首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The formation of Subantarctic Mode Water (SAMW) and Antarctic Intermediate Water (AAIW) significantly contributes to the total uptake and storage of anthropogenic gases, such as CO2 and chlorofluorocarbons (CFCs), within the world's oceans. SAMW and AAIW formation rates in the South Pacific are quantified based on CFC-12 inventories using hydrographic data from WOCE, CLIVAR, and data collected in the austral winter of 2005. This study documents the first wintertime observations of CFC-11 and CFC-12 saturations with respect to the 2005 atmosphere in the formation region of the southeast Pacific for SAMW and AAIW. SAMW is 94% and 95% saturated for CFC-11 and CFC-12, respectively, and AAIW is 60% saturated for both CFC-11 and CFC-12. SAMW is defined from the Subantarctic Front to the equator between potential densities 26.80-27.06 kg m−3, and AAIW is defined from the Polar Front to 20°N between potential densities 27.06-27.40 kg m−3. CFC-12 inventories are 16.0×106 moles for SAMW and 8.7×106 moles for AAIW, corresponding to formation rates of 7.3±2.1 Sv for SAMW and 5.8±1.7 Sv for AAIW circulating within the South Pacific. Inter-ocean transports of SAMW from the South Pacific to the South Atlantic are estimated to be 4.4±0.6 Sv. Thus, the total formation of SAMW in the South Pacific is approximately 11.7±2.2 Sv. These formation rates represent the average formation rates over the major period of CFC input, from 1970 to 2005. The CFC-12 inventory maps provide direct evidence for two areas of formation of SAMW, one in the southeast Pacific and one in the central Pacific. Furthermore, eddies in the central Pacific containing high CFC concentrations may contribute to SAMW and to a lesser extent AAIW formation. These CFC-derived rates provide a baseline with which to compare past and future formation rates of SAMW and AAIW.  相似文献   

2.
Fresh water flowing from the Arctic Ocean via the East Greenland Current influences deep water formation in the Nordic Seas as well as the salinity of the surface and deep waters flowing from there. This fresh water has three sources: Pacific water (relatively fresh cf. Atlantic water), river runoff, and sea ice meltwater. To determine the relative amounts of the three sources of fresh water, in May 2002 we collected water samples across the East Greenland Current in sections from 81.5°N to the Irminger Sea south of Denmark Strait. We used nitrate-phosphate relationships to distinguish Pacific waters from Atlantic waters, salinity to obtain the sum of sea ice melt water and river runoff water, and total alkalinity to distinguish the latter. River runoff contributed the largest part of the total fresh water component, in some regions with some inventories exceeding 12 m. Pacific fresh water (Pacific source water S ∼ 32 cf. Atlantic source water S ∼ 34.9) typically provided about 1/3 of the river runoff contribution. Sea ice meltwater was very nearly non-existent in the surface waters of all sections, likely at least in part as a result of the samples being collected before the onset of the melt season. The fresh water from the Arctic Ocean was strongly confined to near the Greenland coast. We thus conjecture that the main source of fresh water from the Arctic Ocean most strongly impacting deep convection in the Nordic Seas would be sea ice as opposed to fresh water in the liquid phase, i.e., river runoff, Pacific fresh water, and sea ice meltwater.  相似文献   

3.
为了揭示南极海冰年际变化的机制,利用南极海冰边缘区密集度和海面风资料,选择南极海冰边缘区海冰密集度年际变化较大的5个海区进行统计分析.研究表明:南半球冬季在这5个海区海冰密集度年际变化与南侧西风的年际变化有较密切的关系,南半球冬季南极海冰边缘区南侧西风形成向北的Ekman输运对海冰边缘区的海冰密集度有重要的影响,这种影响在南太平洋和南大西洋比在南印度洋东部更明显.  相似文献   

