首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Total organic carbon (TOC), total nitrogen (TN) and total phosphorus (TP) were determined in combination with stable isotope ratios of carbon and nitrogen (δ13COrg, δ15N) in a 63 cm sediment core from Longgan Lake, located in the middle reaches of the Yangtze River, China. These geochemical and isotopic records provide a continuous history of lake productivity and trophic state of Longgan Lake since 1890. Variations of δ13COrg, TOC, TN and TP indicate that primary productivity of Longgan Lake increased continuously during the last century and that the trophic state of the lake shifted from oligotrophic to mestrotrophic conditions accordingly. Anthropogenic sources of organic carbon (OC), nitrogen (N) and phosphorus (P) were distinguished from their natural background in the sediments using mass accumulation rates. Element mass accumulation rates suggested increased human activities in the lake’s catchment since 1950s, were especially the utilization of artificial fertilizers amplified the anthropogenic input of N and P into the lake. In the course of the improved availability of dissolved nutrients also primary productivity of Longgan Lake increased, resulting in an increase of the Suess-effect corrected organic carbon isotope ratios. δ15N of bulk sediments show a marked shift towards lower values around 1950 that has been attributed to the input of nitrogen from chemical fertilizers characterized by relatively depleted isotopic signatures into the lake.  相似文献   

2.
Lake Lochloosa, Florida (USA) recently underwent a shift from macrophyte to phytoplankton dominance, offering us the opportunity to use a whole-basin, mass-balance approach to investigate the influence of phosphorus loading on ecosystem change in a shallow, sub-tropical lake. We analyzed total phosphorus (TP) sedimentation in the basin to improve our understanding of the forcing factor responsible for the recent shift to phytoplankton dominance. We measured 210Pb activity, organic matter (OM), organic carbon (OC) and TP in short sediment cores from 20 locations to develop a comprehensive, whole-basin estimate of recent mass sedimentation rates (MSR) for bulk sediment, OM, OC and TP. The whole-basin sedimentation models provided insights into historic lake processes that were not evident from the limited, historic water quality data. We used Akaike’s Information Criteria to differentiate statistically between constant MSR and exponentially increasing MSR. An eightfold, exponential increase in TP accumulation over the past century provided evidence for the critical role of increased P loading as a forcing factor in the recent shift to phytoplankton dominance. Model results show increased TP retention and decreased TP residence time were in-lake responses to increased TP loading and the shift from macrophyte to phytoplankton dominance in Lake Lochloosa. Comparison of TP loading with TP retention and historic, diatom-inferred limnetic TP concentrations identified the TP loading threshold that was exceeded to trigger the shift to phytoplankton dominance.  相似文献   

3.
Sediment variables total organic carbon (TOC), total nitrogen (TN), total sulfur (TS), as well as their accumulation rates and atomic ratios (C/N and C/S), were studied along with stable isotopes (δ13C, δ15N, and δ34S), and specific biomarkers (n-alkanes and pigments) in a 35-cm-long sediment core from Lake Bhimtal, NW India. The average sedimentation rate is 3.6 mm year?1, and the core represents a provisional record of ~100 years of sedimentation history. Bulk elemental records and their ratios indicate that sediment organic matter (OM) is derived primarily from algae. In-lake productivity increased sharply over the last two decades, consistent with paleoproductivity reconstructions from other lakes in the area. An up-core decrease in δ13C values, despite other evidence for an increase in lake productivity, implies that multiple biogeochemical processes (e.g. external input of sewage or uptake of isotopically depleted CO2 as a result of fossil fuel burning) influence the C isotope record in the lake. The δ15N values (?0.2 to ?3.9 ‰) reflect the presence of N-fixing cyanobacteria, and an increase in lake productivity. The δ34S profile shows enrichment of up to 5.6 ‰, and suggests that sulfate reduction occurred in these anoxic sediments. Increases in total n-alkane concentrations and their specific ratios, such as the Carbon Preference Index (CPI) and Terrestrial Aquatic Ratio (TAR), imply in-lake algal production. Likewise, pigments indicate an up-core increase in total concentration and dominance of cyanobacteria over other phytoplankton. Geochemical trends indicate a recent increase in the lake’s trophic state as a result of human-induced changes in the catchment. The study highlights the vulnerability of mountain lakes in the Himalayan region to both natural and anthropogenic processes, and the difficulties associated with reversing trophic state and ecological changes.  相似文献   

