首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到5条相似文献,搜索用时 0 毫秒
1.
We report new nitrogen and argon isotope and abundance results for single breccia clasts and agglutinates from four different sections of the Luna 24 drill core in order to re-evaluate the provenance of N trapped in lunar regolith, and to place limits on the flux of planetary material to the Moon’s surface. Single Luna 24 grains with 40Ar/36Ar ratios <1 show δ15N values between ?54.5‰ and +123.3‰ relative to terrestrial atmosphere. Thus, low-antiquity lunar soils record both positive and negative δ15N signatures, and the secular increase of the δ15N value previously postulated by Kerridge (Kerridge, J.F. [1975]. Science 188(4184), 162–164. doi:10.1126/science.188.4184.162) is no longer apparent when the Luna and Apollo data are combined. Instead, the N isotope signatures, corrected for cosmogenic 15N, are consistent with binary mixing between isotopically light solar wind (SW) N and a planetary N component with a δ15N value of +100‰ to +160‰. The lower δ15N values of Luna 24 grains compared to Apollo samples reflect a higher relative proportion of solar N, resulting from the higher SW fluence in the region of Mare Crisium compared to the central near side of the Moon. Carbonaceous chondrite-like micro-impactors match well the required isotope characteristics of the non-solar N component trapped in low-antiquity lunar regolith. In contrast, a possible cometary contribution to the non-solar N flux is constrained to be ?3–13%. Based on the mixing ratio of SW to planetary N obtained for recently exposed lunar soils, we estimate the flux of micro-impactors to be (2.2–5.7) × 103 tons yr?1 at the surface of the Moon. Our estimate for Luna 24 agrees well with that for young Apollo regolith, indicating that the supply of planetary material does not depend on lunar location. Thus, the continuous influx of water-bearing cosmic dust may have represented an important source of water for the lunar surface over the past ~1 Ga, provided that water removal rates (i.e., by meteorite impacts, photodissociation, and sputtering) do not exceed accumulation rates.  相似文献   

2.
Denker  C.  Johannesson  A.  Marquette  W.  Goode  P.R.  Wang  H.  Zirin  H. 《Solar physics》1999,184(1):87-102
The Big Bear Solar Observatory (BBSO) has a long tradition of synoptic full-disk observations. Synoptic observations of contrast enhanced full-disk images in the Caii K-line have been used with great success to reproduce the Hi L irradiance variability observed with the Upper Atmosphere Research Satellite (UARS). Recent improvements in data calibration procedures and image- processing techniques enable us now to provide contrast enhanced H full-disk images with a spatial resolution of approximately 2 and a temporal resolution of up to 3 frames min–1.In this first paper in a series, we describe the instruments, the data calibration procedures, and the image-processing techniques used to obtain our daily H full-disk observations. We also present the final data products such as low- and high-contrast images, and Carrington rotation charts. A time series of an erupting mini- filament further illustrates the quality of our H full-disk observations and motivate one of the future research projects. This lays a solid foundation for our subsequent studies of solar activity and chromospheric fine structures. The high quality and the sunrise- to-sunset operation of the H full-disk observations presented in this paper make them an ideal choice to study statistical properties of mini-filament eruptions, chromospheric differential rotation, and meridional flows within the chromosphere, as well as the evolution of active regions, filaments, flares, and prominences.  相似文献   

3.
4.
High fluences (i.e. the integrated fluxes) of C, N, O group of nuclei and some of the heavier ones, in the energy interval 10–25 MeV/amu, have been identified in a Lexan polycarbonate detector assembly exposed on the exterior of the Skylab for 73 days. The existence of large flux of low energy nuclei in the Skylab orbit is surprising since the minimum geomagnetic cut-off energy for fully stripped nuclei (A/Z=2) is 50 MeV/amu at the orbit of the satellite, and the period of exposure was a quiet one, free from significant solar particle events. We have considered two sources for these particles: (i) partly ionized interplanetary ions accelerated within the magnetosphere and (ii) heavy nuclei trapped in the Earth's radiation belt. The flux and composition of the nuclei observed by us seem to be significantly different from those in the trapped radiation as known at present; hence it seems likely that the major part of the observed flux may be interpreted, in terms of partly ionized interplanetary ions that are further accelerated in the magnetosphere.  相似文献   

5.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号