4.
An ocean general circulation model (OGCM) is used to identify a Southern Ocean southeast Pacific intrinsic mode of low frequency variability. Using CORE data a comprehensive suite of experiments were carried out to elucidate excitation and amplification responses of this intrinsic mode to low frequency forcing (ENSO, SAM) and stochastic forcing due to high frequency winds. Subsurface anomalies were found to teleconnect the Pacific and Atlantic regions of the Antarctic Circumpolar Current (ACC) thermocline. The Pacific region of the ACC is characterised by intrinsic baroclinic disturbances that respond to both SAM and ENSO, while the Atlantic sector of the ACC is sensitive to higher frequency winds that act to amplify thermocline anomalies propagating downstream from the Pacific. Non-stationary cluster analysis was used to identify the system’s dynamical regimes and characterise meta-stability, persistence and transitions between the respective states. This analysis reveals significant trends, indicating fundamental changes to the meta-stability of the ocean dynamics in response to changes in atmospheric forcing. Intrinsic variability in sea-ice concentration was found to be coupled to thermocline processes. Sea-ice variability localised in the Atlantic was most closely associated with high frequency weather forcing. The SAM was associated with a circumpolar sea-ice response whereas ENSO was found to be a major driver of sea-ice variability only in the Pacific. This simulation study identifies plausible mechanisms that determine the predictability of the Southern Ocean climate on multi-decadal timescales.  相似文献   

5.
Many of the changes observed during the last two decades in the Arctic Ocean and adjacent seas have been linked to the concomitant abrupt decrease of the sea level pressure in the central Arctic at the end of the 1980s. The decrease was associated with a shift of the Arctic Oscillation (AO) to a positive phase, which persisted throughout the mid 1990s. The Arctic salinity distribution is expected to respond to these dramatic changes via modifications in the ocean circulation and in the fresh water storage and transport by sea ice. The present study investigates these different contributions in the context of idealized ice-ocean experiments forced by atmospheric surface wind-stress or temperature anomalies representative of a positive AO index.Wind stress anomalies representative of a positive AO index generate a decrease of the fresh water content of the upper Arctic Ocean, which is mainly concentrated in the eastern Arctic with almost no compensation from the western Arctic. Sea ice contributes to about two-third of this salinification, another third being provided by an increased supply of salt by the Atlantic inflow and increased fresh water export through the Canadian Archipelago and Fram Strait. The signature of a saltier Atlantic Current in the Norwegian Sea is not found further north in both the Barents Sea and the Fram Strait branches of the Atlantic inflow where instead a widespread freshening is observed. The latter is the result of import of fresh anomalies from the subpolar North Atlantic through the Iceland-Scotland Passage and enhanced advection of low salinity waters via the East Icelandic Current. The volume of ice exported through Fram Strait increases by 20% primarily due to thicker ice advected into the strait from the northern Greenland sector, the increase of ice drift velocities having comparatively less influence. The export anomaly is comparable to those observed during events of Great Salinity Anomalies and induces substantial freshening in the Greenland Sea, which in turn contributes to increasing the fresh water export to the North Atlantic via Denmark Strait. With a fresh water export anomaly of 7 mSv, the latter is the main fresh water supplier to the subpolar North Atlantic, the Canadian Archipelago contributing to 4.4 mSv.The removal of fresh water by sea ice under a positive winter AO index mainly occurs through enhanced thin ice growth in the eastern Arctic. Winter SAT anomalies have little impact on the thermodynamic sea ice response, which is rather dictated by wind driven ice deformation changes. The global sea ice mass balance of the western Arctic indicates almost no net sea ice melt due to competing seasonal thermodynamic processes. The surface freshening and likely enhanced sea ice melt observed in the western Arctic during the 1990s should therefore be attributed to extra-winter atmospheric effects, such as the noticeable recent spring-summer warming in the Canada-Alaska sector, or to other modes of atmospheric circulations than the AO, especially in relation to the North Pacific variability.  相似文献   

