首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This article reports the response of embedded circular plate anchors to varying frequencies of cyclic loading. The effects of time period of loading cycles and pre-loading on movement of anchors and post-cyclic monotonic pullout behavior are studied using a model circular (80 mm diameter) plate anchor, buried at embedment ratio of six in a soft saturated clay. The frequencies of loading cycles have showed considerable effect on movement of anchors. For given duration of loading, higher frequency cycles cause more movement of anchor than lower frequency cycles. Pre-loading reduces the movement of anchors in subsequent loading stages. When anchors are recycled at a load ratio level less than the pre-cycling load, the movement of anchor in recycling phase are very much reduced, but if the recycling is done at a higher load ratio level, the effect is not that much pronounced and the anchors behave as if they were not subjected to any cycling load in the past. Anchor subjected to cyclic loading and then monotonic pullout shows an increase in initial stiffness, whereas the peak pullout load was found to decrease marginally over that of an anchor not subjected to any cyclic loading. For the present test conditions, the relative post-cyclic stiffness of anchors is found to vary from 1.169 to 1.327.  相似文献   

2.
Foundations of offshore structures are designed to withstand a combination of static and cyclic loads due to ocean waves. Wave action on offshore structures can cause a significant amount of cyclic horizontal and vertical forces to be transmitted to the soil through the foundation. In all these cases, these cyclic loads are considered to be superimposed over the initial sustained static stress due to the self-weight of structures. This study considers various factors that influence the development of deformation and pore water pressure in a typical cemented marine clay. These results show that the sustained static shear stress significantly influences the strength and deformation behavior of marine clay under cyclic loading. Up to a certain range of sustained static stress, there is an improvement in strength during cyclic loading and the cyclic strains are greatly reduced.  相似文献   

3.
Foundations of offshore structures are designed to withstand a combination of static and cyclic loads due to ocean waves. Wave action on offshore structures can cause a significant amount of cyclic horizontal and vertical forces to be transmitted to the soil through the foundation. In all these cases, these cyclic loads are considered to be superimposed over the initial sustained static stress due to the self-weight of structures. This study considers various factors that influence the development of deformation and pore water pressure in a typical cemented marine clay. These results show that the sustained static shear stress significantly influences the strength and deformation behavior of marine clay under cyclic loading. Up to a certain range of sustained static stress, there is an improvement in strength during cyclic loading and the cyclic strains are greatly reduced.  相似文献   

4.
Plate anchors are extensively used in civil engineering constructions as they provide an economical alternative to gravity and other embedded anchors. The rate of loading is one of the important factors that affects the magnitude of soil resistance as well as soil suction force. This article outlines the effect of pullout rate on uplift behavior of plate anchors (70 mm diameter) buried in soft saturated clay by varying the pullout rate from 1.4 mm/min to 21.0 mm/min. The variation of breakout force and suction force with embedment depth and rate of pull are presented. A correlation between the rate of increase of undrained strength of clay and anchor capacity with rate of strain has been established. Finally an empirical equation has been proposed that includes the rate of pull in the estimation of breakout capacity of anchors.  相似文献   

5.
Plate anchors are extensively used in civil engineering constructions as they provide an economical alternative to gravity and other embedded anchors. The rate of loading is one of the important factors that affects the magnitude of soil resistance as well as soil suction force. This article outlines the effect of pullout rate on uplift behavior of plate anchors (70 mm diameter) buried in soft saturated clay by varying the pullout rate from 1.4 mm/min to 21.0 mm/min. The variation of breakout force and suction force with embedment depth and rate of pull are presented. A correlation between the rate of increase of undrained strength of clay and anchor capacity with rate of strain has been established. Finally an empirical equation has been proposed that includes the rate of pull in the estimation of breakout capacity of anchors.  相似文献   