4.
This paper aims to determine the ecological and chemical reference conditions (~1800?C1850 AD) and degree of floristic change at nine enriched lakes, covering a range of types across Europe, using fossil diatom assemblages in dated sediment cores and application of total phosphorus (TP) transfer functions. Additionally the study assesses the potential of analogue matching as a technique for identifying reference sites and for estimating reference TP concentrations for the study lakes using a training set of 347 European lakes and 719 diatom taxa. Oligotrophic, acidophilous to circumneutral taxa were predominant in the reference samples of several of the deep lakes, and benthic Fragilaria spp. dominated the reference samples of two high alkalinity shallow lakes. The degree of floristic change from the reference sample, assessed using the squared chord distance (SCD) dissimilarity coefficient, revealed that two sites had experienced slight change (Lago Maggiore, Felbrigg Lake), five experienced moderate change (Mjoesa, Loch Davan, Loch Leven, White Lough, Esthwaite Water), and two showed evidence of major change (Groby Pool, Piburger See). For three lakes, there were no analogues in the diatom dataset owing to the uniqueness and diversity of the diatom reference assemblages. For the remaining six sites the number of analogues ranged from 2 to 44. For two deep lakes most of the analogues seemed appropriate as they were of the same type and had low TP concentrations. However, for two other deep lakes and two shallow lakes some of the analogues differed markedly in their depth and alkalinity from the lake in question or had TP concentrations seemingly too high to represent reference conditions suggesting that the analogues may not be suitable as reference sites. For the deep lakes, similar reference TP values were calculated using the EDDI Combined TP transfer function and the analogue matching technique with concentrations typically <20 ??g L?1. However, for the shallow lakes, the analogue matching method produced inferred values considerably higher than those of the transfer function. The wide ecological tolerances of many of the diatom taxa found in the reference samples most likely explain the selection of inappropriate analogue sites. In summary, the study demonstrates that palaeoecological techniques can play a valuable role in determining reference conditions and indicates that the analogue matching technique has the potential to be a useful tool for identifying appropriate reference sites for lakes impacted by eutrophication.  相似文献   

5.
Aqueous calcium (Ca) concentrations are currently decreasing in many softwater lakes on the Boreal Shield. As the onset of these declines often pre-date direct monitoring programs, indirect techniques are required to examine the impacts of reduced Ca availability on aquatic communities with relatively high Ca demands such as the Cladocera (Class: Branchiopoda). Among the Cladocera, the family Daphniidae has been identified as a taxonomic group potentially useful for inferring past Ca concentrations due to their high Ca demands and preservation in lake sediments. Here, we use a ??top/bottom?? paleolimnological analysis to compare present-day cladoceran communities preserved in the surface sediments of 36 softwater lakes in south-central Ontario, Canada, which are potentially vulnerable to Ca decline (i.e. small headwater systems with present-day lakewater [Ca]?<?3?mg?L?1), with the communities present in lake sediments deposited prior to the onset of regional acid deposition. To distinguish the potential impacts of lake acidification from those of Ca availability (as Ca and pH trends are strongly correlated in this region), the study lakes were chosen to be evenly distributed about a present-day lakewater pH of 6 and Ca concentration of 1.5?mg?L?1 (threshold values). Despite the importance of pH as an explanatory variable for the present-day assemblages, a comparison of the sedimentary remains from the two time periods indicate there have been large declines since pre-industrial times in the relative abundances of Ca-rich Daphnia spp. (particularly of the Daphnia longispina species complex), regardless of present-day pH, accompanied by increases in the Ca-poor species Holopedium glacialis. These observations suggest that recent declines in Ca concentration may have already fallen below baseline conditions, with marked implications for ecosystem function due to the differential responses among cladoceran taxa.  相似文献   