6.
Recently obtained World Ocean Circulation Experiment (WOCE) sections combined with a specially prepared pre-WOCE South Atlantic data set are used to study the dianeutral (across neutral surface) mixing and transport achieving Antarctic Intermediate Water (AAIW) being transformed to be part of the North Atlantic Deep Water (NADW) return cell. Five neutral surfaces are mapped, encompassing the AAIW from 700 to 1100 db at the subtropical latitudes.Coherent and significant dianeutral upwelling is found in the western boundary near the Brazil coast north of the separation point (about 25°S) between the anticyclonic subtropical and cyclonic south equatorial gyres. The magnitude of dianeutral upwelling transport is 10-3 Sv (1 Sv=106 m3 s-1) for 1°×1° square area. It is found that the AAIW sources from the southwestern South Atlantic and southwestern Indian Ocean do not rise significantly into the Benguela Current. Instead, they contribute to the NADW return formation by dianeutral upwelling into the South Equatorial Current. In other words, the AAIW sources cannot obtain enough heat/buoyancy to rise until they return to the western boundary region but north of the separation point. The basin-wide integration of dianeutral transport shows net upward transports, ranging from 0.25 to 0.6 Sv, across the lower and upper boundary of AAIW north of 40°S. This suggests that the equatorward AAIW is a slow rising water on a basin average. Given one order of uncertainty in evaluating the along-neutral-surface and dianeutral diffusivities from the assumed values, K=103 m2 s-1 and D=10-5 m2 s-1, the integrated dianeutral transport has an error band of about 10–20%. The relatively weak integrated dianeutral upwelling transport compared with AAIW in other oceans implies much stronger lateral advection of AAIW in the South Atlantic.Mapped Turner Angle in diagnosing the double-diffusion processes shows that the salty Central Water can flux salt down to the upper half of AAIW layer through salt-fingering. Therefore, the northward transition of AAIW can gain salt either through along-neutral-surface advection and diffusion or through salt fingering from the Central Water and heat through either along-neutral-surface advection and diffusion or dianeutral upwelling. Cabbeling and thermobaricity are found significant in the Antarctic frontal zone and contribute to dianeutral downwelling with velocity as high as −1.5×10-7 m s-1. A schematic AAIW circulation in the South Atlantic suggests that dianeutral mixing plays an essential role in transforming AAIW into NADW return formation.  相似文献   

7.
The recent decline in the Arctic sea ice has coincided with more cold winters in Eurasia.It has been hypothesized that the Arctic sea ice loss is causing more mid-latitude cold extremes and cold winters,yet there is lack of consensus in modeling studies on the impact of Arctic sea ice loss.Here we conducted modeling experiments with Community Atmosphere Model Version 5(CAM5) to investigate the sensitivity and linearity of Eurasian winter temperature response to the Atlantic sector and Pacific sector of the Arctic sea ice loss.Our experiments indicate that the Arctic sea ice reduction can significantly affect the atmospheric circulation by strengthening the Siberian High,exciting the stationary Rossby wave train,and weakening the polar jet stream,which in turn induce the cooling in Eurasia.The temperature decreases by more than 1°C in response to the ice loss in the Atlantic sector and the cooling is less and more shifts southward in response to the ice loss in the Pacific sector.More interestingly,sea ice loss in the Atlantic and Pacific sectors together barely induces cold temperatures in Eurasia,suggesting the nonlinearity of the atmospheric response to the Arctic sea ice loss.  相似文献   

8.
On the basis of Argo data and historic temperature/salinity data from the World Ocean Database 2001 ( WOD01 ), origins and spreading pathways of the subsurface and intermediate water masses in the Indonesian Throughflow (ITF) region were discussed by analyzing distributions of salinity on representative isopyenal layers. Results were shown that, subsurface water mostly comes from the North Pacific Ocean while the intermediate water originates from both the North and South Pacific Ocean, even possibly from the Indian Ocean. Spreading through the Sulawesi Sea, the Makassar Strait, and file Flores Sea, the North Pacific subsurface water and the North Pacific Intermediate water dominate the western part of the Indonesian Archipelago. Furthermore as the depth increases, the features of the North Pacific sourced water masses become more obvious. In the eastern part of the waters, high sa- linity South Pacific subsurface water is blocked by a strong salinity front between Halmahera and New Guinea. Intermediate water in the eastern interior region owns salinity higher than the North Pacific intermediate water and the antarctic intermediate water ( AAIW), possibly coming from the vertical mixing between subsurface water and the AAIW from the Pacific Ocean, and possibly coming from the northward extending of the AAIW from the Indian Ocean as well.  相似文献   

9.
The Antarctic Intermediate Water (AAIW) exhibits a decadal variability during recent years, i.e., salinification before 1997 and freshening thereafter, with the maximum anomalies locating at the region of Brazil and Malvinas currents confluence. Our study proposed that the local mesoscale eddies may play an important role in triggering this decadal oscillation. The eddy activity intensification (weakening) leads to the increase (decrease) of poleward cross-frontal eddy salinity flux and upward eddy buoyancy flux, which results in the weakening (strengthening) of the subsurface stratification and potential vorticity (PV). The PV anomalies facilitate (block) the poleward transport of warm saline subtropical water, while the stratification weakening favors the further downward transmission of salinity anomalies by processes of eddy flux as well as mean-flow advection (the stratification strengthening inhibits the vertical transport), then initiates the decadal change of the AAIW property. The whole process of the eddy-related propagation of salinity anomalies takes about 4 to 6 years.  相似文献   

