首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 328 毫秒
1.
以吉林省长岭县十三泡地区湖滩地为例 ,选取有代表性的月份进行定位观测、实验和对比分析 ,研究了冻融期盐沼湿地水盐运移的特殊规律性。研究表明 ,盐沼湿地冻结期 ,由于冻层的存在 ,土体内产生的温度梯度、水势梯度 ,是冬季水盐积累的驱动力。在冻结期 ,冻层水盐自底层向上迁移 ;融冻期 ,冻层自地表向下及自暖土层向上双向融化 ,在冻层形成上层滞水 ,在冻层之下水盐从下向冻层迁移冻结。冻融期间盐沼湿地水盐迁移的热力学机制是松嫩平原土壤盐化发生机制的重要组成部分。  相似文献   

2.
季节性冻融是干旱区土壤盐碱化形成的主要驱动因子,但冻融过程中土壤水盐耦合关系及热量调控机理仍不清楚。通过分析2009年11月~2010年5月新疆玛纳斯河流域典型盐荒地季节性冻融过程中土壤剖面160 cm以内的水分、盐分和温度动态变化,探讨了不同土层冻融过程中水热盐的耦合关系。结果表明:土壤最大冻结深度为150 cm左右,表土层(0~40 cm)温度与气温关系密切;土壤剖面水分呈现“C”型垂直分布,表土层和底土层(100~160 cm)含水量较大,而心土层(40~100 cm)含水量不足10%,土层平均含水率在冻融前期增加了12.91%,而在初蒸期减少了10.01%;土壤剖面盐分在冻结期和初蒸期表聚作用明显,心土层和底土层含盐量稳定,土壤剖面含盐量表现为“积盐-脱盐-再积盐”的变化过程。水热盐之间具有高度协同性,心土层和底土层表现为水盐相随、而表土层为水去盐留的耦合特征,热量传输是调控水盐运移的关键因素。  相似文献   

3.
基于水热变化的青藏高原土壤冻融过程研究进展   总被引:1,自引:0,他引:1  
青藏高原近地层土壤冻融过程是高原地表最显著的陆面特征之一,也是判断冻土发育、存在以及反映气候变化的重要指标。近地层土壤昼夜、季节性的冻结、融化会导致青藏高原陆—气间能水平衡的变化甚至异常,从而显著影响高原地表水文过程、生态环境、碳氮循环以及高原及其周边区域的天气和气候系统。论文从观测、模拟以及对气候的影响3个角度来探讨1990年以来青藏高原土壤冻融过程的最新研究进展。结果表明:① 在一个完整的年冻融循环过程中,近地表各层土壤大体都经历了夏季融化期、春秋季融化—冻结期、冬季冻结期4个阶段。受局地因素的影响,不同站点的冻结或消融起止时间、速率、类型均有差异。② 多年冻土区和季节冻土区的日冻融循环过程差异较大,主要体现在日冻融循环持续时间上。③ 不同陆面模式都可以很好地抓住冻融过程中物理量的时空变化,但都需要针对高原陆面过程的特点进行参数化改进。④ 规避不稳定的迭代计算并根据热力学平衡方程确定冻融临界温度可以改进不合理的冻融参数化方案。基于已有研究回顾,发现增加高质量的观测站,利用卫星遥感等多种手段来反演高原土壤冻融过程以及加强陆面模式与区域气候模式和全球气候模式的耦合,并立足于高原冻融过程的特点发展相适应的参数化方案以及模拟结构的调整,能够有助于高原冻融过程的模拟。  相似文献   