6.
Changes in macrophyte communities have occurred over the past decades in many oligotrophic softwater lakes with low carbon availability. Slow-growing isoetid species have been replaced by faster-growing elodeid species. Commonly, these changes are explained by anthropogenic nutrient enrichment or acidification of the lake water. Here we present a multi-proxy study in which we analysed plant macrofossils, pollen and spores, as well as sedimentological data from several cores taken from a SW Norwegian softwater lake. Our results indicate that the elodeid macrophyte Callitriche hamulata first appeared in this lake in the 1970s. Proliferation of C. hamulata occurred in the 1990s, replacing the hitherto dominant submerged Isoëtes macrophyte vegetation. Independent lines of evidence, such as diatom-inferred TP and pH reconstructions, showed no change during the past 200 years, therefore ruling out both acidification and phosphorus enrichment of the lake as possible causes for the observed change in the macrophyte community. Alternatively, expansion of Callitriche at the expense of Isoëtes may have been related to increased aquatic carbon availability, although nitrogen enrichment may also have been important.  相似文献   

7.
Freshwater lakes in Antarctica fluctuate from ice-free state (during austral summer) to ice-cover state (during austral winter). Hence the lakes respond instantly to the seasonal climate of the region. The Antarctic seasons respond sharply to the glacial and interglacial climates and these signatures are archived in the lake sediments. A sediment core from Sandy Lake, a periglacial lake located in Schirmacher Oasis of East Antarctica records distinct changes in grain-size, C, N, C/N ratios (atomic), δ13COM and δ15NOM contents during the last 36 ky. The contents of the sedimentary organic matter (OM) proxies (Corg ~ 0.3 ± 0.2%, C/N ratios ~9 ± 5 and δ13COM ~?18 ± 6‰) indicate that the OM in this lake sediment is a product of mixing of terrestrial and lacustrine biomass. Distinctly lower contents of Corg (~0.2%) and sand (~50%), low C/N ratios (~8) and depleted δ13COM (~?20‰) during the Last Glacial Maximum (LGM: 32–17 ky BP based on Vostok Temperatures) suggest greater internal (autochthonous) provenance of organic matter and limited terrestrial (allochthonous) inputs probably due to long and intense winters in the Antarctic. Such intense winters might have resulted the lake surface to be ice-covered for most part of the year when the temperatures remained consistently colder than the Holocene temperatures. The denitrification within the lake evident by enriched δ15NOM (>10‰) during Antarctic LGM might have resulted from oxygen-limitation within the lake environment caused by insulated lake surface. The gradual increases in δ13COM, C/N and sand content starting at ~11 ky BP and attaining high values (~?11‰, ~10 and ~80% respectively) at ~6 ky BP together suggest a subtle change in the balance of sources of organic matter between algal and macrophyte/bryophyte nearly 8–9 ky later to the beginning of the deglaciation. Thus the seasonal opening-up of the Sandy Lake similar to the modern pattern started with the establishment of the optimum temperature conditions (i.e., 0 °C anomaly) in the Antarctic, prior to which the lake environment might have remained mostly insulated or closed.  相似文献   

8.
The ratio between chrysophycean cysts and diatom valves (CD ratio) in lake sediments has been suggested as a useful indicator of changing trophic state conditions in oligotrophic lakes. Other environmental factors, however, may influence the CD ratio because chrysophycean cysts usually reflect conditions in the planktonic environment and diatoms reflect benthic conditions. We investigated the CD ratio in 76 mountain lakes in the Pyrenees to determine the environmental drivers that influence the ratio and assess its value for paleoenvironmental inference. The lakes surveyed included a broad range with respect to bedrock type, altitude and surface area, characteristics that cover much of the variability that can be found in cold, oligotrophic mountain lakes. Lake depth and Ca2+ concentration explain most of the variation in the CD ratio. Trophic state factors (e.g. total phosphorus, TP) play a secondary role. As a predictor, CD ratio performs primarily as a lake depth indicator. The predictive models can be improved if trophic state (i.e. TP) and chemical conditions (Ca2+) are known or can be estimated independently. Use of the CD ratio for inferring Ca2+ oscillations only makes sense in lakes with Ca2+ <200 µeq/L or in those that oscillate below and above this threshold through time. Other interpretations of the CD ratio (e.g. lake trophic state changes, ice-cover duration) make sense if complementary paleolimnological evidence indicates that neither water depth nor Ca2+ concentration changed significantly. Indeed, paleolimnological interpretation of the CD ratio requires considering the particular characteristics of the lake and may vary depending on the temporal scale considered. This study provides some guidelines for evaluating critically the use of the CD ratio.  相似文献   

