首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study analyzes the relationships of stable isotopes in precipitation with temperature, air pressure and humidity at different altitudes, and the potential influencing mechanisms of control factors on the stable isotopes in precipitation in Southwest China. There appear marked negative correlations of the δ18O in precipitation with precipitation amount, vapor pressure and atmospheric precipitable water (PW)at the Mengzi, Simao and Tengchong stations on the synoptic timescale; the marked negative correlations between the δ18O in precipitation and the diurnal mean temperature at 400 hPa, 500 hPa, 700 hPa and 850hPa are different from the temperature effect in middle-high-latitude inland areas. In addition, the notable positive correlation between the δ18O in precipitation and the dew-point deficit △Td at different altitudes is found at the three stations. Precipitation is not the only factor generating an amount effect. Probably,the amount effect is related to the variations of atmospheric circulation and vapor origins. On the annual timescale, the annual precipitation amount weighted-mean δ18O displays negative correlations not only with annual precipitation but also with annual mean temperature at 500 hPa. It can be deduced that, in the years with an abnormally strong summer monsoon, more warm and wet air from low-latitude oceans is transported northward along the vapor channel located in Southwest China and generates abnormally strong rainfall on the way. Meanwhile, the abnormally strong condensation process will release more condensed latent heat in the atmosphere, and this will lead to a rise of atmospheric temperature during rainfall but a decline of δ18O in the precipitation. On the other hand, in the years with an abnormally weak summer monsoon, the precipitation and the atmospheric temperature during rainfalls decrease abnormally but the δ18O in precipitation increases.  相似文献   

2.
The temporal and spatial variation on the stable isotopic compositions in precipitation and the relationship with temperature,precipitation and vapor sources are analyzed for the Tibetan Plateau and its adjacent regions.There is no temperature effect in the southern Tibetan Plateau and South Asia.Amount effect has been observed at a few sampling stations that account for about a half of the statistical stations.However,the seasonal variations on the stable isotopic compositions in precipitation at those stations are inconsistent with that of precipitation intensity.There is notable temperature effect in the middle and northern Tibetan Plateau and its adjacent Northwest China.It has been observed that the seasonal variations of the δ18O in precipitation are almost consistent with those of air temperature in these regions.Because vapor is directly originated from lowlatitude oceans,the relative heavy δ18O with small variation characterizes the rainfall in South Asia.A sharp depletion of the stable isotopic compositions in precipitation takes place from Kyangjin on the southern slop of the Himalayas to the Tanggula Mountains in the middle Plateau.The δ18O reaches minimum due to very strong rainout of the vapor from oceans as the vapor rises over the Himalayas.From the Tanggula Mountains to the northern Tibetan Plateau,the δ18O in precipitation increases with increasing latitude and the is otopic situation in the northern Plateau istransferred into Northwest China with little disruption.  相似文献   

