首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 203 毫秒
1.
王甫红  夏博洋  龚学文 《测绘学报》2016,45(12):1387-1395
提出了一种基于钟差变化率拟合建模的卫星钟差预报方法。以附加周期项的线性或二次多项式作为基础模型对钟差变化率序列进行拟合,最优估计卫星钟差的趋势项系数,然后直接使用精密定轨得到的相应时刻的卫星钟差计算预报初始时刻的基准项系数,来建立卫星钟差的预报模型。以IGS发布的快速星历(IGR)的卫星钟差为试验数据,对GPS星座中各种型号的所有卫星钟差进行预报。结果表明:本文方法3、6、12与24h的预报精度分别可达0.43、0.58、0.90与1.47ns,相比于传统的基于钟差拟合的预报方法,精度分别提高69.3%、61.8%、50.5%与37.2%;与IGS发布的超快速星历(IGU)的预报钟差相比,钟差精度分别提高15.7%、23.7%、27.4%与34.4%。  相似文献   

2.
实时GPS精密单点定位需要实时的卫星轨道和钟差产品,为此提出一种利用区域GPS连续运行参考站和IGS发布的IGU超快轨道进行实时精密单点定位的方法.该方法首先利用连续运行参考站观测数据与IGU超快轨道预报部分进行实时GPS卫星钟差的估计,然后利用估计得到的实时GPS卫星钟差产品和IGU超快轨道预报部分,进行用户GPS接...  相似文献   

3.
GPS实时精密单点定位需要实时的、精确的、可靠的预报卫星钟差预报,因此卫星钟差的预报是一项非常重要的工作,它对实时的高精度导航定位具有重要意义。为导航定位提供时间标准的导航卫星原子钟是非常精密的仪器,对外界环境非常敏感,无法将卫星钟差作为普通的白噪声处理,可以但可将卫星钟差看作是灰色系统来进行研究。本文根据灰色系统相关理论,将灰色系统模型GM(1,1)应用到卫星钟差的预报,并用IGS超快速星历建立了预报卫星钟差的灰色预测模型,研究了卫星钟差的变化规律。结果表明:灰色模型可用于卫星钟差的短期预报,它对超快速星历的预报精度与IGS产品中的IGU超快速星历本身的预报精度相当。  相似文献   

4.
主要介绍了利用IGS提供的超快速观测星历和预报星历进行5 min和30 s实时卫星钟差获取的方法,并对利用这两种星历文件获取的卫星钟差与IGS提供的最终星历做比较,最后得出结论:基于IGS的超快速观测星历采用线性模型预报实时卫星钟差的精度高于基于IGS超快速预报星历采用三次样条函数直接内插获得的实时卫星钟差的精度,可以达到3 ns,能够满足一般实时单点定位的精度要求。  相似文献   

5.
在实时GPS精密单点定位中,能否快速有效地得到高精度的卫星钟差预报值是影响实时单点定位速度和精度的一个重要因素,由于GPS原子钟的高频率、高敏感和极易受到外界及其本身因素影响的性质使得卫星钟差预报至今都没能得到很好地解决,本文在目前的卫星钟差预报基础上,分别探讨了利用灰色模型理论、线性模型和二次多项式模型等方法,以IGS超快星历中2004年12月7日卫星钟差观测资料预报8日的卫星钟差为例进行卫星钟差预报研究,初步得出如下结论:在利用IGS超快星历的前一天的卫星钟差观测值预报后一天的钟差时,线性模型相对方便有效;而灰色模型只要选取合适的模型指数系数,能得到较高精度;但二次多项式模型预报精度较差。利用线性模型能达到或优于IGS超快星历预报钟差的预报精度。  相似文献   

6.
王旭  柴洪洲  王昶 《测绘学报》2020,49(5):580-588
结合钟差数据的特点,提出了一种基于变化率的T-S模糊神经网络(TSFNN)钟差预报模型。首先计算相邻历元间钟差的变化率值并对其进行建模;然后利用TSFNN模型预报钟差变化率值,再将预报的变化率值还原,得到钟差预报值;最后,通过算例将本文所建模型与IGU-P产品、二次多项式模型(QP)及灰色模型(GM(1,1))进行试验对比。结果表明:在使用变化率方法后,TSFNN模型预报的精度和稳定性分别提高了69.8%和76.3%,而且与IGU-P钟差产品相比,预报的精度高出约10倍,同时模型预报的效果优于两种常用模型。因此,该模型可以实现卫星钟差较高精度的预报。  相似文献   

7.
针对现有的超快速钟差产品IGU精度较低以及无法满足实时PPP技术的问题,提出了一种改进的多项式+周期项钟差预报模型。该模型采用多项式+周期项非线性函数对钟差数据进行滑动估计,结合迭代法对拟合模型的随机误差进行自然修正,以实现对卫星钟差的预报估计。通过与常见的多项式模型、灰色系统模型和多项式+周期项模型的对比分析,结果表明:改进的多项式+周期项模型更加适用于卫星钟差预报,在1天内,其预报精度RMS可以达到0.57 ns,最大偏离程度为1 ns,明显优于灰色系统模型和多项式+周期项模型;随着预报时间的增长,多项式模型、灰色系统模型和多项式+周期项模型的预报精度大幅降低,而改进的多项式+周期项模型没有大幅的变化,预报结果比较稳定。   相似文献   