9.
The Kangerlussuaq area of southwest Greenland is a lake-rich landscape that covers a climate gradient: a more maritime, cooler and wetter coastal zone contrasts with a dry, continental interior. Radiocarbon-dated sediment sequences (covering ~11,200?C8,300?cal?year) from paired lakes at the coast and the head of the fjord were analysed for lithostratigraphic variables (organic-matter content, bulk density, Ti, Ca). Minerogenic and carbon accumulation rates from the four lakes were compared to determine catchment and lake response to Holocene climatic variability. Catchment erosion at the coast was dominated by cryonival processes, with considerable sediment production due to the limited vegetation cover and exposed rock faces. Input of minerogenic sediment at one site (AT4) was high (>1?gDW?cm?2?year?1) during the period 5,800?C4,000?cal?year BP, perhaps reflecting intensification of cryogenic processes on northeast-facing slopes and rapid delivery to the lake. This period of erosional activity was not observed at the nearby, higher elevation site (AT1) due to the lower catchment relief; instead, there was an abrupt decline in carbon and minerogenic accumulation rates at ~5,800?cal?year BP. Sediment accumulation rates at the inland sites were much lower (<0.005?gDW?cm?2?year?1) reflecting greater catchment stability (more extensive vegetation cover), lower relief and substantially lower precipitation, but synchronous increases in mineral accumulation rates from ~1,200 to 1,000?cal?year BP may reflect wind erosion associated with regional cooling and local aridity. Carbon-accumulation-rate profiles were similar at the two inland sites, with higher-than-average accumulation (~6?C8?g?C?m?2?year?1) during the early Holocene and a subsequent decline after ~6,000?cal?year BP. At the inland lakes, both mineral and carbon accumulation rates exhibited a stronger link to climate, driven by trends in effective precipitation and regional aeolian activity. Catchment differences (relief, altitude) lead to more individualistic records in both erosion history and lake productivity at the coast.  相似文献   

10.
Field observations showed that the characteristics of chemical composition of waters and the development of plankton algae in the lakes within the delta of the Selenga river are determined by their flowage. The most open Lake Nekipelovskoe communicates with the Selenga outlets throughout a year, and Lake Zavernyaikha only at the period of an open channel. Lake Semenovskoe and Lake Khlystov Zaton are located in the islands and are isolated from the outlets. According to composition of main ions, the lakes under investigation refer to the hydrocarbonate class, the calcium group. The sum of ions in the water of Lake Nekipelovskoe approaches the one in the Selenga (86?221 mg/dm3), and the highest sums of ions were recorded in the wintertime in the lakes isolated from the outlets (446?743 mg/dm3). The lakes of the delta are characterized by a high trophicity. The maximum concentrations of total phosphorus in Lake Nekipelovskoe and Lake Zavernyaikha were 68 and 122 μg mg/dm3, and in Lake Semenovskoe and Lake Khlystov Zaton ?0.8 and ?0.63 μg mg/dm3, respectively. The most intense development of algae is observed in Lake Zavernyaikha, which is due to the high population of Baikal endemics. Lake Zavernyaikha showed a close negative correlation between the concentration of NO 3 ? , mineral phosphorus and phytoplankton biomass; the correlation coefficient was ?0.8 and ?0.63, respectively. The lakes exhibited increased contents readily hydrolysable organic matter, and a decrease in dissolved oxygen concentration in winter; hydrogen sulfide was repeatedly recorded in Lake Khlystov Zaton. The water quality in the lakes during the springtime varies from “quite clean” to “weakly polluted”; at low-water periods, especially in winters, it can drop to the category of “exceedingly dirty”. The water quality of the Selenga can be influenced by the lakes during spring floods when material accumulated during the wintertime is transported to the river outlets and further to Lake Baikal.  相似文献   