3.
The humidity effect, namely the markedly positive correlation between the stable isotopic ratio in precipitation and the dew-point deficit △Td in the atmosphere, is put forward firstly and the relationships between the δ18O in precipitation and △Td are analyzed for the Urumqi and Kunming stations, which have completely different climatic characteristics. Although the seasonal variations in δ18O and △Td exhibit differences between the two stations, their humidity effect is notable. The correlation coefficient and its confidence level of the humidity effect are higher than those of the amount effect at Kunming, showing the marked influence of the humidity conditions in the atmosphere on stable isotopes in precipitation.Using a kinetic model for stable isotopic fractionation, and according to the seasonal distribution of meanmonthly temperature at 500 hPa at Kunming, the variations of the δ18O in condensate in cloud aresimulated. A very good agreement between the seasonal variations of the simulated mean δ18O and themean monthly temperature at 500 hPa is obtained, showing that the oxygen stable isotope in condensateof cloud experiences a temperature effect. Such a result is markedly different from the amount effect atthe ground. Based on the simulations of seasonal variations of δ18O in falling raindrops, it can be foundthat, in the dry season from November to April, the increasing trend with falling distance of δ18O in fallingraindrops corresponds remarkably to the great ATd, showing a strong evaporation enrichment function infalling raindrops; however, in the wet season from May to October, the δ18O in falling raindrops displaysan unapparent increase corresponding to the small ATd, except in May. By comparing the simulated meanδ18O at the ground with the actual monthly δ18O in precipitation, we see distinctly that the two monthlyδ18O variations agree very well. On average, the δ18O values are relatively lower because of the highlymoist air, heavy rainfall, small △Td and weak evaporation enrichment function of stable isotopes in thefalling raindrops, under the influence of vapor from the oceans; but they are relatively higher because of the dry air, light rainfall, great △Td and strong evaporation enrichment function in falling raindrops, under the control of the continental air mass. Therefore, the δ18O in precipitation at Kunming can be used to indicate the humidity situation in the atmosphere to a certain degree, and thus indicate the intensity of the precipitation and the strength of the monsoon indirectly. The humidity effect changes not only the magnitude of the stable isotopic ratio in precipitation but also its seasonal distribution due to its influence on the strength of the evaporation enrichment of stable isotopes in falling raindrops and the direction of the net mass transfer of stable isotopes between the atmosphere and the raindrops. Consequently, it is inferred that the humidity effect is probably one of the foremost causes generating the amount effect.  相似文献   

4.
The humidity effect, namely the markedly positive correlation between the stable isotopic ratio in precipitation and the dew-point deficit △Td in the atmosphere, is put forward firstly and the relationships between the δ18O in precipitation and △Td are analyzed for the Urumqi and Kunming stations, which have completely different climatic characteristics. Although the seasonal variations in δ18O and △Td exhibit differences between the two stations, their humidity effect is notable. The correlation coefficient and its confidence level of the humidity effect are higher than those of the amount effect at Kunming, showing the marked influence of the humidity conditions in the atmosphere on stable isotopes in precipitation.Using a kinetic model for stable isotopic fractionation, and according to the seasonal distribution of meanmonthly temperature at 500 hPa at Kunming, the variations of the δ18O in condensate in cloud aresimulated. A very good agreement between the seasonal variations of the simulated mean δ18O and themean monthly temperature at 500 hPa is obtained, showing that the oxygen stable isotope in condensateof cloud experiences a temperature effect. Such a result is markedly different from the amount effect atthe ground. Based on the simulations of seasonal variations of δ18O in falling raindrops, it can be foundthat, in the dry season from November to April, the increasing trend with falling distance of δ18O in fallingraindrops corresponds remarkably to the great ATd, showing a strong evaporation enrichment function infalling raindrops; however, in the wet season from May to October, the δ18O in falling raindrops displaysan unapparent increase corresponding to the small ATd, except in May. By comparing the simulated meanδ18O at the ground with the actual monthly δ18O in precipitation, we see distinctly that the two monthlyδ18O variations agree very well. On average, the δ18O values are relatively lower because of the highlymoist air, heavy rainfall, small △Td and weak evaporation enrichment function of stable isotopes in thefalling raindrops, under the influence of vapor from the oceans; but they are relatively higher because of the dry air, light rainfall, great △Td and strong evaporation enrichment function in falling raindrops, under the control of the continental air mass. Therefore, the δ18O in precipitation at Kunming can be used to indicate the humidity situation in the atmosphere to a certain degree, and thus indicate the intensity of the precipitation and the strength of the monsoon indirectly. The humidity effect changes not only the magnitude of the stable isotopic ratio in precipitation but also its seasonal distribution due to its influence on the strength of the evaporation enrichment of stable isotopes in falling raindrops and the direction of the net mass transfer of stable isotopes between the atmosphere and the raindrops. Consequently, it is inferred that the humidity effect is probably one of the foremost causes generating the amount effect.  相似文献   