8.
IGS的多GNSS实验项目MGEX(Multi-GNSS Experiment)提供的精密钟差产品广泛应用于高精度导航定位领域。本文研究了卫星钟差精度评估的方法,以IGS最终钟差作为GPS卫星基准,以北斗星地双向时间频率传递钟差作为北斗卫星基准,对GFZ、CODE和WHU这3个分析中心的MGEX钟差产品精度进行了分析。研究结果表明:MGEX实验的GPS最终钟差RMS优于0.30 ns;超快速钟差实测部分RMS优于0.16 ns;24 h预报误差RMS优于3.5 ns。各分析中心北斗GEO卫星最终钟差互差RMS为0.75 ns;IGSO卫星为2.27~3.8 ns;MEO卫星为0.6~1.2 ns。北斗星地双向时间频率传递检核GEO卫星最终钟差RMS为2.6~2.7 ns;IGSO和MEO卫星为1~1.5 ns。北斗卫星超快速钟差实测部分RMS优于1 ns;24 h预报误差RMS为7~9 ns。  相似文献   

9.
灰色系统模型在卫星钟差短期预报中的应用   总被引:4,自引:1,他引:3  
为导航定位提供时间标准的导航卫星原子钟是非常精密的仪器,由于对外界环境非常敏感,无法将卫星钟差作为普通的白噪声处理,可以将卫星钟差看作是灰色系统来进行研究。根据灰色系统相关理论,将灰色系统模型GM(1,1)应用到卫星钟差的预报中,并分别用IGS精密星历和超快速星历建立预报卫星钟差的灰色预测模型,研究卫星钟差的变化规律。结果表明,灰色模型可用于卫星钟差的短期预报,它对超快速星历的预报精度与超快速星历本身的预报精度相当。  相似文献   

10.
艾青松  徐天河  孙大伟  任磊 《测绘学报》2016,45(Z2):132-138
根据北斗卫星导航系统星载原子钟自身的物理特性,采用武汉大学IGS数据中心发布的2016年1月1日至2016年11月1日共306天的事后钟差产品进行谱分析。分析结果表明:北斗卫星导航系统的3类卫星钟都存在一定的周期特性;其中GEO和IGSO卫星钟的主周期相对较为明显;GEO卫星钟的主周期依次为12、24、8和6h;IGSO的主周期为24、12、8和6h;而MEO的3个主周期为12.9、6.4和24h。依据各类原子钟的周期特性,同时对各天之间钟差的起始点偏差进行修正,并利用修正模型对北斗卫星钟差进行预报和精度分析。试验结果表明,改进的预报模型能显著提升北斗卫星的钟差预报精度,北斗卫星钟差24h、12h、6h的平均预报精度分别能达到6.55ns、3.17ns和1.76ns。  相似文献   

11.
Real-time clock offset prediction with an improved model   总被引:5,自引:3,他引:2  
The GPS orbit precision of the IGS ultra-rapid predicted (IGU-P) products has been remarkably improved since 2007. However, the satellite clock offsets of the IGU-P products have not shown sufficient high-quality prediction to achieve sub-decimeter precision in real-time precise point positioning (RTPPP), being at the level of 1–3 ns (30–90 cm) RMS in recent years. An improved prediction model for satellite clocks is proposed in order to enhance the precision of predicted clock offsets. First, the proposed prediction model adds a few cyclic terms to absorb the periodic effects, and a time adaptive function is used to adjust the weight of the observation in the prediction model. Second, initial deviations of the predictions are reduced by using a recomputed constant term. The simulation results have shown that the proposed prediction model can give a better performance than the IGU-P clock products and can achieve precision better than 0.55 ns (16.5 cm) in real-time predictions. In addition, the RTPPP method was chosen to test the efficiency of the new model for real-time static and kinematic positioning. The numerical examples using the data set of 140 IGS stations show that the static RTPPP precision based on the proposed clock model has been improved about 22.8 and 41.5 % in the east and height components compared to the IGU-P clock products, while the precisions in the north components are the equal. The kinematic example using three IGS stations shows that the kinematic RTPPP precision based on the proposed clock model has improved about 30, 72 and 44 % in the east, north and height components.  相似文献   