10.
To address the mechanisms controlling halocline variability in the Beaufort Sea, the relationship between halocline shoaling/deepening and surface wind fields on seasonal to decadal timescales was investigated in a numerical experiment. Results from a pan-Arctic coupled sea ice-ocean model demonstrate reasonable performances for interannual and decadal variations in summer sea ice extent in the entire Arctic and in freshwater content in the Canada Basin. Shelf-basin interaction associated with Pacific summer and winter transport depends on basin-scale wind patterns and can have a significant influence on halocline variability in the southern Beaufort Sea. The eastward transport of fresh Pacific summer water along the northern Alaskan coast and Ekman downwelling north of the shelf break are commonly enhanced by cyclonic wind in the Canada Basin. On the other hand, basin-wide anti-cyclonic wind induces Ekman upwelling and blocks the eastward current in the Beaufort shelf-break region. Halocline shoaling/deepening due to shelf-water transport and surface Ekman forcing consequently occur in the same direction. North of the Barrow Canyon mouth, the springtime down-canyon transport of Pacific winter water, which forms by sea ice production in the Alaskan coastal polynya, thickens the halocline layer. The model result indicates that the penetration of Pacific winter water prevents the local upwelling of underlying basin water to the surface layer, especially in basin-scale anti-cyclonic wind periods.  相似文献   

11.
北极冰海耦合模式对两种不同大气再分析资料响应的分析   总被引:2,自引:2,他引:0  
牟龙江  赵进平 《海洋学报》2015,37(11):79-91
本文中我们比较了Climate Forecast System Reanalysis(CFSR)高分辨率的再分析数据集和低分辨率的Japanese 25-year Reanalysis Project(JRA25)再分析数据集在向下短波辐射、向下长波辐射、10m风场、近地面气温、降水、湿度上的不同,发现二者差异最大的为降水数据,其次为向下短波辐射数据、向下长波辐射数据。用这两个数据集驱动同一冰海耦合模式,CFSR强迫的海冰、北冰洋中层水和加拿大海盆温盐结构与实测相比有很大差距,等密度面上的地转流速在加拿大海盆和欧亚海盆比JRA25强迫的结果高20%,同时等密度面的深度偏深、位温偏高,在弗拉姆海峡的流通量也比海洋再分析数据Simple Ocean Data Assimilation(SODA)偏多。CFSR的向下辐射数据更加接近实测,采用此数据的敏感性实验模拟结果与实测符合的更好。对于海冰的模拟,云量起着至关重要的作用,降水带来的淡水通量通过影响大西洋入流水携带的热量进而影响到冰区。此外,CFSR过量的降水也是二者对于北冰洋温盐结构、弗拉姆海峡流通量以及地转流强度模拟产生偏差的主要原因。尽管风场的分辨率不同,在海盆尺度上对于海冰和海水温盐结构的影响并不大。  相似文献   

12.
The fronts and water masses in the Antarctic Circumpolar Current (ACC) are examined with a streamfunction projection of historical hydrographic data. The study shows that only structural criterion provides circumpolarly consistent and time-invariant definition for ACC fronts. The Polar Front position varies little in the streamfunction space, but the Subantarctic Front exhibits significant meridional deflection. Two types of the Antarctic Intermediate Water (AAIW) are identified: the Pacific-Atlantic type represents the recently-formed AAIW through the along-isopycnal subduction of polar surface waters; the Indian–Australian type represents relatively old AAIW which is strongly modified by the Agulhas water. The Subantarctic Mode Water (SAMW) is located in the South Pacific and south of Australia. There is evidence that the SAMW in the southeast Pacific originates from polar surface waters. Therefore the eastward freshening and cooling of SAMW is ascribed to influences from the south.  相似文献   