11.
Mono Lake is a hypersaline alkaline lake in the high altitude Great Basin desert of eastern California. Algal productivity of the lake is nitrogen-limited, and a contributing source is derived from benthic nitrogen fixation. Lake level and salinity have fluctuated with natural climatic variations but have also been affected by the diversion of tributary streams. This research examines the influence of varied salinity and lake level on the potential for benthic nitrogen fixation in Mono Lake. A sediment-surface microbial mat community was exposed directly, and in acclimated cultures, to a range of Mono Lake salinities under anaerobic incubations and the activity of nitrogenase assayed by acetylene reduction. Activity was stimulated in light, but also occurred in darkness. Over an experimental salinity range from 50 to 150 g L−1 TDS, nitrogenase activity was reduced by 90 per cent, with the activity persisting at the highest salinity being attributable to dark fixation alone. Between a salinity of 50 g L−1, occurring in Mono Lake over 50 years ago, and 100 g L−1, nitrogenase activity was reduced by nearly half. Changes in the area of the littoral zone at varied lake levels also affect the total amount of potential benthic nitrogen fixation in the lake. An accounting of yearly inputs of nitrogen to Mono Lake suggests N2-fixation could contribute as much as 76–81 percent of the total. Inhibition of nitrogen fixation rates by increased salinity could limit the long-term nutrient supply and benthic primary productivity of this ecosystem.  相似文献   

12.
Maar lakes in the Auckland Volcanic Field are important high-resolution archives of Holocene environmental change in the Southern Hemisphere mid-latitudes. Stable carbon and nitrogen isotope analyses were applied on bulk organic matter and the green alga Botryococcus from a sediment core from Lake Pupuke (Auckland, North Island, New Zealand) spanning the period since 7,165?cal.?year BP. The origin of organic matter was established using total-organic?Ccarbon-to-nitrogen ratios (TOC/TN) as well as organic carbon (??13COM) and nitrogen (??15N) isotope composition of potential modern sources. This approach demonstrated that the contribution of allochthonous organic matter to the lake sediment was negligible for most of the record. The sedimentary TOC/TN ratios that are higher than Redfield ratio (i.e. >7) are attributed to N-limiting conditions throughout the record. Variations of nitrogen and carbon isotopes during the last 7,165?years are interpreted as changes in the dominant processes in the lake. While epilimnetic primary productivity controlled isotope composition before 6,600?cal.?year BP, microbial processes, especially denitrification and methane oxidation, caused overall shifts of the ??15N and ??13C values since the Mid-Holocene. Comparisons with climate reconstructions from the Northern Island suggest that changes in the wind-induced lake overturn and a shift to more pronounced seasonality were the most likely causes for lake-internal changes since 6,600?cal.?year BP.  相似文献   

13.
The Bunger Hills in East Antarctica occupy a land area of approximately 400 km2. They have been exposed by Holocene retreat of the Antarctic ice sheet and its outlet glaciers. The accompanying sea level rise flooded the marine inlets that now separate the northern islands and peninsulas from the major part of the hills. During deglaciation the continental ice sheet margin retreated south‐eastwards with several temporary halts, during which ice‐dammed lakes were formed in some valleys. These lakes were maintained long enough to permit formation of beaches of sand and gravel, and for the erosion of shore platforms and low cliffs in bedrock. Around the western end of Fish Tail Bay impressive shoreline features 20 m above sea level define a former ice‐dammed lake that was 5.5 km long. A similar 7 km long former ice‐dammed lake was formed at Lake Dolgoe. The more extensive and deeper glacial lake is revealed by well‐developed and preserved shoreline features cut at 29 m which is 16 m above present lake level. In addition, several small ice‐dammed lakes existed temporarily near Lake Shchel and in the valley to the west. Lake Fish Tail existed more than 6,900 14C years ago and Lake Shchel probably more than 6,680 14C years ago. It is inferred that the shore platforms and beaches were formed by lake ice and wave action over considerable periods when the lakes were impounded by steep cold ice margins. There appears to have been a balance between meltwater input and evaporative loss from the lakes in the cold dry continental climate. There is no evidence for rapid lake level fluctuations, and there was very little input of clastic sediment. This resulted in poor development of deltaic and rhythmically laminated lake floor deposits. It is suggested that such deposits are more characteristic of ice‐dammed lakes formed in association with wet‐based temperate ice than those associated with dry‐based polar ice.  相似文献   