4.
土壤冻融交替是陆地表层极其重要的物理过程,土壤冻融状态的频繁变化对地气能量交换、地表径流、植被生长、生态系统及土壤碳氮循环等均具有重要的影响。本文基于1981—2019年ERA5-LAND逐小时土壤温度数据,借助GIS空间分析功能,利用Python编程处理分析了中国东北地区近地表土壤冻融状态的时空变化特征。结果表明:从不同冻融状态起始日期的空间分布来看,近地表不同阶段的起始日期主要受纬度和地形的影响,具有明显的纬度地带性和垂直地带性。春季冻融过渡期和完全融化期的起始日期由东南向西北均呈逐渐推迟趋势,而秋季冻融过渡期与完全冻结期起始日期则由东南向西北随纬度升高越来越早。就不同冻融状态发生天数的空间分布而言,研究区南部春季冻融过渡期发生天数多于北部,西部多于东部,年均发生天数均在30 d以内;秋季发生冻融的天数空间差异不大,研究区一半以上的地区年均发生天数在10 d以内。完全融化期发生天数最多,从东南向西北呈逐渐减少趋势,年均发生天数主要介于150~240 d之间;完全冻结期发生天数则由南向北日益增多,其空间分布表现为一向南开口的簸箕形,各地年均发生天数集中于90~180 d之间。从时间变化趋势来看,近年来春季冻融过渡期起始日期以提前趋势为主,而秋季冻融过渡期起始日期总体表现为延后,致使完全融化期发生天数以增加趋势为主,年均变化速度高达0.2 d/a;大兴安岭以西、呼伦贝尔高原以北地区及辽河平原春季冻融过渡期发生天数呈减少趋势,其他地区为增加趋势;大兴安岭以西地区、呼伦贝尔高原以北地区完全融化期起始日期明显提前;松嫩平原和长白山区秋季冻融过渡期起始日期推迟显著,发生天数的变化趋势呈北增南减的空间分异特征;不同地区完全冻结期起始日期的变化趋势差异显著,中部广大的平原区呈不显著的推迟趋势,而大、小兴安岭、长白山、辽东半岛和辽西丘陵则提前进入完全冻结状态;研究区完全冻结期发生天数呈减少趋势,研究区中部的季节冻土区完全冻结期明显变短,年均减少速度大于0.2 d/a。  相似文献   

5.
冻土水文过程的复杂性使其分析及模拟较为困难,在研究青藏高原冻土退化水文效应的过程中,需要明确流域内土壤冻结和融化状态的时空变化特征。利用被动微波遥感数据反演获得的地表冻融状态,系统地辨识怒江流域中上游地表冻融状态时空变异特征。结果表明:1.怒江流域贡山水文站以上年平均地表冻结天数270 d的区域占研究区总面积的32.0%,而180~270 d的则约占62.3%,海拔高度每升高1 000 m,年地表冻结天数平均增长约62 d;2.研究区不同年份持续冻结的开始和结束时间差异较大,融化-冻结阶段的9—10月平均气温与阶段末10月地表冻结面积的相关系数为-0.80,而冻结-融化阶段的4—6月平均气温与阶段末6月地表冻结面积的相关系数则为-0.87,均在0.01水平上显著负相关,研究区气温的年际波动导致地表冻结面积、冻结日期、融化日期及冻结持续时间等的年际变化;3.被动微波遥感反演获得的高时间分辨率冻融状态数据,可为气候变化背景下,缺资料高原山地流域大范围地表冻融状态变化分析、流域尺度水文过程模拟等提供良好的数据支撑。  相似文献   

6.
藏北高寒草地土壤冻融循环过程及水热分布特征   总被引:4,自引:0,他引:4  
利用活动层土壤剖面的温度、水分观测资料,系统研究了藏北高寒草地多年冻土活动层土壤的冻融过程及其水热分布特征。研究表明:1.土壤剖面温度随气温发生周期性波动,具有明显的滞后效应,且随深度增加变幅减小;2.土壤剖面完全冻结天数为109~123 d,日冻融循环主要发生在表层(0~10 cm)土层中,冻融过程可分为不稳定冻结期、完全冻结期、不稳定消融期、和消融期4个阶段;3.受冻融作用影响,土壤含水量呈现"凹"型变化,变化趋势与土壤温度有较好的一致性;4.冻融作用有利于维持藏北高寒草地土壤水分,在季节转换,生态系统碳、氮循环中具有重要作用。  相似文献   

7.
苏打盐碱土地区不同土地利用类型的地表水分蒸渗特征   总被引:6,自引:0,他引:6  
选择东北松嫩平原西部典型地区,采用FAO56方法和实际田间定期观测相结合,分析了当地旱田和碱斑地两种主要土地利用类型地表水分蒸散和入渗特征及其对土地盐碱化的影响。结果表明:对于玉米地这样相对蒸散量比较大的旱作农田来讲,水分亏缺和盐碱化主要发生在根层,而对表层土壤,即使在偏干旱年份,仍然有足够的水分入渗量来维持盐分平衡。碱斑地随着植被的破坏,总体上表层土壤蒸发和入渗量基本平衡,但是由于土壤水分蒸发过程中盐分浓度要比入渗过程中的盐分浓度大,表层土壤依然向盐碱化方向发展。采取适当的土地利用方式,建立耗水量与该地区降雨水平相适应的植被系统是控制区域土地盐碱化发展的关键。  相似文献   