13.
北极冬季季节性海冰双模态特征分析   总被引:1,自引:1,他引:0  
郝光华  苏洁  黄菲 《海洋学报》2015,37(11):11-22
近年来北极海冰快速变化,北极中央区边缘正由以多年冰为主转为季节性海冰为主。通过对北极冬季季节性海冰的EOF分解发现,2002-2012年期间北极季节性海冰变化的前两模态主要体现为2005年和2007年的季节性海冰距平。其中第二模态主要体现了北极海冰在2005年的一种极端变化,而第一模态不仅体现了北极海冰在2007年的变化,还体现了北极季节性海冰的从负位相到正位相的转变。通过比较发现,在研究时段北极季节性海冰最主要的变化发生在北极太平洋扇区,在2007年,冬季季节性海冰距平发生位相转变,2007-2010年一直维持正位相,北极太平洋扇区冬季季节性海冰保持显著正距平。太平洋扇区表面温度最大异常也发生在2007年,从大气环流来看,2007年之后波弗特海区异常高压有利于夏季太平洋扇区海冰的减少,而西风急流的减弱有利于夏季波弗特海区异常高压的维持,结合夏季海冰速度,顺时针的冰速分布有利于海冰离开太平洋扇区,因而会导致冬季太平洋扇区季节性海冰转为正距平并且从2007年一直维持到2010年。  相似文献   

14.
Over 300 surface sediment samples from the Central and South Atlantic Ocean and the Caribbean Sea were investigated for the preservation state of the aragonitic test of Limacina inflata. Results are displayed in spatial distribution maps and are plotted against cross-sections of vertical water mass configurations, illustrating the relationship between preservation state, saturation state of the overlying waters, and overall water mass distribution. The microscopic investigation of L. inflata (adults) yielded the Limacina dissolution index (LDX), and revealed three regional dissolution patterns. In the western Atlantic Ocean, sedimentary preservation states correspond to saturation states in the overlying waters. Poor preservation is found within intermediate water masses of southern origin (i.e. Antarctic intermediate water (AAIW), upper circumpolar water (UCDW)), which are distinctly aragonite-corrosive, whereas good preservation is observed within the surface waters above and within the upper North Atlantic deep water (UNADW) beneath the AAIW. In the eastern Atlantic Ocean, in particular along the African continental margin, the LDX fails in most cases (i.e. less than 10 tests of L. inflata per sample were found). This is most probably due to extensive “metabolic” aragonite dissolution at the sediment-water interface combined with a reduced abundance of L. inflata in the surface waters. In the Caribbean Sea, a more complex preservation pattern is observed because of the interaction between different water masses, which invade the Caribbean basins through several channels, and varying input of bank-derived fine aragonite and magnesian calcite material. The solubility of aragonite increases with increasing pressure, but aragonite dissolution in the sediments does not simply increase with water depth. Worse preservation is found in intermediate water depths following an S-shaped curve. As a result, two aragonite lysoclines are observed, one above the other. In four depth transects, we show that the western Atlantic and Caribbean LDX records resemble surficial calcium carbonate data and δ13C and carbonate ion concentration profiles in the water column. Moreover, preservation of L. inflata within AAIW and UCDW improves significantly to the north, whereas carbonate corrosiveness diminishes due to increased mixing of AAIW and UNADW. The close relationship between LDX values and aragonite contents in the sediments shows much promise for the quantification of the aragonite loss under the influence of different water masses. LDX failure and uncertainties may be attributed to (1) aragonite dissolution due to bottom water corrosiveness, (2) aragonite dissolution due to additional CO2 release into the bottom water by the degradation of organic matter based on an enhanced supply of organic matter into the sediment, (3) variations in the distribution of L. inflata and hence a lack of supply into the sediment, (4) dilution of the sediments and hence a lack of tests of L. inflata, or (5) redeposition of sediment particles.  相似文献   