6.
This article studies the effect of dynamic cyclic loading and surcharge preloading method on the post-construction settlement of low embankments. Soil samples obtained from the soft ground under an embankment were consolidated by surcharge preloading followed by static and dynamic cyclic loading in the odometer. The results show that the consolidation deformation of the soil samples is independent of the frequency of the dynamic cyclic loading, which was simulated to follow the half-sine wave, and this is consistent with the energy concept. The post-construction settlement increases with increasing amplitude of cyclic load and the effectiveness of surcharge preloading depends on the difference between magnitude of surcharge and amplitude of the cyclic load. Based on the consolidation theory combined with the test results, a formula has been proposed to compute the post-construction settlement of a low embankment under cyclic loading.  相似文献   

7.
Settlement and Stability Analysis on Soft Clay Under Cyclic Loading   总被引:5,自引:0,他引:5  
The results of undrained cyclic triaxial tests on three types of clays are collected and a relationship among the accumulated strain, the initial stress state, cyclic stress in the soil, as well as the number of cycles is established based on the experimental data. With this relationship, a procedure is proposed for subsidence and stability analysis on soft clay under the action of cyclic loads.  相似文献   

8.
This article presents a procedure to calculate the bearing capacity of suction anchors subjected to inclined average and cyclic loads at the optimal load attachment point using the undrained cyclic shear strength of soft clays based on the failure model of anchors proposed by Andersen et al. The constant average shear stress of each failure zone around an anchor is assumed and determined based on the static equilibrium condition for the procedure. The cyclic shear strength of each failure zone is determined based on the average shear stress. The cyclic bearing capacity is finally determined by limiting equilibrium analyses. Thirty-six model tests of suction anchors subjected to inclined average and cyclic loads were conducted, which include vertical and lateral failure modes. Model test results were predicted using the procedure to verify its feasibility. The average relative error between predicted and test results is 1.7%, which shows that the procedure can be used to calculate the cyclic bearing capacity of anchors with optimal loading. Test results also showed that the anchor was still in vertical failure mode under combined average and cyclic loads if an anchor was in vertical failure mode under static loads. The anchor failure would depend on the vertical resistance degradation under cyclic loads if an anchor was in lateral failure mode under static loads. Cyclic bearing capacities associated with the number of load cycles to failure of 1000 were about 75% and 80% of the static bearing capacity for vertical failure anchors and lateral failure anchors, respectively.  相似文献   

9.
Cumulative Deformation of Soft Clay Under Cyclic Loading   总被引:2,自引:1,他引:2  
Reconstituted specimens are prepared by means of vacuum preloading. Both static and cyclic triaxial tests are carried out, with the specimens consolidated under different principal stress ratios. A finite element method is put forward for calculating the cumulative deformation of soft clay under cyclic loading.  相似文献   

10.
A caisson breakwater is built on soft foundations after replacing the upper soft layer with sand. This paper presents a dynamic finite element method to investigate the strength degradation and associated pore pressure development of the intercalated soft layer under wave cyclic loading. By combining the undrained shear strength with the empirical formula of overconsolidation clay produced by unloading and the development model of pore pressure, the dynamic degradation law that describes the undrained shear strength as a function of cycle number and stress level is derived. Based on the proposed dynamic degradation law and M-C yield criterion, a dynamic finite element method is numerically implemented to predict changes in undrained shear strength of the intercalated soft layer by using the general-purpose FEM software ABAQUS, and the accuracy of the method is verified. The effects of cycle number and amplitude of the wave force on the degradation of the undrained shear strength of the intercalated soft layer and the associated excess pore pressure response are investigated by analyzing an overall distribution and three typical sections underneath the breakwater. By comparing the undrained shear strength distributions obtained by the static method and the quasi-static method with the undrained shear strength distributions obtained by the dynamic finite element method in the three typical sections, the superiority of the dynamic finite element method in predicting changes in undrained shear strength is demonstrated.  相似文献   

