首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 62 毫秒
1.
2012年7月21日北京特大暴雨的多尺度特征   总被引:25,自引:6,他引:25  
本文采用观测和NCEP分析场资料对2012年7月21日发生在北京地区的特大暴雨过程的天气形势、水汽来源和中尺度对流系统的特征进行了研究。结果如下:“7.21”北京暴雨过程是高低空与中低纬系统共同配合的结果,暴雨发生在“东高西低”的环流形势下,低涡、切变线、低槽冷锋和低空急流为此次过程的主要影响天气系统;孟加拉湾至西太平洋地区热带辐合带(ITCZ)活跃,其中热带气旋的活动有利于水汽向东亚大陆输送,此次暴雨过程中华北地区的水汽源地包括孟加拉湾和我国东部的渤海、黄海等,低层的水汽主要来自东部,中层的水汽主要来自孟加拉湾;北京的强降雨有两段,第1段降雨虽然发生在冷锋前,但有明显冷空气的侵入,并与地形和东风的作用有关,第2段降雨对流的组织和增强与冷锋强迫相关。在有利环境下,中尺度对流系统频繁发生发展,持续时间长,且稳定少动是此次特大暴雨形成的重要原因。  相似文献   

2.
2012年7月下旬内蒙古中部出现罕见的极端降水事件(简称"7·27"暴雨)。利用NCEP再分析资料、常规观测和精细化监测等资料分析了"7·27"暴雨成因。结果表明:(1)贝加尔湖低涡异于常年。巴尔喀什湖到鄂霍茨克海为阻塞高压,其底部横槽加深生成贝加尔湖低涡。低涡内有冷空气活动,在对流层低层及地面激发出低涡和气旋。(2)该过程的中尺度特征明显。地面中尺度切变线不断新生、稳定维持,形成多个中尺度雨带。高空β中尺度对流云团不断新生、合并加强,形成对流复合体M CS。河套西北部、河套南部、锡林郭勒盟中西部三个暴雨区均是中尺度对流复合体M CS发展的结果。(3)垂直方向上,暴雨发生前到暴雨期从地面至700 h Pa的大气比湿达10~22 g·kg-1,且850~700 h Pa水汽垂直输送达到最强;水平方向上,南风风力辐合,末端到达45°N以北,河套南部地区为"水汽汇"。(4)对流层高层大气涡旋运动是该过程的直接诱因。大气涡旋运动由200 h Pa向700 h Pa传播,正涡度平流在700 h Pa到200 h Pa随高度增加,高层水平辐散、低层补偿辐合,大气强迫上升产生暴雨。(5)对流层中层持续"干侵入",低层持续的暖湿输送,大气不稳定能量不断重建,这是极端暴雨过程的热力机制。(6)随着全球气候变暖,亚洲夏季风加强,来自孟加拉湾和南海的水汽向东亚副热带地区输送加强,水汽输送进一步向北扩展到我国华北内陆地区,是"7·27"暴雨过程的重要原因。  相似文献   

3.
利用常规气象观测资料和柳州多普勒雷达观测资料,采用天气学诊断分析方法,对2017年7月1-2日发生在柳州市的一次特强降水过程进行了分析。结果表明:高原槽、低涡切变以及地面辐合线是此次过程的主要影响系统;副热带高压的稳定维持,使高原槽长时间停滞在黔桂交界一带;地面中尺度辐合线的长久维持为强降水提供了动力抬升的条件,辐合上升运动增强激发出大量的中尺度对流云团,强回波形成列车效应,从而产生大暴雨。  相似文献   

4.