15.
The northward flowing Antarctic Intermediate Water (AAIW) is a major contributor to the large-scale meridional circulation of water masses in the Atlantic. Together with bottom and thermocline water, AAIW replaces North Atlantic Deep Water that penetrates into the South Atlantic from the North. On the northbound propagation of AAIW from its formation area in the south-western region of the Argentine Basin, the AAIW progresses through a complex spreading pattern at the base of the main thermocline. This paper presents trajectories of 75 subsurface floats, seeded at AAIW depth. The floats were acoustically tracked, covering a period from December 1992 to October 1996. Discussions of selected trajectories focus on mesoscale kinematic elements that contribute to the spreading of AAIW. In the equatorial region, intermittent westward and eastward currents were observed, suggesting a seasonal cycle of the AAIW flow direction. At tropical latitudes, just offshore the intermediate western boundary current, the southward advection of an anticyclonic eddy was observed between 5°S and 11°S. Farther offshore, the flow lacks an advective pattern and is governed by eddy diffusion. The westward subtropical gyre return current at about 28°S shows considerable stability, with the mean kinetic energy to eddy kinetic energy ratio being around one. Farther south, the eastward deeper South Atlantic Current is dominated by large-scale meanders with particle velocities in excess of 60 cm s-1. At the Brazil–Falkland Current Confluence Zone, a cyclonic eddy near 40°S 50°W seems to act as injector of freshly mixed AAIW into the subtropical gyre. In general, much of the mixing of the various blends of AAIW is due to the activity of mesoscale eddies, which frequently reoccupy similar positions.  相似文献   

16.
陈迪  孙启振 《海洋学报》2022,44(12):42-54
本文利用1951?2021年哈德莱中心提供的海冰和海温最新资料以及美国国家海洋和大气管理局气候预报中心提供的NCEP/NCAR再分析资料,分析探讨了北极海冰70余年的长期变化特征,进而研究了其快速减少与热带海温场异常变化之间的联系,揭示了在全球热带海洋海温场变化与北极海冰之间存在密切联系的事实。结果表明,北极海冰异常变化最显著区域出现在格陵兰海、卡拉海和巴伦支海。热带不同海区对北极海冰的影响存在明显时滞时间和强度差异,热带大西洋的影响相比偏早,印度洋次之,太平洋偏晚。热带大西洋、印度洋和中东太平洋海温异常影响北极海冰的最佳时间分别是后者滞后26个月、30个月和34个月,全球热带海洋影响北极海冰的时滞时间为33个月。印度洋SST对北极海冰的影响程度最强,其次是太平洋,最弱是大西洋。全球热带海洋对北极海冰的影响过程中,热带东太平洋和印度洋起主导作用。当全球热带海洋SST出现正(负)距平时,北极海冰会出现偏少(多)的趋势,而AO、PNA、NAO对北极海冰变化起重要作用,是热带海洋与北极海冰相系数的重要“纽带”。而AO、PNA和NAO不仅受热带海洋SST的影响,同时也受太平洋年代际振荡PDO和大西洋多年代际AMO的影响,这一研究为未来北极海冰快速减少和全球气候变暖机理的深入研究提供理论支撑。  相似文献   

17.
On the basis of the salinity distribution of isopycnal(σ_0=27.2 kg/m~3) surface and in salinity minimum, the Antarctic Intermediate Water(AAIW) around South Australia can be classified into five types corresponding to five regions by using in situ CTD observations. Type 1 is the Tasman AAIW, which has consistent hydrographic properties in the South Coral Sea and the North Tasman Sea. Type 2 is the Southern Ocean(SO) AAIW, parallel to and extending from the Subantarctic Front with the freshest and coldest AAIW in the study area. Type 3 is a transition between Type 1 and Type 2. The AAIW transforms from fresh to saline with the latitude declining(equatorward). Type 4, the South Australia AAIW, has relatively uniform AAIW properties due to the semienclosed South Australia Basin. Type 5, the Southeast Indian AAIW, progressively becomes more saline through mixing with the subtropical Indian intermediate water from south to north. In addition to the above hydrographic analysis of AAIW, the newest trajectories of Argo(Array for real-time Geostrophic Oceanography) floats were used to constructed the intermediate(1 000 m water depth) current field, which show the major interocean circulation of AAIW in the study area. Finally, a refined schematic of intermediate circulation shows that several currents get together to complete the connection between the Pacific Ocean and the Indian Ocean. They include the South Equatorial Current and the East Australia Current in the Southwest Pacific Ocean, the Tasman Leakage and the Flinders Current in the South Australia Basin, and the extension of Flinders Current in the southeast Indian Ocean.  相似文献   

