈颖  张灵  千怀遂 《热带地理》2016,(4):692-699,726
利用1961―2013年华南地区56个气象站点逐日最高气温资料,采用百分位阈值法、线性倾向估计法、Mann-Kendall突变检验、Morlet小波分析等方法分析了华南地区近53 a极端高温日数的趋势变化、突变、周期变化及其区域特征。结果表明:1)从趋势变化看,大部分站点呈增加趋势,绝大部分站点于20世纪90年代后期进入快速增加期,其变化倾向于由东南部沿海逐渐向西北部内陆递减,沿海地区增加趋势明显。2)从Mann-Kendall突变检验看,绝大部分地区的极端高温日数有不同程度突变,显著减少突变和增加突变的起始时间段分别集中于20世纪60和90年代,其区域分布特征与海陆位置和地形关系密切。3)华南地区平均年和各站点分别存在26 a和22~28 a为主的第一主周期,20世纪60年代中后期到70年代的减少突变和2000年左右的增加突变存在于多个振荡周期中,多尺度周期振荡的同位相叠加是引起气候突变的主要原因;第一主周期有明显的区域差异,所引起的潜在突变对气候突变有决定性作用;地域特征与海陆位置和地形的关系密切。  相似文献   

11.
SHI Jun  TANG Xu  CUI Linli 《地理学报》2008,18(3):283-294
Based on the daily maximum temperature data covering the period 1961–2005, temporal and spatial characteristics and their changing in mean annual and monthly high temperature days (HTDs) and the mean daily maximum temperature (MDMT) during annual and monthly HTDs in East China were studied. The results show that the mean annual HTDs were 15.1 and the MDMT during annual HTDs was 36.3℃ in the past 45 years. Both the mean annual HTDs and the MDMT during annual HTDs were negative anomaly in the1980s and positive anomaly in the other periods of time, oscillating with a cycle of about 12–15 years. The mean annual HTDs were more in the southern part, but less in the northern part of East China. The MDMT during annual HTDs was higher in Zhejiang, Anhui and Jiangxi provinces in the central and western parts of East China. The high temperature process (HTP) was more in the southwestern part, but less in northeastern part of East China. Both the HTDs and the numbers of HTP were at most in July, and the MDMT during monthly HTDs was also the highest in July. In the first 5 years of the 21st century, the mean annual HTDs and the MDMT during annual HTDs increased at most of the stations, both the mean monthly HTDs and the MDMT during monthly HTDs were positive anomalies from April to October, the number of each type of HTP generally was at most and the MDMT in each type of HTP was also the highest.  相似文献   

12.
Based on the daily maximum temperature data covering the period 1961-2005, temporal and spatial characteristics and their changing in mean annual and monthly high temperature days (HTDs) and the mean daily maximum temperature (MDMT) during annual and monthly HTDs in East China were studied. The results show that the mean annual HTDs were 15.1 and the MDMT during annual HTDs was 36.3℃ in the past 45 years. Both the mean annual HTDs and the MDMT during annual HTDs were negative anomaly in the1980s and positive anomaly in the other periods of time, oscillating with a cycle of about 12-15 years. The mean annual HTDs were more in the southern part, but less in the northern part of East China. The MDMT during annual HTDs was higher in Zhejiang, Anhui and Jiangxi provinces in the central and western parts of East China. The high temperature process (HTP) was more in the southwestern part, but less in northeastern part of East China. Both the HTDs and the numbers of HTP were at most in July, and the MDMT during monthly HTDs was also the highest in July. In the first 5 years of the 21st century, the mean annual HTDs and the MDMT during annual HTDs increased at most of the stations, both the mean monthly HTDs and the MDMT during monthly HTDs were positive anomalies from April to October, the number of each type of HTP generally was at most and the MDMT in each type of HTP was also the highest.  相似文献   

13.
Based on the daily maximum temperature data covering the period 1961-2005, temporal and spatial characteristics and their changing in mean annual and monthly high temperature days(HTDs)and the mean daily maximum temperature(MDMT)during annual and monthly HTDs in East China were studied.The results show that the mean annual HTDs were 15.1 and the MDMT during annual HTDs was 36.3℃in the past 45 years.Both the mean annual HTDs and the MDMT during annual HTDs were negative anomaly in the1980s and positive anomaly in the other periods of time,oscillating with a cycle of about 12-15 years.The mean annual HTDs were more in the southern part,but less in the northern part of East China.The MDMT during annual HTDs was higher in Zhejiang,Anhui and Jiangxi provinces in the central and western parts of East China.The high temperature process(HTP) was more in the southwestern part,but less in northeastern part of East China.Both the HTDs and the numbers of HTP were at most in July,and the MDMT during monthly HTDs was also the highest in July.In the first 5 years of the 21st century,the mean annual HTDs and the MDMT during annual HTDs increased at most of the stations,both the mean monthly HTDs and the MDMT during monthly HTDs were positive anomalies from April to October,the number of each type of HTP generally was at most and the MDMT in each type of HTP was also the highest.  相似文献   