12.
As one of the IGS ultra-rapid predicted (IGU-P) products, the orbit precision has been remarkably improved since late 2007. However, because satellite atomic clocks in space show complicated time–frequency characteristics and are easily influenced by many external factors such as temperature and environment, the IGU-P clock products have not shown sufficient high-quality prediction performance. An improved prediction model is proposed in order to enhance the prediction performance of satellite clock bias (SCB) by employing a wavelet neural network (WNN) model based on the data characteristic of SCB. Specifically, two SCB values of adjacent epoch subtract each other to get the corresponding single difference sequence of SCB, and then, the sequence is preprocessed through using the preprocessing method designed for the single difference sequence. The subsequent step is to model the WNN based on the preprocessed sequence. After the WNN model is determined, the next single difference values at the back of the modeling sequence are predicted. Lastly, the predicted single difference values are restored to the corresponding predicted SCB values. The simulation results have shown that the proposed prediction principle based on the single difference sequence of SCB can make the WNN model simple in architecture and the predicting precision higher than that of the general SCB prediction modeling. The designed preprocessing method specific to the single difference of SCB is able to further improve the prediction performance of the WNN model by reducing the effect from outliers. The proposed SCB prediction model outperforms the IGU-P solutions at least on a daily basis. Specifically, the average prediction precisions for 6, 12 and 24 h based on the proposed model have improved by about 13.53, 31.56 and 49.46 % compared with the IGU-P clock products, and the corresponding average prediction stabilities for 12 and 24 h have increased by about 13.89 and 27.22 %, while the average prediction stability of 6 h is nearly equal.  相似文献   

13.
实时卫星钟差(satellite clock bias,SCB)的获取是实时精密单点定位(real-time precise point positioning,RTPPP)需要解决的关键问题。给出了国际GNSS服务(International GNSS Service,IGS)所提供的实时服务(real-time service,RTS)钟差产品的修复方法,分析了IGS02、IGS03实时数据流中GPS卫星钟差改正数的稳定性及其精度。同时,从原理上推导证明了钟差一次差分数据符合一次多项式模型,并结合对GPS卫星钟差改正数的分析提出了一种基于一次差分的钟差改正数预报算法,通过与一次多项式模型、二次多项式模型以及灰色模型的预报精度进行对比试验,结果表明,该钟差改正数预报算法预报精度有明显提高,预报30 s的精度达到0.06 ns,可满足实时精密单点定位的要求。  相似文献   

14.
针对传统GPS PPP(precise point positioning)时间比对算法依赖精密星历产品、时间延迟较长和实时性差等问题,提出了一种多站组网实时时间比对算法。采用IGU超快速星历产品作为解算输入条件,利用多站联测增加多余观测,将测站钟差和卫星钟差作为未知数统一解算。实验结果表明,比对结果与IGS最终钟差的一致性达到了0.3 ns以内,比对结果的天频率稳定度优于2.5×10-15。  相似文献   

15.
天顶对流层延迟(zenith tropospheric delay,ZTD)是影响GPS定位精度的关键因素,为了提高ZTD的预测精度,提出一种基于相空间重构的高斯过程回归预测模型.针对ZTD时间序列的混沌特性,利用国际GNSS服务(International GNSS Service,IGS)站提供的ZTD数据,采用C...  相似文献   

16.
卫星钟差的难预测性是影响实时高精度定位的重要因素之一。为快速获得高精度位置或对流层等信息,在非差观测模型的基础上,本文提出了一种延迟量约1 h的近实时钟差估计策略,该策略主要包含超快速轨道解算和钟差估计两部分。经验证,预报部分第2~5 h的GPS轨道三维平均精度为3.85 cm,BDS GEO和IGSO+MEO轨道三维平均精度分别为81.4和21.74 cm。基于超快速轨道可获得近实时钟差精度GPS为0.054 ns,BDS为0.12 ns。最后通过BDS+GPS静态PPP试验验证了轨道和钟差的可用性。  相似文献   

17.
为了分析不同卫星星历对天顶对流层延迟估计的影响,本文选取不同的卫星星历产品分别进行静态精密单点定位试验,估计天顶对流层延迟,并与IGS发布的天顶对流层延迟产品相比。结果表明,采用最终星历、快速星历和超快星历实测部分时,天顶对流层延迟的平均RMS值分别为4.5mm、4.3mm和4.6mm,估计精度一致。而采用超快星历外推部分时,平均RMS值为6.3mm,估计精度略低。  相似文献   

18.
基于MEA-BP神经网络的卫星钟差预报   总被引:1,自引:0,他引:1  
吕栋  欧吉坤  于胜文 《测绘学报》2020,49(8):993-1003
卫星钟差是影响导航定位精度的重要因素之一,建立高精度的钟差预报模型对高精度定位有重要意义。针对常用模型卫星钟差在短期预报中随时间增加误差积累,以及传统BP神经网络不稳定,容易出现过拟合等问题,本文提出一种基于思维进化算法(MEA)优化的BP神经网络钟差预报模型和算法。首先对原始钟差数据进行一次差处理;然后利用思维进化算法对BP神经网络的初始权值和阈值进行优化,给出该模型进行钟差预报的具体步骤;选用IGS站提供的多天GPS精密钟差产品数据进行试验分析,使用GPS一天中前12 h数据建模,进行2、3、6和12 h的钟差预报。结果表明:利用MEA-BP模型得到的上述4种时段的预报精度分别优于0.36、0.38、0.62和1.56 ns,预报误差曲线变化起伏较小,说明新模型的预报性能优于3种传统模型,新模型在钟差预报短期预报中的实用性及稳定性是较佳的。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号