8.
青藏高原土壤水热分布特征及冻融过程在季节转换中的作用   总被引:21,自引:0,他引:21  
利用GAME-Tibet期间所取得的高分辩率土壤温度和含水量资料,对青藏高原(主要是藏北高原)土壤水热分布特征及冻融过程在季节转换中的作用进行了分析。指出藏北高原4cm学深处土壤在10月份开始冻结,次年4-5月份开始消融,冻结持续时间长达5-7个月。冻结过程有利于土壤维持其水分,因此,在刚刚开始消融时土壤含水量仍然很高。从而为夏季风爆发前土壤通过蒸发向大气提供水分打下了基础。指出土壤冻融过程可能在高原季节转换中起着重要作用。  相似文献   

9.
为解决季节性冻土水分在冻融过程中迁移复杂性及空间非均一性的定量化描述困难问题,以季节性冻土区土壤剖面水分为研究对象,运用地统计学的理论与方法对季节性冻土区不同时期土壤剖面水分的空间变异特征进行研究。结果表明,不同时期土壤剖面水分具有良好的空间结构及较强的空间相关性;季节冻融过程削弱土壤剖面水分的空间相关性,并且对土壤含水量具有强烈的空间重分布作用。地统计学理论与方法的应用可为季节性冻土区土壤冻融过程中水分运移机理的研究提供一种新的思路和方法。  相似文献   

10.
利用实测的念青唐古拉山脉南坡海拔4800 m和5333 m,以及北坡5400 m的土壤温、湿度和地表气温一年的数据,对该地区水热特征作了初步分析,结果表明:地、气温差冬季大夏季小,且相对邻近地区偏大。同时地温与气温有良好相关,但随深度增加,相关系数减小。土壤热力梯度的方向低海拔由下而上,高海拔则相反。土壤湿度高海拔略大于低海拔,干季和湿季分别受冻融过程和印度洋季风降水影响。高海拔冻结期比低海拔长3~4个月,其下层土壤湿度在冻融交替期表现一个剧烈的跃变现象。念青唐古拉山南、北坡海拔相近区域相同层位土壤温度差异在0~8℃之间。南坡土壤温度年平均高于北坡3~4℃。南坡冻结比北坡晚而融化比北坡早,上层土壤湿度南坡小于北坡,而下层土壤湿度南坡大于北坡,南北坡水热过程存在明显差异。  相似文献   

11.
马晓飞  楚新正  马倩 《干旱区地理》2015,38(6):1190-1201
冻融作用对酶和微生物活性具有重要影响,进而影响植物群落的生长发育。为深入了解荒漠优势种梭梭群落冬季土壤生态过程,于2012年10月~2013年10月,对土壤冻融期、冻结期、融冻期和生长季的艾比湖典型样地进行野外实地观测、采样和室内分析。通过对比分析不同冻融阶段土壤含水量、pH值、有机质、全氮、酶活性和微生物数量的变化特征。结果表明:(1)土壤含水量,融冻期 >冻结期 >冻融期 >生长季,土壤pH值,生长季 >融冻期 >冻融期 >冻结期,各土层土壤含水量以浅层土表现最为显著(P <0.05),不同冻融阶段各土层pH值差异性较大,冻融期、冻结期和生长季表层土壤pH值较大,融冻期浅层土壤pH值较大。(2)土壤有机质和全氮含量的波动状况相似,分别在融冻期和生长季呈现波峰和波谷,不同土层间全氮和有机质含量差异性较小,以冻融期和生长季表现最为显著(P <0.05)。(3)土壤酶活性的变化中,过氧化氢酶、脲酶和蛋白酶在融冻期含量最大,冻融期次之,蔗糖酶在冻结期活性最大,土壤微生物数量的变化以融冻期最大,除此之外,各冻融阶段细菌和放线菌占主导,真菌含量相对较少。(4)冻融循环次数分布于冻融期和融冻期,对土壤酶活性和微生物数量具有一定的影响,致使融冻期土壤各因子大于冻融期。  相似文献   