利用常规观测资料、地面加密自动站资料、FY-2E红外卫星云图、多普勒天气雷达产品以及NCEP/NCAR逐6 h再分析资料,对2012年7月21日北京特大暴雨过程暖区降水与锋面降水阶段进行了细致划分,并对其不同阶段降水的时空分布特征作了比较分析。结果表明:以锋面相对于该过程总降水量中心的锋面移动情况作为降水阶段划分的主要依据,降水可划分为三个阶段,第一阶段(21日08-16时)主要为锋前暖区降水,降水中心位于河北省拒马河流域,北京西南部为次大值降水中心;第二阶段(21日16-20时)主要为锋面过境降水,降水中心位于北京西南部的房山区;第三阶段(21日20时-22日03时),北京西南部有显著锋后降水,降水中心与过境锋面相对应,位于北京东南部与河北交界处。该过程暴雨中心降水由暖区降水、锋面过境降水和锋后降水构成,其分别约占总降水量的40%、46%、14%。北京西北部、东北部和东南部降水主要由锋面降水构成,暖区降水所占比例在15%以下。河北省拒马河流域洪涝灾害主要由暖区暴雨引起,北京西南部洪涝灾害既有暖区降水的作用,又有锋面过境降水的作用。

  相似文献   

5.
6.
利用常规观测资料、加密观测降水资料、FY-2E卫星TBB资料、多普勒雷达资料和NCEP再分析资料,对2013年7月8—11日发生在四川省的连续性特大暴雨过程的中尺度特征进行分析。结果表明:1)此次持续84 h的暴雨过程集中在四川盆地西部,具有雨强大、持续时间长、沿龙门山脉山脚一带分布等特征。2)暴雨发生在有利的环流背景下,对流层高层受青藏高压控制,500 h Pa高度层上受稳定少动的西太平洋副热带高压阻挡使得短波槽东移后在四川盆地西部聚集,低层切变线、辐合线和西南低涡作用有利于强对流的发展。3)暴雨过程中有22个中尺度对流云团在盆地西部生成、发展、合并,伴随着7个中尺度雨团的活动。4)多个对流单体发展合并成多单体风暴,再进一步发展合并成带状或片状混合云,且在四川盆地西部表现明显"列车效应",这是强降水集中在该地区的原因。  相似文献   

7.
方翀  毛冬艳  张小雯  林隐静  朱文剑  张涛  谌芸  盛杰  蓝渝  林易  郑永光 《气象》2012,38(10):1278-1287
本文利用常规、自动气象站观测资料,卫星、雷达、风廓线探测资料和NCEP再分析资料(1°×1°,逐6小时),对2012年7月21日北京地区特大暴雨的中尺度对流条件和对流系统特征进行了初步探讨,结果表明:本次极端强降雨成因主要包括非常充沛的水汽,一定的对流不稳定性,对流系统持续的“列车效应”,以及低质心高效率的降雨对流系统。低层的切变线和地面辐合线相交的地区,是对流单体初生和强烈发展的区域;根据中层风的风向风速及地面辐合线的位置和走向,可以大致判断对流单体的移动方向及是否存在列车效应。基于静止卫星红外云图和雷达反射率因子资料的中尺度对流系统分析表明该次降水过程存在三个阶段:第一阶段为对流系统强烈发展的前期阶段;第二阶段对流系统发展最为强烈,北京大部分地区出现极端强降雨;第三阶段为北京地区对流和降雨显著减弱阶段。  相似文献   

8.
一次热带风暴外围特大暴雨分析   总被引:21,自引:8,他引:21  
郑峰 《气象》2005,31(4):77-80
运用T106数值预报产品、天气实况及卫星云图等非常规资料,对1999年9月4日在远离9909热带风暴中心的温州引发的特大暴雨进行探讨,发现秋季在厦门以南至广东东部登陆的台风,在浙中南沿海形成台风倒槽,该倒槽内暖湿切变线的中尺度对流云团是引起特大暴雨的重要条件。  相似文献   