11.
The pile group with elevated cap is widely used as foundation of offshore structures such as turbines, power transmission towers and bridge piers, and understanding its behavior under cyclic lateral loads induced by waves, tide water and winds, is of great importance to designing. A large-scale model test on 3×3 pile group with elevated cap subjected to cyclic lateral loads was performed in saturated silts. The preparation and implementation of the test is presented. Steel pipes with the outer diameter of 114 mm, thickness of 4.5 mm, and length of 6 m were employed as model piles. The pile group was cyclic loaded in a multi-stage sequence with the lateral displacement controlled. In addition, a single pile test was also conducted at the same site for comparison. The displacement of the pile cap, the internal forces of individual piles, and the horizontal stiffness of the pile group are presented and discussed in detail. The results indicate that the lateral cyclic loads have a greater impact on pile group than that on a single pile, and give rise to the significant plastic strain in the soil around piles. The lateral loads carried by each row of piles within the group would be redistributed with loading cycles. The lateral stiffness of the pile group decreases gradually with cycles and broadly presents three different degradation patterns in the test. Significant axial forces were measured out in some piles within the group, owing to the strong restraint provided by the cap, and finally lead to a large settlement of the pile group. These findings can be referred for foundation designing of offshore structures.  相似文献   

12.
Based on a series of cyclic triaxial tests, the effect of cyclic frequency on the undrained behaviors of undisturbed marine clay is investigated. For a given dynamic stress ratio, the accumulated pore water pressure and dynamic strain increase with the number of cycles. There exists a threshold value for beth the accumulated pore water pressure and dynamic strain, below which the effect of cyclic frequency is very small, but above which the accumulated pore water pressure and dynamic strain increase intensely with the decrease of cyclic frequency for a given number of cycles. The dynamic strength increases with the increase of cyclic frequency, whereas the effect of cyclic frequency on it gradually diminishes to zero when the number of cycles is large enough, and the dynamic strengths at different frequencies tend to the same limiting minimum dynamic strength. The test results demonstrate that the reasons for the frequency effect on the undrained soil behaviors are beth the creep effect induced by the loading rate and the decrease of sample effective confining pressure caused by the accumulated pore water pressure.  相似文献   

13.
The accumulative shear deformation of soft clays under cyclic loads is considered as pseudo-staticcreep.A pseudo-static elasto-plastic cyclic creep model is developed based on the visco-elasto-plastic theory.Theparameters in the model are determined by cyclic triaxial soil tests.A method for analyzing the stability of offshoresoft foundation under wave loads is given by combining the model with pseudo-static creep analysis.An exampleis analyzed by the method.The results show that the horizontal and vertical stability of foundations under waveloads can be analyzed by it and the analytical results are qualitatively consistent with the observed failure modes ofshallow foundations.  相似文献   

14.
The degradation strength of soils under cyclic loading is studied and a method for deter-mining the cyclic degradation strength with cyclic triaxial tests is given in the paper.Furthermore,a dum-my static method for estimating the undrained bearing capacity for offshore soft foundation under waveloads is developed.It can consider the effect of the difference of cyclic stress for different parts of the foun-dation on both the degradation strength of the foundation soil and the bearing capacity so that the esti-mated result can better reflect the real condition of foundation under cyclic loading.The method can be ap-plied to plane and space problem.  相似文献   

15.
Laboratory model test results for the uplift of a shallow circular plate anchor embedded in a soft saturated clay are presented. For all tests the bottom of the anchor plate was vented to eliminate the mud suction force. The tests were divided into two categories: (1) short‐term tests to determine the variation of the net ultimate uplift capacity and hence the breakout factor with embedment ratio, and (2) creep tests with sustained uplift loads at varying embedment ratios. Based on the model test results, the variation with time, has been determined for the rate of strain of the soil located above the plate anchor. Empirical relationships for obtaining the rate of anchor uplift have been proposed.  相似文献   