18.
A comprehensive analysis of velocity data from subsurface floats in the northwestern tropical Atlantic at two depth layers is presented: one representing the Antarctic Intermediate Water (AAIW, pressure range 600–1050 dbar), the other the upper North Atlantic Deep Water (uNADW, pressure range 1200–2050 dbar). New data from three independent research programs are combined with previously available data to achieve blanket coverage in space for the AAIW layer, while coverage in the uNADW remains more intermittent. Results from the AAIW mainly confirm previous studies on the mean flow, namely the equatorial zonal and the boundary currents, but clarify details on pathways, mostly by virtue of the spatial data coverage that sets float observations apart from e.g. shipborne or mooring observations. Mean transports in each of five zonal equatorial current bands is found to be between 2.7 and 4.5 Sv. Pathways carrying AAIW northward beyond the North Brazil Undercurrent are clearly visible in the mean velocity field, in particular a northward transport of 3.7 Sv across 16°N between the Antilles islands and the Mid-Atlantic Ridge. New maps of Lagrangian eddy kinetic energy and integral time scales are presented to quantify mesoscale activity. For the uNADW, mean flow and mesoscale properties are discussed as data availability allows. Trajectories in the uNADW east of the Lesser Antilles reveal interactions between the Deep Western Boundary Current (DWBC) and the basin interior, which can explain recent hydrographic observations of changes in composition of DWBC water along its southward flow.  相似文献   

19.
Two field observations were conducted around the Lembeh Strait in September 2015 and 2016, respectively.Evidences indicate that seawater around the Lembeh Strait is consisted of North Pacific Tropical Water(NPTW),North Pacific Intermediate Water(NPIW), North Pacific Tropical Intermediate Water(NPTIW) and Antarctic Intermediate Water(AAIW). Around the Lembeh Strait, there exist some north-south differences in terms of water mass properties. NPTIW is only found in the southern Lembeh Strait. Water mass with the salinity of 34.6 is only detected at 200–240 m between NPTW and NPTIW in the southern Lembeh Strait, and results from the process of mixing between the saltier water transported from the South Pacific Ocean and the lighter water from the North Pacific Ocean and Sulawesi Sea. According to the analysis on mixing layer depth, it is indicated that there exists an onshore surface current in the northern Lembeh Strait and the surface current in the Lembeh Strait is southward.These dramatic differences of water masses demonstrate that the less water exchange has been occurred between the north and south of Lembeh Strait. In 2015, the positive wind stress curl covering the northern Lembeh Strait induces the shoaling of thermocline and deepening of NPIW, which show that the north-south difference of airsea system is possible of inducing north-south differences of seawater properties.  相似文献   

20.
Dense water formation and circulation in the Barents Sea   总被引:1,自引:0,他引:1  
Dense water masses from Arctic shelf seas are an important part of the Arctic thermohaline system. We present previously unpublished observations from shallow banks in the Barents Sea, which reveal large interannual variability in dense water temperature and salinity. To examine the formation and circulation of dense water, and the processes governing interannual variability, a regional coupled ice-ocean model is applied to the Barents Sea for the period 1948-2007. Volume and characteristics of dense water are investigated with respect to the initial autumn surface salinity, atmospheric cooling, and sea-ice growth (salt flux). In the southern Barents Sea (Spitsbergen Bank and Central Bank) dense water formation is associated with advection of Atlantic Water into the Barents Sea and corresponding variations in initial salinities and heat loss at the air-sea interface. The characteristics of the dense water on the Spitsbergen Bank and Central Bank are thus determined by the regional climate of the Barents Sea. Preconditioning is also important to dense water variability on the northern banks, and can be related to local ice melt (Great Bank) and properties of the Novaya Zemlya Coastal Current (Novaya Zemlya Bank). The dense water mainly exits the Barents Sea between Frans Josef Land and Novaya Zemlya, where it constitutes 63% (1.2 Sv) of the net outflow and has an average density of 1028.07 kg m−3. An amount of 0.4 Sv enters the Arctic Ocean between Svalbard and Frans Josef Land. Covering 9% of the ocean area, the banks contribute with approximately 1/3 of the exported dense water. Formation on the banks is more important when the Barents Sea is in a cold state (less Atlantic Water inflow, more sea-ice). During warm periods with high throughflow more dense water is produced broadly over the shelf by general cooling of the northward flowing Atlantic Water. However, our results indicate that during extremely warm periods (1950s and late 2000s) the total export of dense water to the Arctic Ocean becomes strongly reduced.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号