首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Abstract

Global land cover is one of the fundamental contents of Digital Earth. The Global Mapping project coordinated by the International Steering Committee for Global Mapping has produced a 1-km global land cover dataset – Global Land Cover by National Mapping Organizations. It has 20 land cover classes defined using the Land Cover Classification System. Of them, 14 classes were derived using supervised classification. The remaining six were classified independently: urban, tree open, mangrove, wetland, snow/ice, and water. Primary source data of this land cover mapping were eight periods of 16-day composite 7-band 1-km MODIS data of 2003. Training data for supervised classification were collected using Landsat images, MODIS NDVI seasonal change patterns, Google Earth, Virtual Earth, existing regional maps, and expert's comments. The overall accuracy is 76.5% and the overall accuracy with the weight of the mapped area coverage is 81.2%. The data are available from the Global Mapping project website (http://www.iscgm.org/). The MODIS data used, land cover training data, and a list of existing regional maps are also available from the CEReS website. This mapping attempt demonstrates that training/validation data accumulation from different mapping projects must be promoted to support future global land cover mapping.  相似文献   

2.
A digital earth platform for sustainability   总被引:1,自引:1,他引:0  
ABSTRACT

Based on the experience of the International Society for Digital Earth (ISDE), this paper describes some challenges foreseen in order to develop a Digital Earth platform that can support the implementation of the Sustainable Development Goals. The use of ready-to-use derived geospatial information is essential. Future Earth’s methodology of ‘co-design’ aims to bring together natural, social scientists and decision makers to plan and carry out research for sustainability. Sustainability implies transdisciplinary research, but in order for scientists of different disciplines to work together, they will need to be able to share, access and use common data. This is by far not simple! While the good will to share data might exist, the associated technological, ethical and privacy issues are difficult to solve. An adequate e-infrastructure will be required. ISDE could consider to use the SDGs is the basis to develop the desired Digital Earth platform. This paper, by no means, covers everything for a Digital Earth platform, it aims to trigger research discussions and to have a good view about a starting point.  相似文献   

3.
Global land cover maps are important sources of information for a wide range of studies including land change analysis and climate change research. While the global land cover maps attempt to present a consistent and homogenous data in terms of the production process, the existing datasets offer coarse resolution data, e.g. 1000 m for IGBP DISCover and 300 m for GlobeCover 2009 that is oftentimes challenging. Recently, GlobeLand30 data based on Landsat archive for two timestamps of 2000 and 2010 has been released. It presents a finer spatial resolution of 30 m, which provides numerous opportunities for a wide range of studies. The main objective of this study is to use this dataset for characterizing global land cover patterns, monitoring, and identifying extreme land change cases with their types and magnitude. The findings reveal massive land change patterns including deforestation, desertification, shrinkage of water bodies, and urbanization across the globe. The results and discussions of this research can help policy-makers, environmental planners, ecosystem services providers and climate change researchers to gain finer insights about the forms of global land change. Future research calls for further investigation of the underlying causes of the massive changes and their consequences on our ecosystems and human populations.  相似文献   

4.
Land cover change is increasingly affecting the biophysics, biogeochemistry, and biogeography of the Earth's surface and the atmosphere, with far-reaching consequences to human well-being. However, our scientific understanding of the distribution and dynamics of land cover and land cover change (LCLCC) is limited. Previous global land cover assessments performed using coarse spatial resolution (300 m–1 km) satellite data did not provide enough thematic detail or change information for global change studies and for resource management. High resolution (∼30 m) land cover characterization and monitoring is needed that permits detection of land change at the scale of most human activity and offers the increased flexibility of environmental model parameterization needed for global change studies. However, there are a number of challenges to overcome before producing such data sets including unavailability of consistent global coverage of satellite data, sheer volume of data, unavailability of timely and accurate training and validation data, difficulties in preparing image mosaics, and high performance computing requirements. Integration of remote sensing and information technology is needed for process automation and high-performance computing needs. Recent developments in these areas have created an opportunity for operational high resolution land cover mapping, and monitoring of the world. Here, we report and discuss these advancements and opportunities in producing the next generations of global land cover characterization, mapping, and monitoring at 30-m spatial resolution primarily in the context of United States, Group on Earth Observations Global 30 m land cover initiative (UGLC).  相似文献   