5.
PRECIPITABLE WATER MEASUREMENTS WITH SUN-PHOTOMETER   总被引:6,自引:0,他引:6       下载免费PDF全文
In this paper a method is described of retrieving precipitable water from sun-photometermeasurements.The quantitative relationship between water vapor transmission and precipitablewater is established by means of LOWTRAN 7 model.Calibration of the water vapor absorptionchannel is made through a modified Langley method.The good agreement between the sun-photometer and radiosonde water vapor retrieval indicates that this method is feasible.The sun-photometer is operated at Hefei to monitor the precipitable water within one yearperiod.Characteristics of both diurnal evolution and within-one-year variation of the precipitablewater and their relation with synoptic system as well as surface dew-point temperature arepresented and analyzed.Errors in the retrieved precipitable water from the sun-photometermeasurements are also calculated and discussed.  相似文献   

6.
Simulation of the Effect of an Increase in Methane on Air Temperature   总被引:2,自引:0,他引:2  
The infrared radiative effect of methane was analyzed using the 2D, interactive chemical dynamical radiative SOCRATES model of the National Center for Atmospheric Research. Then, a sensitivity experi ment, with the methane volume mixing ratio increased by 10%, was carried out to study the influence of an increase of methane on air temperature. The results showed that methane has a heating effect through the infrared radiative process in the troposphere and a cooling effect in the stratosphere. However, the cooling effect of the methane is much smaller than that of water vapor in the stratosphere and is negligible in the mesosphere. The simulation results also showed that when methane concentration is increased by 10%, the air temperature lowers in the stratosphere and mesosphere and increases in the troposphere. The cooling can reach 0.2 K at the stratopause and can vary from 0.2-0.4 K in the mesosphere, and the temperature rise varies by around 0.001-0.002 K in the troposphere. The cooling results from the increase of the infrared radiative cooling rate caused by increased water vapor and O3 concentration, which are stimulated by the increase in methane in most of the stratosphere. The infrared radiation cooling of methane itself is minor. The depletion of O3 stimulated by the methane increase results indirectly in a decrease in the rate of so- lar radiation heating, producing cooling in the stratopause and mesosphere. The tropospheric warming is mainly caused by the increase of methane, which produces infrared radiative heating. The increase in H2O and O3 caused by the methane increase also contributes to a rise in temperature in the troposphere.  相似文献   

7.
The operational cloud-motion tracking technique fails to retrieve atmospheric motion vectors(AMVs) in areas lacking cloud; and while water vapor shown in water vapor imagery can be used, the heights assigned to the retrieved AMVs are mostly in the upper troposphere. As the noise-equivalent temperature difference(NEd T) performance of FY-2E split window(10.3–11.5 μm, 11.6–12.8 μm) channels has been improved, the weak signals representing the spatial texture of water vapor and aerosols in cloud-free areas can be strengthened with algorithms based on the difference principle, and applied in calculating AMVs in the lower troposphere. This paper is a preliminary summary for this purpose, in which the principles and algorithm schemes for the temporal difference, split window difference and second-order difference(SD) methods are introduced. Results from simulation and cases experiments are reported in order to verify and evaluate the methods, based on comparison among retrievals and the "truth". The results show that all three algorithms, though not perfect in some cases,generally work well. Moreover, the SD method appears to be the best in suppressing the surface temperature influence and clarifying the spatial texture of water vapor and aerosols. The accuracy with respect to NCEP 800 h Pa reanalysis data was found to be acceptable, as compared with the accuracy of the cloud motion vectors.  相似文献   