9.
孙军  谌芸  杨舒楠  代刊  陈涛  姚蓉  徐珺 《气象》2012,38(10):1267-1277
本文是“北京7.21特大暴雨极端性分析及思考”的第二部分,第一部分“观测分析及思考”对此次过程的降水特点、水汽特点、中尺度对流系统(MCS)的环境场条件和发生发展过程进行了分析,指出这是一次极端降水过程。本文进一步从影响降水的因子:降水效率、水汽、上升运动、持续时间等方面进一步探讨极端性降水的成因,所用资料为业务中常用的模式分析和各种观测资料。分析表明,本次过程为典型华北暴雨环流形势,其中高层气流辐散区与低层低涡切变线的耦合是直接诱因;较高的环境相对湿度和湿层较厚,较低的抬升凝结高度和自由对流高度以及热带降水性质提高了本次过程的降水效率;异常大的水汽含量(可降水量达60-80mm)及与其相关的物理量异常,可作为判断极端降水的重要因子;环境大气具有中下层条件性不稳定,上层湿中性层结特性,CAPE值中等,同时上层干侵入增加了对流不稳定,有利于上升运动发展;低涡切变线及华北地形共同触发了MCS的在暖区生成发展;低涡北跳、MCS后向传播特性使暖区MCS东移速度慢,形成“列车效应”,造成降雨持续时间长。本文最后探讨了极端降水的预报思路。  相似文献   

10.
使用常规观测资料和NCEP FNL的1.0°×1.0°气象再分析资料,对2016年第10号(简称1610号)台风"狮子山"北上与中纬度系统相互作用在中国东北地区引发暴雨过程进行追踪和诊断分析,探究此次暴雨天气发生、发展的动力学、热力学和不稳定机制。分析结果表明:东北地区的强降水先后由西风带低涡和台风"狮子山"2个系统活动造成。在2个气旋逐渐接近过程中,台风东北侧的东南急流把海上的热量和水汽向低涡环流输送,在倒槽切变处辐合抬升,产生暴雨。大暴雨区位于倾斜锋区附近,对流稳定,中层存在湿对称不稳定,有利于加强降水强度。东北地区东部处于高空急流核右后方和低空急流核前方,高、低空急流耦合的区域,使高层强辐散和低层强辐合叠置,加强了暴雨区的上升运动,从而加强了降水强度。地形对暴雨有增幅作用。  相似文献   

11.
In this study, the Weather Research and Forecasting (WRF) model and meteorological observation data were used to research the long-distance moisture transport supply source of the extreme rainfall event that occurred on July 21, 2012 in Beijing. Recording a maximum rainfall amount of 460 mm in 24 h, this rainstorm event had two dominant moisture transport channels. In the early stage of the rainstorm, the first channel comprised southwesterly monsoonal moisture from the Bay of Bengal (BOB) that was directly transported to north China along the eastern edge of Tibetan Plateau (TP) by orographic uplift. During the rainstorm, the southwesterly moisture transport was weakened by the transfer of Typhoon Vicente. Moreover, the southeasterly moisture transport between the typhoon and western Pacific subtropical high (WPSH) became another dominant moisture transport channel. The moisture in the lower troposphere was mainly associated with the southeasterly moisture transport from the South China Sea and the East China Sea, and the moisture in the middle troposphere was mainly transported from the BOB and Indian Ocean. The control experiment well reproduced the distribution and intensity of rainfall and moisture transport. By comparing the control and three sensitivity experiments, we found that the moisture transported from Typhoon Vicente and a tropical cyclone in the BOB both significantly affected this extreme rainfall event. After Typhoon Vicente was removed in a sensitivity experiment, the maximum 24-h accumulated rainfall in north China was reduced by approximately 50% compared with that of the control experiment, while the rainfall after removing the tropical cyclone was reduced by 30%. When both the typhoon and tropical cyclone were removed, the southwesterly moisture transport was enhanced. Moreover, the sensitivity experiment of removing Typhoon Vicente also weakened the tropical cyclone in the BOB. Thus, the moisture pump driven by Typhoon Vicente played an important role in maintaining and strengthening the tropical cyclone in the BOB through its westerly airflow. Typhoon Vicente was not only the moisture transfer source for the southwesterly monsoonal moisture but also affected the tropical cyclone in the BOB, which was a key supply source of long-distance moisture transport for the extreme rainfall event on July 21, 2012 in Beijing.  相似文献   