5.
地理信息公共服务平台地理实体数据建模研究   总被引:1,自引:0,他引:1  
围绕国家地理信息公共服务平台在线地理信息服务的需求,在分析国内外相关成果的基础上,提出了面向实体的数据建模思路,设计了地理实体数据模型,能够方便地实现地理信息与社会、经济、自然资源等专题信息的挂接,并有效解决多比例尺实体目标的一致性维护问题。  相似文献   

6.
The International GNSS Service (IGS) is an international activity involving more than 200 participating organisations in over 80 countries with a track record of one and a half decades of successful operations. The IGS is a service of the International Association of Geodesy (IAG). It primarily supports scientific research based on highly precise and accurate Earth observations using the technologies of Global Navigation Satellite Systems (GNSS), primarily the US Global Positioning System (GPS). The mission of the IGS is “to provide the highest-quality GNSS data and products in support of the terrestrial reference frame, Earth rotation, Earth observation and research, positioning, navigation and timing and other applications that benefit society”. The IGS will continue to support the IAG’s initiative to coordinate cross-technique global geodesy for the next decade, via the development of the Global Geodetic Observing System (GGOS), which focuses on the needs of global geodesy at the mm-level. IGS activities are fundamental to scientific disciplines related to climate, weather, sea level change, and space weather. The IGS also supports many other applications, including precise navigation, machine automation, and surveying and mapping. This article discusses the IGS Strategic Plan and future directions of the globally-coordinated ~400 station IGS network, tracking data and information products, and outlines the scope of a few of its numerous working groups and pilot projects as the world anticipates a truly multi-system GNSS in the coming decade.  相似文献   

7.
ABSTRACT

Global or regional land cover change on a decadal time scale can be studied at a high level of detail using the availability of remote sensing data such as that provided by Landsat. However, there are three main technical challenges in this goal. First, the generation of land cover maps without reference data is problematic (backdating). Second, it is important to maintain high accuracies in land cover change map products, requiring a reasonably rich legend within each map. Third, a high level of automation is necessary to aid the management of large volumes of data. This paper describes a robust methodology for processing time series of satellite data over large spatial areas. The methodology includes a retrospective analysis used for the generation of training and test data for historical periods lacking reference information. This methodology was developed in the context of research on global change in the Iberian Peninsula. In this study we selected two scenes covering geographic regions that are representative of the Iberian Peninsula. For each scene, we present the results of two classifications (1985–1989 and 2000–2004 quinquennia), each with a legend of 13 categories. An overall accuracy of over 92% was obtained for all 4 maps.  相似文献   

8.
Abstract

The HUMBOLDT project has the aim of implementing a Framework for harmonisation of data and services in the geoinformation domain, under the Infrastructure for Spatial Information in Europe (INSPIRE) Directive and in the context of the Global Monitoring for Environment and Security (GMES) Initiative. The two-pronged approach of HUMBOLDT comprises a technical side of software framework development and an application side of scenario testing and validation. Among the HUMBOLDT Application Scenarios designed to demonstrate the capabilities of the Framework there is the one covering Protected Areas themes and use cases. It aims to transform geoinformation, managed by park authorities, into a seamless flow that combines multiple information sources from different governance levels (European, national, regional), and exploits this newly combined information for the purposes of planning, management and tourism promotion. The Scenario constitutes a step further towards the integration of monitoring systems envisaged in the view of Digital Earth. Protected Areas Scenario creates an examples of the use of the HUMBOLDT tools in Desktop and Web GIS environment, together with setting up a server environment exploiting HUMBOLDT harmonisation framework as taking into account user requirements and needs and providing benefits for making the road to ESDI establishment easier.  相似文献   