14.
Wetlands and lakes in the Tanana Valley, Alaska, have provided important resources for prehistoric humans who inhabited this region. We examine an ~11,200?cal?yr BP record of environmental and paleolimnological changes from Quartz Lake in the middle Tanana Valley. Our data are also presented in the context of recent archaeological findings in the lake??s general vicinity that have 18 associated AMS 14C dates. We analyzed the stable-carbon and nitrogen isotope composition of total organic matter from the core, coupled with oxygen and carbon isotope analyses of Pisidiidae shells (fingernail clams), in addition to chironomid assemblage changes. Lacustrine sediments began to accumulate at ~11,200?cal?yr BP. Initially, autochthonous production was low and allochthonous organic input was negligible between 11,000 and 10,500?cal?yr BP, and were associated with relatively cool conditions at Quartz Lake at ~10,700?cal?yr BP. After 10,500?cal?yr BP, autochthonous production was higher coincident with a shift to chironomid assemblages dominated by taxa associated with warmer summer climates. A decrease in ??13C values of total organic carbon (TOC) and organic content of the sediment between 9,000 and 4,000?cal?yr BP may indicate declining autochthonous primary production. This period ended with an abrupt (~7???) decrease in the ??18O values from Pisidiidae shells at ~3,000?cal?yr BP, which we hypothesize represented an episodic connection (flood) of the lake with flow from the nearby (~6?km) Tanana River. Our findings coincide with evidence for major flooding at other locations connected to the Tanana River and further afield in Alaska. From ~3,000?cal?yr BP Quartz Lake subsequently appeared to become a relatively closed system, as indicated by the ??18OPisidiidae and ??13CPisidiidae data that are positively correlated and generally higher, which also correlates with a shift to moderately higher abundances of littoral chironomids. The cause of the transition to closed-basin conditions may have been geomorphic rather than climatic. This evidence of a progressively stronger evaporative influence on the lake??s closed hydrology after ~3,000?cal?yr BP is consistent with our modern ??18O and ??D water data from Quartz Lake that plot along a regional evaporative line we base on isotopic measurements from other local lakes and rivers.  相似文献   

15.
Due to methodological challenges there are only a few studies that focus on macrophyte dynamics in large lakes despite their notable role in a lake’s ecosystem functioning. This study investigates composition and productivity changes of the submerged vegetation of Lake Karakul, Pamir Mountains (Tajikistan), using sedimentary ancient DNA metabarcoding and elemental (C/N) and isotopic (δ13C, δ15N) measurements of Stuckenia cf. pamirica (Baagøe) Z. Kaplan (Potamogetonaceae) leaf remains. No Stuckenia cf. pamirica leaf remains were found for 28.7–26.1 cal ka BP, when both Potamogetonaceae and Chara (L.) DNA sequences were recorded, suggesting sparse submerged vegetation at the coring site. This agrees with the inference of a deep lake reached using geochemical proxies. From 26.1 to 17.5 cal ka BP a few macrophyte remains and high numbers of Potamogetonaceae sequences were recovered: lake level was probably low, as suggested by other studies on the lake. Another phase of increased numbers of Chara sequences and the absence of Stuckenia cf. pamirica leaf remains was found between 17.5 and 12.2 cal ka BP, which coincides with a lake-level transgression at Lake Karakul as indicated by paleo-shoreline investigations. Analyses of macrophyte remains reveal intermediate paleo-productivity from 6.9 cal ka BP and high paleo-productivity from 2.2 cal ka BP onwards. From comparisons with other studies, we suggest that lake-level changes are the main driver for the submerged vegetation composition and productivity at the coring site in Lake Karakul and underline our conclusions by depicting the present-day distribution of Stuckenia cf. pamirica and Chara within the lake.  相似文献   