12.
2018年7月15—17日,北京遭遇当年入汛以来最强降水过程。该过程具有持续时间长、累计雨量大、局地雨强强等特点。针对小时降水量阶段性减弱的特征,对该过程不同阶段三类对流风暴及其强降水特点进行了对比分析。结果表明: 16日凌晨副热带高压边缘暖区强降水主要由低质心型对流风暴造成,该时段暖湿层结深厚,垂直风切变较弱;对流系统具有类似热带强降水型风暴特征,加之“列车效应”影响,导致北京密云出现极端强降水;高质心型对流风暴出现在16日至17日凌晨,受高空槽和副热带高压共同影响,中层有干空气侵入,整层垂直风切变较强;对流系统存在悬垂结构特征,但局地性强、移速快,其造成的最大降水量要弱于低质心型对流风暴;混合型对流风暴对应17日高空槽过境的强降水,该时段能量和水汽条件较前期明显减弱;对流风暴的强度和降水量级在三类风暴中最弱。不同类型对流风暴对应的环境条件、结构特征及其移动传播特点决定了该过程不同阶段的降水强度和量级。  相似文献   

13.
利用多普勒雷达资料、FY-2E静止卫星和MODIS极轨卫星反演产品,研究2012年7月21日北京特大暴雨的云降水结构及云雨转化特征。结果表明:降水过程三阶段的云降水垂直结构不同。1)在暖区对流降水阶段,降水以暖雨机制启动,雨滴在暖区存在深厚的碰并增长过程,暖雨过程对降水起主要贡献。随着云体的发展,冷雨过程加剧。T-Re分析表明,-10℃层以下云滴凝结碰并显著,-10℃层以上为深厚的冰相增长带,云顶以冰相大粒子为主,云水向雨水转化迅速。2)在锋面对流降水阶段,降水系统为高度组织化的"低质心"强降水液态MCC(Mesoscale Convective Complex)系统。回波强度在冰水混合层增长较快,冻结层是此阶段成雨微物理的关键层。降水粒子在暖云区碰并增长较快,而蒸发或破碎过程并不显著。3)在锋后降水阶段,0℃层附近冰晶粒子与云水的碰并增长较为明显。前期降水存在明显的雨滴蒸发过程。随着云体的发展,暖区云水含量较少,降水粒子不能有效碰并增长。  相似文献   

14.
山东省三次暖切变线极强降水的对比分析   总被引:2,自引:2,他引:2  
杨晓霞  吴炜  姜鹏  徐娟  胡顺起  刁秀广  高留喜  王文青  华雯丽 《气象》2013,39(12):1550-1560
应用加密观测、常规观测、卫星云图和雷达探测的资料及NCEP/NCAR(1°×1°)再分析资料,对山东省三次极强降水天气进行了诊断和对比分析。结果表明,低层暖式切变线和500 hPa西风槽是三次强降水的主要影响系统。强降水前低层大气高温、高湿、对流不稳定,有较高的对流不稳定能量。低层暖式切变线辐合和暖湿平流产生的上升运动与地面辐合线附近产生的上升运动相叠加,触发对流不稳定能量释放,产生强对流,造成强降水。较强的风垂直切变使得对流有组织地发展。强降水期间,中高层弱的干冷空气侵入,使得对流不稳定加强,中高层具有高位涡的干冷空气入侵诱发低层中尺度涡旋发展, 辐合上升运动加强。低层暖湿气流螺旋式辐合上升与中高层入侵的干冷空气相遇,水汽凝结率增大,降水强度增强。中高层干冷空气侵入的时段与极强降水的时段相对应。有利的地形对局地短时极强降水有重要作用。低层暖式切变线和500 hPa低槽的位置、强弱不同,中高层冷空气的强度和入侵路径不同,对流云团的发生发展、内部结构和移动方向不同,造成强降水的地理位置和强度不同。  相似文献   