8.
The introduced mathematical model takes into account the role of the kinetic fractionation effect in a supersaturation environment at the ice surface as liquid and solid phases coexist in mixed cloud. Using the model, the temperature effect of stable isotopes in precipitation is simulated under different cooling conditions. The rate of change of δ18O against temperature in the process of wet adiabatic cooling is smaller than in the process of isobaric cooling under the same humidity. The increasing supersaturation ratio at the ice surface, Si, leads to the strengthening of the kinetic fractionation effect. The kinetic fractionation function makes the synthesis fractionation factor decreased and the change of δ18O with temperature flatted, compared with that in the equilibrium state. The simulated results show that the slope parameter b and the intercept d of the meteoric water line (MWL), δD = bδ18O+d, in wet adiabatic cooling are both greater than those in isobaric cooling. The global MWL lies between the two MWLs simulated under wet adiabatic and isobaric cooling processes, respectively. The magnitudes of b and d are directly proportional to Si. The greater the Si, the stronger the kinetic fractionation effect, and thus the greater the b and d, and vice versa. However, b and d have low sensitivity to the liquid-water contents in the cloud. Using the kinetic fractionation model, the variation of stable isotopes in precipitation at Urumqi is simulated. The simulated stable isotopic ratio vs temperature and the δD vs δ18O curves are very consistent with the actual regressions and MWL at Uruimqi, respectively.  相似文献   

9.
Based on the number of foggy days in Nanjing in December from 1980 to 2011, we analyzed the surface temperature and atmospheric circulation characteristics of foggy years and less-foggy years. Positive anomalies of the Arctic Oscillation (AO) were found to weaken the East Asian trough, which is not conducive to the southward migration of cold air. Simultaneously, this atmospheric condition favors stability as a result of a high-pressure anomaly from the middle Yangtze River Delta region. A portion of La Ni?a events increases the amount of water vapor in the South China Sea region, so this phenomenon could provide the water vapor condition required for foggy days in Nanjing. Based on the data in December 2007, which contained the greatest number of foggy days for the years studied, the source of fog vapor in Nanjing was primarily from southern China and southwest Taiwan Island based on a synoptic scale study. The water vapor in southern China and in the southwestern flow increased, and after a period of 2-3 days, the humidity in Nanjing increased. Simultaneously, the water vapor from the southwestern of Taiwan Island was directly transported to Nanjing by the southerly wind. Therefore, these two areas are the most important sources of water vapor that results in heavy fog in Nanjing. Using the bivariate Empirical Orthogonal Function (EOF) mode on the surface temperature and precipitable water vapor, the first mode was found to reflect the seasonal variation from early winter to late winter, which reduced the surface temperature on a large scale. The second mode was found to reflect a large-scale, northward, warm and humid airflow that was accompanied by the enhancement of the subtropical high, particularly between December 15-21, which is primarily responsible for the consecutive foggy days in Nanjing.  相似文献   

10.
The approach to remote sensing of water vapor by using global positioning systems(GPS)isdiscussed.In order to retrieve the vertical integrated water vapor(IWV)or the precipitable water(PW),the weighted“mean temperature”of the atmosphere,T_m would be estimated to the specificarea and season.T_m depends on surface temperature,tropospheric temperature profile,and thevertical distribution of water vapor.The surface temperature dependence is borne out by acomparison of T_m and the values of surface temperature T_s using radiosonde profiles of BeijingStation(No.54511)throughout 1992.The analysis of radiosonde profiles spanning a one-yearinterval(1992)from sites in eastern region of China with a latitude range of 20-50°N and alongitude range of 100-130°E yields the coefficients α and b of a linear regression equation T_m=α bT_s.  相似文献   

11.
In consideration of the radiation transter, latent and sensiole neat exchange between oceans and atmosphere, a three-dimensional autonomous nonlinear ordinary differential equation is established by statistical parameterization method. The variables of the model are the mean ocean surface temperature Tx, mean atmospheric temperature To and atmospheric relative humidity f, and the feedbacks of clouds, water vapor and CO2 are involved. The steady state corresponding to the present-day climate can be obtained from this model. The analysis of parameter sensibility in the steady state indicates that clouds have considerable negative feedback effects and water vapor may affect the sign of CO2 feedback. The stability analysis of the steady state to small disturbance indicates that with increase of the positive feedback effect of clouds, the steady state goes through such a structural variance series as a stable node→a stable focal point→an unstable focal point→an unstable node, and when the steady state bec  相似文献   