9.
Abstract

The vision of Digital Earth (DE) put recently forward under the auspices of the International Society for DE extends the paradigm of spatial data infrastructures by advocating an interactive and dynamic framework based on near-to-real time information from sensors and citizens. This paper contributes to developing that vision and reports the results of a two-year research project exploring the extent to which it is possible to extract information useful for policy and science from the large volumes of messages and photos being posted daily through social networks. Given the noted concerns about the quality of such data in relation to that provided by authoritative sources, the research has developed a semi-automatic workflow to assess the fitness for purpose of data extracted from Twitter and Flickr, and compared them to that coming from official sources, using forest fires as a case study. The findings indicate that we were able to detect accurately six of eight major fires in France in the summer of 2011, with another four detected by the social networks but not reported by our official source, the European Forest Fire Information Service. These findings and the lessons learned in handling the very large volumes of unstructured data in multiple languages discussed in this study provide useful insights into the value of social network data for policy and science, and contribute to advancing the vision of DE.  相似文献   

10.
Abstract

The Digital Earth concept as originally proposed by former US Vice president Al Gore is now well established and widely adopted internationally. Similarly, many researchers world-wide are studying the causes, effects and impacts of Global Change. The authors commence by describing a five-step approach to the development of Digital Earth technologies. This is followed by a detailed account of Digital Earth research and developments in China. The authors then present the research results of Global Change studies carried out in China, based on the Digital Earth approach. These research results are based on a classification of global change regions. This covers the following global change situations:

Forest and grassland fires in Northern China, temperate region desertification and dust storms, underground coal fires, deforestation and carbon sequestration, protection and utilisation of wetlands, Avian Influenza and the spread of diseases, Tibet Plateau uplift and sub-tropical monsoon climate region, and sea-level rise. The research results show that the environment does not behave in a way easily understood by the traditional disciplinary approach. Although man is clearly a contributing factor to certain Global Change aspects, such as underground coal fires, desertification, land use changes etc., many of the aspects of Global Change are naturally occurring phenomena which have been changing over centuries, and will continue to do so, no matter what actions we undertake to reverse these processes. Hence, in their conclusions, the authors propose that the communities involved in Digital Earth modelling and in Global Change research co-operate closer to overcome the limitations inherent in the current ‘conventional’ scientific approach, where scientists have very much stayed within their respective scientific boundaries. Such an integrated approach will enable us to build the next level of scientific infrastructure required to understand and predict naturally occurring environmental changes, as well as that of coupled human–environmental systems.  相似文献   

11.
Abstract

While significant progress has been made to implement the Digital Earth vision, current implementation only makes it easy to integrate and share spatial data from distributed sources and has limited capabilities to integrate data and models for simulating social and physical processes. To achieve effectiveness of decision-making using Digital Earth for understanding the Earth and its systems, new infrastructures that provide capabilities of computational simulation are needed. This paper proposed a framework of geospatial semantic web-based interoperable spatial decision support systems (SDSSs) to expand capabilities of the currently implemented infrastructure of Digital Earth. Main technologies applied in the framework such as heterogeneous ontology integration, ontology-based catalog service, and web service composition were introduced. We proposed a partition-refinement algorithm for ontology matching and integration, and an algorithm for web service discovery and composition. The proposed interoperable SDSS enables decision-makers to reuse and integrate geospatial data and geoprocessing resources from heterogeneous sources across the Internet. Based on the proposed framework, a prototype to assist in protective boundary delimitation for Lunan Stone Forest conservation was implemented to demonstrate how ontology-based web services and the services-oriented architecture can contribute to the development of interoperable SDSSs in support of Digital Earth for decision-making.  相似文献   

12.
ABSTRACT

Reductionist thinking will no longer suffice to address contemporary, complex challenges that defy sectoral, national, or disciplinary boundaries. Furthermore, lessons learned from the past cannot be confidently used to predict outcomes or guide future actions. The authors propose that the confluence of a number of technology and social disruptors presents a pivotal moment in history to enable real time, accelerated, and integrated action that can adequately support a ‘future earth’ through transformational solutions. Building on more than a decade of dialogues hosted by the International Society for Digital Earth (ISDE), and evolving a briefing note presented to delegates of Pivotal 2015, the paper presents an emergent context for collectively addressing spatial information, sustainable development, and good governance through three guiding principles for enabling prosperous living in the twenty-first century. These are: (1) open data, (2) real-world context, and (3) informed visualization for decision support. The paper synthesizes an interdisciplinary dialogue to create a credible and positive future vision of collaborative and transparent action for the betterment of humanity and planet. It is intended that these Pivotal Principles can be used as an elegant framework for action toward the Digital Earth vision, across local, regional, and international communities and organizations.  相似文献   