12.
The active-layer soils overlying the permafrost are the most thermodynamically active zone of rock or soil and play important roles in the earth-atmosphere energy system. The processes of thawing and freezing and their associated complex hydrothermal coupling can significantly affect variation in mean annual temperatures and the formation of ground ice in permafrost regions. Using soil-temperature and-moisture data obtained from the active layer between September 2011 and October 2014 in the permafrost region of the Nanweng'he River in the Da Xing'anling Mountains, the freeze-thaw characteristics of the permafrost were studied. Based on analysis of ground-temperature variation and hydrothermal transport characteristics, the thawing and freezing processes of the active layer were divided into three stages:(1) autumn-winter freezing,(2) winter freeze-up, and(3) spring-summer thawing. Variations in the soil temperature and moisture were analyzed during each stage of the freeze-thaw process, and the effects of the soil moisture and ground vegetation on the freeze-thaw are discussed in this paper. The study's results show that thawing in the active layer was unidirectional, while the ground freezing was bidirectional(upward from the bottom of the active layer and downward from the ground surface).During the annual freeze-thaw cycle, the migration of soil moisture had different characteristics at different stages. In general, during a freezing-thawing cycle, the soil-water molecules migrate downward, i.e., soil moisture transports from the entire active layer to the upper limit of the permafrost. In the meantime, freeze-thaw in the active layer can be significantly affected by the soil-moisture content and vegetation.  相似文献   

13.
The acquisition of spatial-temporal information of frozen soil is fundamental for the study of frozen soil dynamics and its feedback to climate change in cold regions. With advancement of remote sensing and better understanding of frozen soil dynamics, discrimination of freeze and thaw status of surface soil based on passive microwave remote sensing and numerical simulation of frozen soil processes under water and heat transfer principles provides valuable means for regional and global frozen soil dynamic monitoring and systematic spatial-temporal responses to global change. However, as an important data source of frozen soil processes, remotely sensed information has not yet been fully utilized in the numerical simulation of frozen soil processes. Although great progress has been made in remote sensing and frozen soil physics, yet few frozen soil research has been done on the application of remotely sensed information in association with the numerical model for frozen soil process studies. In the present study, a distributed numerical model for frozen soil dynamic studies based on coupled water-heat transferring theory in association with remotely sensed frozen soil datasets was developed. In order to reduce the uncertainty of the simulation, the remotely sensed frozen soil information was used to monitor and modify relevant parameters in the process of model simulation. The remotely sensed information and numerically simulated spatial-temporal frozen soil processes were validated by in-situ field observations in cold regions near the town of Naqu on the East-Central Tibetan Plateau. The results suggest that the overall accuracy of the algorithm for discriminating freeze and thaw status of surface soil based on passive microwave remote sensing was more than 95%. These results provided an accurate initial freeze and thaw status of surface soil for coupling and calibrating the numerical model of this study. The numerically simulated frozen soil processes demonstrated good performance of the distributed numerical model based on the coupled water-heat transferring theory. The relatively larger uncertainties of the numerical model were found in alternating periods between freezing and thawing of surface soil. The average accuracy increased by about 5% after integrating remotely sensed information on the surface soil. The simulation accuracy was significantly improved, especially in transition periods between freezing and thawing of the surface soil.  相似文献   

14.
为了揭示焉耆县良种场的土壤水热盐动态变化,对有膜覆盖和无膜覆盖条件下各土壤层进行水热盐的系统观测和单因素方差分析及相关性分析。结果表明:(1)土壤温度的日变化呈现先降低后升高再降低的趋势,有膜各层土壤温度高于相对应的无膜各层土壤温度,各层土壤温度和大气温度变化趋势一致。(2)有膜各层土壤盐分要高于相对应的无膜各层土壤盐分,表层土壤水分小于底层,有膜10~20 cm土壤水分含量比较低,无膜10~50 cm土壤水含量比较接近;滴灌后,土壤水分和盐分经历快速下降和缓慢下降两个过程。由于文献对于有膜覆盖与无膜覆盖条件下土壤水热盐变化的研究相对较少,文章通过研究焉耆县农田生育期有膜和无膜条件下土壤水热盐的变化特征,为研究区土壤盐渍化的防治提供科学依据。  相似文献   

15.
Laboratory experiments were carried out to investigate the effect of freezing and thawing processes on wet aggregate stability (WAS) of black soil. Wet aggregate stability was determined by different aggregate size groups, different water contents, various freeze-thaw cycles, and various freezing temperatures. The results showed that, when at suitable water content, aggregate stability was enhanced, aggregate sta-bility will be disrupted when moisture content is too high or too low, especially higher water content. Temperature also had a significant ef-fect, but moisture content determined the suitable freezing temperatures for a given soil. Water-stable aggregate (WSA〉0.5), the total aggre-gate content, and mean weight diameter decreasing with the freeze-thaw cycles increase, reached to 5 percent significance level. The reason for crumbing aggregates is the water and air conflict, thus raising the hypothesis that water content affects the aggregate stability in the process of freezing and thawing.  相似文献   