15.
利用常规观测资料、地面加密自动站、多普勒雷达等多种观测资料和高分辨率分析场资料,对2018年7月15—18日北京地区特大暴雨过程的降水时空演化规律、成因以及极端性进行了初步分析。结果表明:此次过程有3股明显降水“波峰”,是典型的强度大、时间长、效率高的华北暖区降水。①具有典型华北暴雨环流形势,高层辐散,中层位于副高边缘、缓慢东移的低槽前端,配合低层急流辐合及高温高湿条件。②此次暴雨过程有一定环流形势和物理量极端性,包括副高异常偏强偏北,低层较强的西南气流、暴雨区上游异常偏强的能量和水汽以及异常偏北的热带辐合带(CITZ)。③本地具有一定对流潜势,配合中低层西南气流的剧烈温湿输送,及其在山前强迫抬升,并与夜间山风形成地面辐合线,触发对流;此次过程雷达回波的“列车效应”和后向传播现象明显,回波具有低质心的热带降水回波特点。  相似文献   

16.
利用常规观测资料、 地面加密自动站、 多普勒雷达等多种观测资料以及雷达变分同化分析系统(VDRAS)的高分辨率分析场资料, 对2012年7月21日发生在北京的全市性大暴雨、 局地特大暴雨的系统结构演变特征及成因进行了初步分析。结果表明: (1) 此次降水过程分为两个阶段, 第一阶段在21日10—20时, 呈现出短时雨强大且波动性显著的对流性降水特点, 第二阶段降水在21日20时—22日04时, 降水相对平缓, 表现为锋面降水特征。(2) 21日天气尺度环流形势场配置满足华北暴雨的典型背景条件:高空急流形成的辐散与对流层中低层的低涡、 切变线及地面倒槽构成的深厚辐合区, 形成强烈垂直运动并持续维持的机制, 造成了长达16 h的强降水过程; 副热带高压外围的东南水汽通道和西南低空急流的水汽输送为暴雨发生提供了充沛水汽条件。(3)大暴雨过程第一阶段降水回波具有明显的 “列车效应” 传播特征,“列车效应” 的初始对流起源于地形强迫造成的暖区内中尺度辐合以及低空急流增强过程中的风速脉动; 中尺度对流单体沿低空急流轴左侧传播, 具有明显的重力波传播特征, 西南急流的稳定维持使惯性重力波不断从背景场中获得能量并不断发展。(4) 地形对降水有明显的增幅作用, 边界层内长时间维持的东南风在太行山脉前与西南风和东北风交汇, 在山前形成辐合带并长时间维持, 有利于水汽积聚; 山脉的阻挡使东南气流在迎风坡爬坡抬升, 从而加大了山前区域的降水量。  相似文献   

17.
2012年7月21日北京特大暴雨过程的水汽输送特征   总被引:6,自引:0,他引:6  
王婧羽  崔春光  王晓芳  崔文君 《气象》2014,40(2):133-145
利用NCEP再分析资料,根据水汽收支方程计算2012年7月21日北京特大暴雨时期华北东北部暴雨区域的水汽收支情况并分析水汽输送特征。得到以下结论:经向水汽输送在此次暴雨过程中起主要作用,暴雨区内水汽主要来源于中、低层(500 hPa以下)的南边界。暴雨区内水汽的辐合与暴雨发生的时间和空间具有较好一致性,在低层水汽的辐合起主要作用,中高层水汽垂直输送作用更为显著。HYSPLIT后向轨迹模拟得到的结果显示根据水汽源地划分影响此次暴雨过程水汽输送路径主要有:从孟加拉湾、南海地区处于中低层直接北上的西南路径,以及中层以下从我国东部海域(黄海、东海为主)进入内陆之后北折向东北偏北方向运动的L形高湿路径;同时高层沿着西风带西北路径的干空气输送也对此次强降水有重要影响。三者中从东部海域到达暴雨区的水汽贡献率最大,而孟加拉湾、南海的水汽输送对于此次强降水起到了明显的增强作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号