14.
中国西北近50 a来气温变化特征的进一步研究   总被引:42,自引:14,他引:28  
王劲松  费晓玲  魏锋 《中国沙漠》2008,28(4):724-732
 利用国家气象信息中心最新整编的西北地区135站1960—2005年逐月资料,通过对该地区温度变化特征的分析,在前人研究成果的基础上,进一步揭示出了近50 a来西北地区气温变化的一些新特征: ①西北地区的年和各季节均表现为一致的增温趋势,但陕西南部在夏季出现降温的趋势。冬季和秋季,从塔里木盆地西侧到河套地区,在35°—40°N的带状区域内是增温趋势最强的区域。西北区域整体年平均气温的变化幅度达0.37℃/10a,冬季增温可达0.56℃/10a。无论是年或四季平均的增温率,西北地区都比全国平均的要高。②西北地区冬季和年的平均气温在20世纪80年代中期以后开始表现为明显上升趋势;但春季、夏季和秋季均到了20世纪90年代中期以后,才开始出现气温明显上升的趋势。③西北地区年气温异常首先表现为全区一致的变化型,然后依次为南北相反变化型和陕南气温变化与其他地区不同的独特性。且整体一致型变化近50 a来呈加强态势,而陕南与西北其他地区气温非同步变化的趋势在逐渐缩小。④西北地区近50 a来年气温可分为南疆-高原区、北疆区、西北东部区3个主要空间异常气候区。且从长期倾向来看,南疆-高原区和北疆区有明显的上升变化倾向,西北东部区则表现为波动式的上升趋势。  相似文献   

15.
1961~2000年中国区域气温较差分析   总被引:17,自引:0,他引:17  
利用1961~2000年的观测资料,分别对中国不同区域的月、季和年平均气温日较差,以及月较差、季较差和年较差的变化趋势进行了分析。研究表明,月平均日较差以及季平均日较差均有显著的下降趋势,其中春夏两季的变化趋势最为明显,冬季次之,秋季下降趋势最弱;年平均日较差也显示了较强的下降趋势。月较差显著减小趋势主要发生在冬末和春季;季较差以夏季的变化最显著,其他几个季节都没有明显的下降趋势;但是年较差有很显著的减小。从地域上看,月、季和年平均日较差以东北和新疆的下降趋势最显著,最弱的是华北地区。总体上看,月、季平均日较差北方较南方的下降趋势明显。月较差的减小趋势在北方比南方显著;季较差的下降趋势主要表现在夏季,又以内蒙古到西南一带以及华北地区最显著;年较差东部比西部的下降趋势显著。  相似文献   

16.
陇东地区近51 a气温时空变化特征   总被引:5,自引:0,他引:5  
王媛媛  张勃 《中国沙漠》2012,32(5):1402-1407
 基于陇东地区15个气象站点1957—2007年的月平均气温、日平均气温资料,结合GIS空间分析技术和数理统计理论,对其气温变化进行定量化分析,阐述其时空演变特征。结果表明,陇东地区多年平均气温较高的地方在中部地区,西部地区平均气温较低,主要是受地形影响;年均气温总体呈上升趋势,春、冬季的增温趋势最为明显,这与全球气温变化及中国气温变化总体趋势一致;年均气温变化的第一主周期为13 a,四季平均气温变化的第一主周期分别是25 a、25 a、13 a和7 a;年均气温的突然升高开始于20世纪80年代中期,四季平均气温的突然升高分别始于90年代中期、90年代初、80年代末和90年代初。  相似文献   

17.
对巴音布鲁克站点1958—2015年的月降水量、降水日数和平均气温进行集合经验模态分解得到其变化趋势,利用Mann Kendall和累计距平法诊断突变点,并采用Morlet小波和R/S法分析其周期特征和未来变化趋势。结果显示:(1) 巴音布鲁克各月降水量1月、6月和11月增多趋势显著,2月、7月和12月呈“凸”字形变化,减少趋势显著。(2) 降水日数1月和9月呈显著减少趋势,2月和6月呈显著增加趋势,3月和11月呈“凸”字形变化,5月、7月和8月呈不同幅度的“凹”字形变化。(3) 各月平均气温基本呈上升趋势,尤其以5月、7月和10月升温最显著。(4) 年降水量、年降水日数和年平均气温分别在1999年、1993年和1997年发生突变,年降水日数增多早于年降水量增多和年平均气温升高的时间,从90年代中期开始气候由干冷逐渐向暖湿转型。(5) 年降水量、年降水日数和年平均气温的主周期分别为41 a、9 a和30 a。(6) 未来年降水量将增多,年降水日数将减少,年平均气温将升高,极端降水发生的频次将增大,易引发洪涝灾害。  相似文献   

18.
城市化偏差是中国地面气温观测记录中最大的系统性偏差,订正该偏差可为大尺度气候变化监测和研究提供准确的基础资料。论文介绍了用于单站地面月平均气温序列城市化偏差订正的一个方法,并利用该方法订正了685个国家基本/基准站1961—2015年地面年及月平均气温序列中的城市化偏差。采取自东往西迭代订正的方法,即从东往西逐经度订正,订正完的目标站也可作为参考站。首先,规定目标站的参考站在300 km范围内,并利用2站的去线性趋势年均气温的相关系数作为标准,规定相关系数最大且通过信度水平为0.005显著性检验的4个候选参考站作为该目标站的参考站;然后,对各个参考站年均气温与其对应目标站年均气温求相关,并以其平方为权重计算各参考站月和年均气温的平均值序列,即为各目标站年和月平均地面气温参考序列;其次,利用目标站气温序列趋势及其参考序列趋势之差作为总的订正值,订正目标站气温序列中包含的城市化偏差。较大的城市化偏差出现在华北地区、华中部分地区、东北北部、西南及西部部分地区,介于0.1~0.3 ℃/10 a;在中国西北部分地区、西藏西部及南部、东北南部、华南沿海、华东及华中个别站存在负偏差;对整个中国而言,相对城市化偏差为19.6%。以北京、武汉、银川、深圳作为华北、华中、西北和华南地区的大城市代表站,发现其在过去55 a的相对城市化偏差分别为67.0%、75.4%、32.7%和50.3%,与前人针对单站评估城市化影响的结果基本一致,说明论文的订正方法较为合理。论文介绍的城市化偏差订正方法,可用于订正中国等快速城市化地区地面气温观测资料的系统偏差,订正后的气温数据在很大程度上消除了城市化因素引起的不确定性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号