16.
Soil freeze-thaw process is closely related to surface energy budget,hydrological activity,and terrestrial ecosystems.In this study,two numerical experiments(including and excluding soil freeze-thaw process)were designed to examine the effect of soil freeze-thaw process on surface hydrologic and thermal fluxes in frozen ground region in the Northern Hemisphere based on the state-of-the-art Community Earth System Model version 1.0.5.Results show that in response to soil freeze-thaw process,the area averaged soil temperature in the shallow layer(0.0175?0.0451 m)decreases by 0.35℃in the TP(Tibetan Plateau),0.69℃in CES(Central and Eastern Siberia),and 0.6℃in NA(North America)during summer,and increases by 1.93℃in the TP,2.28℃in CES and 1.61℃in NA during winter,respectively.Meanwhile,in response to soil freeze-thaw process,the area averaged soil liquid water content increases in summer and decrease in winter.For surface heat flux components,the ground heat flux is most significantly affected by the freeze-thaw process in both summer and winter,followed by sensible heat flux and latent heat flux in summer.In the TP area,the ground heat flux increases by 2.82 W/m2(28.5%)in summer and decreases by 3.63 W/m2(40%)in winter.Meanwhile,in CES,the ground heat flux increases by 1.89 W/m2(11.3%)in summer and decreases by 1.41 W/m2(18.6%)in winter.The heat fluxes in the Tibetan Plateau are more susceptible to the freeze-thaw process compared with the high-latitude frozen soil regions.Soil freeze-thaw process can induce significant warming in the Tibetan Plateau in winter.Also,this process induces significant cooling in high-latitude regions in summer.The frozen ground can prevent soil liquid water from infiltrating to deep soil layers at the beginning of thawing;however,as the frozen ground thaws continuously,the infiltration of the liquid water increases and the deep soil can store water like a sponge,accompanied by decreasing surface runoff.The influence of the soil freeze-thaw process on surface hydrologic and thermal fluxes varies seasonally and spatially.  相似文献   

17.
以石羊河流域下游——民勤绿洲为研究区域,通过野外采样、实地调查和实验分析,对不同土地利用类型下(耕地、林地、草地、湿地、盐碱地、撂荒地和荒漠)土壤的水盐特征进行研究,结果表明研究区土壤含水率整体偏低,范围为5.35%~20.58%,土壤含盐量的平均值为47.02 g·kg-1,盐渍化程度严重。土壤含水率和含盐量表现为中等变异性,说明其易受到气候、地形、水文地质以及人为活动的影响。不同土地利用类型下土壤水盐的垂直分布差异显著,土壤含水率在垂直方向上的变化特征较为复杂,但含盐量在垂直方向上主要表现为“表聚型”和“振荡型”。民勤绿洲各土层土壤水盐的水平分布均呈条带状分布,土壤含水率整体表现出西高东低,南高北低,而土壤含盐量则表现出相反的趋势。  相似文献   

18.
土壤水分、盐分时空变异强,是影响土壤光谱特征的两个重要因素。土壤水分与盐分之间的关系以及土壤水分、盐分与土壤光谱特征间的关系直接关系到利用遥感光谱信息监测土壤盐渍化的精度。该文运用多元统计学及可见光-近红外反射光谱分析方法对2010年10月渭干河-库车河三角洲绿洲盐渍土水分、盐分数据和盐渍土野外光谱数据进行分析,探讨该绿洲盐渍土表层(0~10cm)水盐信息与野外光谱特征间的关系。结果表明:1)土壤水分和土壤电导率可用Cubic曲线拟合,相关系数R=0.8503,土壤盐分和土壤电导率也可用Cubic曲线拟合,相关系数R=0.842,但土壤水分与盐分之间的显著性较弱,相关系数R=0.74。2)与原始野外光谱相比,包络线消除后光谱波段与土壤水分和土壤电导率之间的Pearson相关性都有不同程度的提高,利用包络线消除法后的波段分别建立盐渍土土壤水分、土壤电导率后向回归预测方程,为动态水盐条件下的盐渍土遥感监测提供了理论依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号