12.
Three sampling cross sections along the south path starting from the Tropics through the vapor passage in the Yunnan-Guizhou Plateau to the middle-low reaches of the Yangtze River, the north path from West China, via North China, to Japan under the westerlies, and the plateau path from South Asia over the Himalayas to the northern Tibetan Plateau, are set up, based on the IAEA (International Atomic Energy Agency)/WMO global survey network and sampling sites on the Tibetan Plateau. The variations, and the relationship with precipitation and temperature, of the δ18O in precipitation along the three cross sections are analyzed and compared. Along the south path, the seasonal differences of mean δ18O in precipitation are small at the stations located in the Tropics, but increase markedly from Bangkok towards the north, with the δ18O in the rainy season smaller than inthe dry season. The δ18O values in precipitation fluctuate on the whole, which shows that there are different vapor sources. Along the north path, the seasonal differences of the mean δ18O in precipitation for the stations in the west of Zhengzhou are all greater than in the east of Zhengzhou. During the cold half of the year, the mean δ18O in precipitation reaches its minimum at Urumqi with the lowest temperature due to the wide, cold high pressure over Mongolia, then increases gradually with longitude, and remains at roughly the same level at the stations eastward from Zhengzhou. During the warm half of the year, the δ18O values in precipitation are lower in the east than in the west, markedly influenced by the summer monsoon over East Asia. Along the plateau path, the mean δ18O values in precipitation in the rainy season are correspondingly high in the southern parts of the Indian subcontinent, and then decrease gradually with latitude. A sharp depletion of the stable isotopic compositions in precipitation takes place due to the very strong rainout of the stable isotopic compositions in vapor in the process of lifting over the southern slope of the Himalayas. The low level of the δ18O in precipitation is from Nyalam to the Tanggula Mountains during the rainy season,but δ18O increases persistently with increasing latitude from the Tanggula Mountains to the northern Tibetan Plateau because of the replenishment of vapor with relatively heavy stable isotopic compositions originating from the inner plateau. During the dry season, the mean δ18O values in precipitation basically decrease along the path from the south to the north. Generally, the mean δ18O in precipitation during the rainy season is lower than in the dry season for the regions controlled by the monsoons over South Asia or the plateau, and opposite for the regions without a monsoon or with a weak monsoon.  相似文献   

13.
The sensitivity of precipitation to sea surface temperature(SST) and its diurnal variation is investigated through a rainfall partitioning analysis of two-dimensional cloud-resolving model experiments based on surface rainfall budget.For all experiments,the model is set up using zero vertical velocity and a constant zonal wind and is integrated over 40 days to reach quasi-equilibrium states.The 10-day equilibrium grid-scale simulation data and a time-invariant SST of 29°C are used in the control experiment.In the sensitivity experiments,time-invariant SSTs are 27°C and 31°C with an average value of 29°C when the minimum and maximum values of diurnal SST differences are 1°C and 2°C,respectively.The results show that the largest contribution to total rainfall is from the rainfall with water vapor convergence and local atmospheric drying and hydrometeor gain/divergence(~30%) in all experiments.When SST increases from 27°C to 29°C,the contribution from water vapor convergence decreases.The increase of SST reduces the contribution of the rainfall with water vapor convergence primarily through the decreased contribution of the rainfall with local atmospheric drying and hydrometeor gain/divergence and the rainfall with local atmospheric moistening and hydrometeor loss/convergence.The inclusion of diurnal variation of SST with the diurnal difference of 1°C decreases the rainfall contribution from water vapor convergence primarily through the decreased contribution of the rainfall with local atmospheric moistening and hydrometeor loss/convergence.The contribution of the rainfall from water vapor convergence is barely changed as the diurnal difference of SST increases from 1°C to 2°C.  相似文献   