16.
Bombah Broadwater is a shallow coastal lake within the Ramsar-listed Myall Lakes system on the mid-north coast of New South Wales, Australia. Increased nutrient and sediment loads resulting from catchment modification are thought to have instigated the loss of aquatic plants in the lake, causing it to “switch” from a clear, macrophyte dominated system (similar to the conditions in present day Myall Lake) to a turbid, phytoplankton dominated system. To assess this hypothesis, charophytes, foraminifera and aquatic fauna remains from an 800 year sediment record were examined. The sediment chronology was established using 14C, 210Pb and 137Cs radiometric dating and sediment composition. Interestingly, a clear increase in charophytes since European arrival conflicted with the hypothesised aquatic plant loss. Hence, it appears Bombah Broadwater has not undergone a change in stable state since European arrival. An additional and unexpected finding in the patterns of the foraminifera and testate amoeba suggest that Bombah Broadwater has freshened substantially since European arrival. This freshening may have resulted from increased catchment run off as a result of the clearance of catchment vegetation. Since catchment vegetation clearance is widespread in Australia, this finding raises the possibility that post-settlement freshening of coastal lakes may be a common occurrence.  相似文献   

17.
Subfossil zooplankton assemblages (Cladocera 22 taxa, Rotifera 1 taxon) were identified from the surface sediments of 36 shallow (median depth = 0.7 m) Danish coastal brackish lakes differing in epilimnic salinity (SAL, range 0.2–17.4), summer-mean total phosphorus (TP, 27–327 g l–1) and total nitrogen (TN, 0.850–2.629 mg l–1), as well as in submerged macrophyte coverage and planktivorous fish density (PL-CPUE). Cladoceran species richness declined significantly with increasing SAL, TP and TN, while no significant correlation was found to either PL-CPUE, macrophyte coverage or lake surface area. Bonferroni-adjusted forward selection within canonical correspondence analysis (CCA) showed that 22.1% of the variation in zooplankton data was explained by PL-CPUE, SAL and TP uniquely; each variable explaining an almost equally significant amount of variation in the zooplankton data. Predictive models to infer PL-CPUE, SAL and TP were developed using variance weighted-averaging (WA) procedures. Almost similar values of boot-strapped coefficient of determination (r2boot-strapped 0.22–0.38) were produced by the WA inference models of PL-CPUE, SAL and TP, while the inference models of TP produced the lowest boot-strapped root-mean-squared-error of prediction (RMSEPboot-strapped 0.29–0.36 log(TP + 1), g l–1). Yet, zooplankton TP and SAL optima (WA) were strongly correlated (r2 = 0.46), while PL-CPUE optima (WA) were independent of both TP and SAL optima, indicating that only the PL-CPUE inference models are suitable for making reconstructions.  相似文献   

18.
Lake eutrophication is a problem in many areas of Ontario, although the history of nutrient enrichment is poorly documented. The aim of this study was to construct a diatom-based transfer function to infer past phosphorus levels in Ontario lakes using paleolimnological analyses. The relationship between diatom assemblages and limnological conditions was explored from a survey of diatoms preserved in the surface sediments of 64 Southern Ontario lakes, spanning a total phosphorus gradient of 0.004 to 0.054 mg L-1. Over 420 diatom taxa were identified, 98 of which were sufficiently common to be considered in statistical analyses. Canonical correspondence analysis (CCA) determined that pH, ammonium, aluminum, spring total phosphorus (TP), strontium, total nitrogen (TN), maximum depth (MaxZ), chlorophyll a (Chla) and mean depth were significant variables in explaining the variance in the diatom species data. The environmental optima of common diatom taxa for the limnologically important variables (TP, pH, TN, MaxZ, Chla) were calculated using weighted averaging (WA) regression and calibration techniques, and transfer functions were generated. The diatom inference model for spring TP provided a robust reconstructive relationship (r2 = 0.637; RMSE = 0.007 mg L-1; r2 boot = 0.466; RMSEboot = 0.010 mg L-1). Other variables, including pH (r2 = 0.702; RMSE = 0.208; r2 boot = 0.485; RMSEboot = 0.234), TN (r2 = 0.574; RMSE = 0.0899 mg L-1; r2 boot = 0.380; RMSEboot = 0.127 mg L-1) and MaxZ (r2 = 0.554; RMSE = 1.05 m; r2 boot = 0.380; RMSEboot = 1.490 m), were also strong, indicating that they may also be reconstructed from fossil diatom communities. This study shows that it is possible to reliably infer lakewater TP and other limnological variables in alkaline Southern Ontario lakes using the WA technique. This method has the potential to aid rehabilitation programs, as it can provide water quality managers with the means to estimate pre-enrichment phosphorus concentrations and an indication of the onset and development of nutrient enrichment in a lake.  相似文献   