16.
For load-controlled and displacement-controlled test data of piles cyclically axially loaded in clay, the displacement conditions are suggested for determining the shaft capacity. According to the suggested displacement conditions, not only the results of shaft capacity from laboratory model piles are close to those from in-situ piles, but also the results of load-controlled tests are in satisfactory agreement with those of displacement-controlled tests. Moreover, based on the test data of laboratory model piles in combination with the test data published, the paper suggests the values of the normalized shaft capacity of piles under a variety of static and cyclic loading combinations.  相似文献   

17.
Based on mesh regeneration and stress interpolation from an old mesh to a new one, a large deformation finite element model is developed for the study of the behaviour of circular plate anchors subjected to uplift loading. For the deterruination of the distributions of stress components across a clay foundation, the Recovery by Equilibrium in Patches is extended to plastic analyses. ABAQUS, a commercial finite element package, is customized and linked into our program so as to keep automatic and efficient running of large deformation calculation. The quality of stress interpolation is testified by evaluations of Tresca stress and nodal reaction forces. The complete pulling-up processes of plate anchors buried in homogeneous clay arc simulated, and typical pulling force-displacement responses of a deep anchor and a shallow anchor are compared. Different from the results of previous studies, large deformation analysis is of the capability of estimating the breakaway between the anchor bottom and soils. For deep anchors, the variation of mobilized uplift resistance with anchor settlement is composed of three stages, and the initial buried depths of anchors affect the separation embedment slightly. The uplift bearing capacity of deep anchors is usually higher than that of shallow anchors.  相似文献   

18.
土层抗浮锚杆承载力关键影响因素现场试验研究   总被引:2,自引:1,他引:2  
工程实践及理论研究均表明,锚土界面特性和锚杆的几何形状是影响抗浮锚杆承载力的2个关键因素。采用不同的施工工艺进行现场试验施工,得到了具有不同锚土界面特性和锚杆几何形状的抗浮锚杆。通过现场锚杆抗拔试验得到锚杆的应力应变关系及极限抗拔承载力。研究结果表明,改善锚土界面特性和采用变截面的锚固体可显著提高锚杆的抗拔承载力。同时,提出了1种经济高效的抗浮锚杆施工工法。  相似文献   

19.
目前没有规范给出串锚的水平承载力计算公式,为了利用有限元法研究串锚水平承载力特性,采用相关理论计算以及室内试验的方法来验证有限元法模拟计算的可靠性。实践证明,有限元法具有较高的计算精度。利用有限元分析软件ABAQUS建立了串锚-土体模型,模拟串锚在水平荷载作用下破坏过程,研究了串锚在水平荷载作用下破坏机理,从而得到了串锚水平承载力特性。在相同的工况条件下,串锚的水平承载力与其锚链长度有关,在一定范围内,增加锚链的长度可以提高串锚的水平承载力;串锚的水平承载力不是相应的单个锚的水平承载力相加,其水平承载力小于相应的单个锚水平承载力之和,在进行串锚水平承载力设计计算时应给与相应的考虑。  相似文献   

20.
Abstract

In this article, the degradation of the lateral bearing capacity of piles in soft clay subjected to cyclic lateral loading is studied numerically. A modified kinematic hardening constitutive model is employed to simulate the degradation of soft clay after cyclic loading. The modified model is verified by comparing the numerical simulation results with the results of centrifuge model tests. Furthermore, the modified model is applied to numerical simulations for evaluating the lateral bearing capacity of piles in soft clay subjected to cyclic lateral loading. The degradation of the lateral bearing capacity of piles in soft clay after different cyclic displacement levels and different numbers of cycles is investigated. The study reveals that the modified kinematic hardening constitutive model can effectively estimate the cyclic degradation behavior of piles in soft clay subjected to cyclic lateral loading. The degradation of the ultimate lateral bearing capacity progresses slowly with increasing cyclic displacement level for fewer cycles, and the degradation develops significantly at higher levels of cyclic displacement after applying a larger number of cycles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号