14.
Variations of δ^18 O in Precipitation along Vapor Transport Paths   总被引:3,自引:3,他引:3  
Three sampling cross sections along the south path starting from the Tropics through the vapor passage in the Yunnan-Guizhou Plateau to the middle-low reaches of the Yangtze River, the north path from West China, via North China, to Japan under the westerlies, and the plateau path from South Asia over the Himalayas to the northern Tibetan Plateau, are set up, based on the IAEA (International Atomic Energy Agency)/WMO global survey network and sampling sites on the Tibetan Plateau. The variations, and the relationship with precipitation and temperature, of the δ^18 O in precipitation along the three cross sections are analyzed and compared. Along the south path, the seasonal differences of mean δ^18 O in precipitation are small at the stations located in the Tropics, but increase markedly from Bangkok towards the north, with the 51so in the rainy season smaller than inthe dry season. The δ^18 O sovalues in precipitation fluctuate on the whole, which shows that there are different vapor sources. Along the north path, the seasonal differences of the mean δ^18 O in precipitation for the stations in the west of Zhengzhou are all greater than in the east of Zhengzhou. During the cold half of the year, the mean δ^18 O in precipitation reaches its minimum at Uriimqi with the lowest temperature due to the wide, cold high pressure over Mongolia, then increases gradually with longitude, and remains at roughly the same level at the stations eastward from Zhengzhou. During the warm half of the year, the δ^18 O values in precipitation are lower in the east than in the west, markedly influenced by the summer monsoon over East Asia. Along the plateau path, the mean δ^18 O values in precipitation in the rainy season are correspondingly high in the southern parts of the Indian subcontinent, and then decrease gradually with latitude. A sharp depletion of the stable isotopic compositions in precipitation takes place due to the very strong rainout of the stable isotopic compositions in vapor in the process of lifting over the southern slope of the Himalayas. The low level of the δ^18 O in precipitation is from Nyalam to the Tanggula Mountains during the rainy season,but δ^18 O increases persistently with increasing latitude from the Tanggula Mountains to the northern Tibetan Plateau because of the replenishment of vapor with relatively heavy stable isotopic compositions originating from the inner plateau. During the dry season, the mean δ^18 O values in precipitation basically decrease along the path from the south to the north. Generally, the mean δ^18 O in precipitation during the rainy season is lower than in the dry season for the regions controlled by the monsoons over South Asia or the plateau, and opposite for the regions without a monsoon or with a weak monsoon.  相似文献   

15.
This study analyzes the variability of northern Eurasian snow cover(SC) in autumn and the impacts of atmospheric circulation changes. The region of large SC variability displays a southward shift from September to November, following the seasonal progression of the transition zones of surface air temperature(SAT). The dominant pattern of SC variability in September and October features a zonal distribution, and that in November displays an obvious west–east contrast. Surface air cooling and snowfall increase are two factors for larger SC. The relative contribution of SAT and snowfall changes to SC, however, varies with the region and depends upon the season. The downward longwave radiation and atmospheric heat advection play important roles in SAT changes. Anomalous convergence of water vapor flux contributes to enhanced snowfall.The changes in downward longwave radiation are associated with those in atmospheric water content and column thickness.Changes in snowfall and the transport of atmospheric moisture determine the atmospheric moisture content in September and October, and the snowfall appears to be a main factor for atmospheric moisture change in November. These results indicate that atmospheric circulation changes play an important role in snow variability over northern Eurasia in autumn. Overall, the coupling between autumn Eurasian snow and atmospheric circulation may not be driven by external forcing.  相似文献   