19.
Chrysophyte cysts preserved in recent and pre-industrial lake sediment samples from 54 Muskoka-Haliburton (Ontario) lakes were used in a paleolimnological study to determine the impact of acidic precipitation and cottage development on water quality. A total of 246 cyst morphotypes were identified. Ecological preferences of cyst morphotypes were determined using multivariate statistical analysis, cluster analysis, and species-environment correlations. Recent cyst assemblages were related to water chemistry and lake morphometric variables using Redundancy Analysis (RDA). The distribution of morphotypes was related to a gradient of acid neutralising capacity (ANC), expressed through the association of variables related to buffering (i.e. longitude, watershed area, and ionic concentration) with the first axis (1 = 0.29). Cyst assemblages were also defined, to a lesser extent (2 = 0.06), by a trophic status gradient, created through the combination of total nitrogen (TN), total phosphorus (TP), volume-weighted cottage density, and lake depth variables. The identification of lakewater pH and trophic status as important determinants of cyst assemblage structure allowed for the reconstruction of acidification and eutrophication related water chemistry changes using fossil cyst assemblages. The reconstruction of pre-industrial (pre-1850) water quality conditions with fossil cyst assemblages indicated that pH significantly decreased in 24.1% of the study lakes and increased in 16.7% of the lakes. Increases in pH in more alkaline drainage basins are attributed to alkalinity generation processes induced by acidic precipitation as has been shown in other studies. Total phosphorus (TP) concentrations significantly declined in 12.9% of the lakes and increased in 16.6% of lakes. Increases in [TP] were linked to cottage development. Decreases in trophic status may be due to landuse changes, the result of the acidification occurring in the area, or warmer and drier climates. A comparison of chrysophyte cyst and diatom water quality inferences show similar trends in pH changes. There is a good agreement between diatom and chrysophyte bioindicators with respect to [TP] changes in oligotrophic lakes (< 10 g/L); however, diatom inferences suggest that lakes with current [TP] values greater than 10 g/L have decreased in trophic status over time, while chrysophyte reconstructions suggest that these same lakes have become more productive systems.  相似文献   

20.
The variability of diatom species composition in lake surface sediments was studied along transects in four lakes in northeastern Germany. Three dimictic lakes (Dudinghausener See, Tiefer See, and Cambser See) and one shallow lake (Groß Peetscher See) were sampled. Large differences in diatom composition were found between adjoined samples from different depths within one lake. These differences were mainly displayed by planktonic species. For example, the relative frequency of Stephanodiscus alpinus varied between 4% and 43% within the surface sediment samples of the open-water region of Dudinghausener See. Using transfer functions for total phosphorus (TP) based on the European Diatom data-base (EDDI) combined TP data-set and a local data-set, the inferred TP values differed strongly within one lake when using Weighted Averaging-Partial Least Squares (WA-PLS) regression. In Tiefer See (average of measured TP: 30 μg l?1), the inferred TP values range from 45 to 110 μg l?1 using the transfer function based on WA-PLS regression and the EDDI data-set; and from 16 to 100 μg l?1 using WA-PLS and a local data-set. Performing Maximum Likelihood (ML) regression reduced the difference between measured and inferred values. For Tiefer See, the inferred TP values range between 16 and 45 μg l?1 using ML regression and the local data-set. Therefore, it seems that ML regression can deal better with the natural variability in species composition than WA-PLS regression. In general, it was shown that by using ML regression and the local data-set, the error of the inferred values was significant lower for all lakes than using WA-PLS regression and the EDDI data-set. The Root Mean Square Error of Prediction (RMSEP) was not useful in selecting the most stable transfer function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号