16.
The climatological characteristics of precipitation and the water vapor budget in the Haihe River basin (HRB) are analyzed using daily observations at 740 stations in China in 1951-2007 and the 4-time daily ERA40 reanalysis data in 1958-2001. The results show that precipitation and surface air temperature present significant interannual and interdecadal variability, with cold and wet conditions before the 1970s but warm and dry conditions after the 1980s. Precipitation has reduced substantially since the 1990s, with a continued increase of surface air temperature. The total column water vapor has also reduced remarkably since the late 1970s. The multi-model ensemble from the Fourth Assessment Report (AR4) of the Intergovernmental Panel on Climate Change (IPCC) has capably simulated the 20th century climate features and successfully reproduced the spatial patterns of precipitation and temperature. Unfortunately, the models do not reproduce the interdecadal changes. Based on these results, future projections of the climate in the HRB are discussed under the IPCC Special Report on Emissions Scenarios (SRES) B1, A1B, and A2. The results show that precipitation is expected to increase in the 21st century, with substantial interannual fluctuations relative to the models’ baseline climatology. A weak increasing trend in precipitation is projected before the 2040s, followed by an abrupt increase after the 2040s, especially in winter. Precipitation is projected to increase by 10%-18% by the end of the 21st century. Due to the persistent warming of surface air temperature, water vapor content in the lower troposphere is projected to increase. Relative humidity will decrease in the mid-lower troposphere but increase in the upper troposphere. On the other hand, precipitation minus evaporation remains positive throughout the 21st century. Based on these projection results, the HRB region is expected to get wetter in the 21st century due to global warming.  相似文献   

17.
In consideration of the radiation transfer, latent and sensible heat exchange between oceans and at-mosphere, a three-dimensional autonomous nonlinear ordinary differential equation is established by statis-tical parameterization method. The variables of the model are the mean ocean surface temperature Ts, mean atmospheric temperature Ta and atmospheric relative humidity f, and the feedbacks of clouds, water vapor and CO2 are involved. The steady state corresponding to the present-day climate can be obtained from this model. The analysis of parameter sensibility in the steady state indicates that clouds have consid-erable negative feedback effects and water vapor may affect the sign of CO2 feedback. The stability analysis of the steady state to small disturbance indicates that with increase of the positive feedback effect of clouds, the steady state goes through such a structural variance series as a stable node→a stable focal point→an unstable focal point→an unstable node, and when the steady state becomes unstable it undergoes a subcritical Hopf bifurcation. When the steady state is at a focal point, the periodic oscillation solutions of damping or amplifying can be obtained with the period being about two years.  相似文献   

18.
In four seasons of 1982 measurements of atmospheric water vapor profiles and total precipitable water were made by a ground-based microwave radiometer operating at 1.35 cm wavelength. All data were processed by using Monte Carlo method. The statistical results of more than seventy cases show that the relative error compared to the radiosonde observations is 5.3% for the total precipitable water vapor and less than 20% for humidity profiles in the lower atmosphere below 750 mb. In addition, the relationship between the weather background and both the humidity profiles and the total precipitable water vapor were analyzed.  相似文献   

19.
Variations of δ~(18)O in Precipitation along Vapor Transport Paths   总被引:1,自引:0,他引:1  
Three sampling cross sections along the south path starting from the Tropics through the vapor passage in the Yunnan-Guizhou Plateau to the middle-low reaches of the Yangtze River, the north path from West China, via North China, to Japan under the westerlies, and the plateau path from South Asia over the Himalayas to the northern Tibetan Plateau, are set up, based on the IAEA (International Atomic Energy Agency)/WMO global survey network and sampling sites on the Tibetan Plateau. The variations, and the relationship with precipitation and temperature, of the δ18 O in precipitation along the three cross sections are analyzed and compared. Along the south path, the seasonal differences of mean δ18O in precipitation are small at the stations located in the Tropics, but increase markedly from Bangkok towards the north, with the δ18O in the rainy season smaller than in,the dry season. The δ18O values in precipitation fluctuate on the whole, which shows that there are different vapor sources. Along the n  相似文献   

20.
Based on the meteorological data of 105 aerological stations during the period of 1960-1969, the monthly average water vapor content ( WVC) in air column over the mainland of China is calculated. Charts showing the distribution of mean WVC for January and July and its seasonal variation associated with the atmospheric circulation in the lower troposphere over East Asia are also presented. Results obtained from this analysis will contribute to the assessment of water resources, as well as the studies of the formation of rainfall and climate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号