13.
为有效地组织大范围地表覆盖数据验证,需要发动和组织来自不同地域、不同机构的专家,但往往缺少网络化环境下的协同验证方法和工具。针对这一问题,将互联网+、服务计算技术等与地表覆盖验证业务相融合,提出了互联网+地表覆盖验证服务模型,构建了面向互联网+的地表覆盖验证业务流程和方法,研制了基于景观形状指数(landscape shape index,LSI)抽样算法的在线验证系统GLCVal(global land cover validation),为大范围、高分辨率地表覆盖数据验证提供了新思路、新方法。利用所提出的方法与系统,与GEO(Group of Earth Observation)、UN-GGIM(the United Nations Initiative on Global Geospatial Information Management)等组织合作开展了GlobeLand30的全球验证,有效支持了跨区域专家的主动参与、多角色协同,促进了验证资源联通和共享,提高了验证效率。  相似文献   

14.
ABSTRACT

The foundation of modern Digital Earth frameworks is the Discrete Global Grid System (DGGS). To standardize the DGGS model, the Open Geospatial Consortium (OGC) recently created the DGGS Abstract Specification, which also aims to increase usability and interoperability between DGGSs. To support these demands and aid future research, open implementations are necessary. However, several OGC conformant DGGSs are not available for researchers to use. This has motivated us to develop an open-source web service that allows users to create quadrilateral grids based on the rHEALPix DGGS. In this paper, we describe the implementation of the web service, including issues and limitations, and demonstrate how discrete global grids and regional grids can be created. Lastly, we present examples that show how vector data sets can be modeled and integrated at different levels of resolution – a key benefit of the DGGS model.  相似文献   

15.
Abstract

The purpose of this paper is to contribute to the definition of a European perspective on Digital Earth (DE), identify some actions that can contribute to raise the awareness of DE in the European context and thus strengthen the European contribution to the International Society for Digital Earth (ISDE). The paper identifies opportunities and synergies with the current policy priorities in Europe (Europe 2020, Innovation Union and Digital Agenda) and highlights a number of key areas to advance the development of DE from a European perspective: (1) integrating scientific research into DE; (2) exploiting the Observation Web with human-centred sensing; and (3) governance, including the establishment of stronger linkages across the European landscape of funding streams and initiatives. The paper is offered also as a contribution to the development of this new vision of DE to be presented at the next International DE Conference in Perth, Australia, in August 2011. The global recognition of this new vision will then reinforce the European component and build a positive feedback loop for the further implementation of DE across the globe.  相似文献   

16.
Land degradation is a critical issue globally requiring immediate actions for protecting biodiversity and associated services provided by ecosystems that are supporting human quality of life. The latest Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services Landmark Assessment Report highlighted that human activities are considerably degrading land and threating the well-being of approximately 3.2 billion people.In order to reduce and ideally reverse this prevailing situation, national capacities should be strengthened to enable effective assessments and mapping of their degraded lands as recommended by the United Nations Sustainable Development Goals (SDGs). The indicator 15.3.1 (“proportion of land that is degraded over total land area”) requires regular data production by countries to inform and assess it through space and time. Earth Observations (EO) can play an important role both for generating the indicator in countries where it is missing, as well complementing or enhancing national official data sources.In response to this issue, this paper presents an innovative, scalable and flexible approach to monitor land degradation at various scales (e.g., national, regional, global) using various components of the Global Earth Observation System of Systems (GEOSS) platform to leverage EO resources for informing SDG 15.3.1. The proposed approach follows the Data-Information-Knowledge pattern using the Trends.Earth model (http://trends.earth) and various data sources to generate the indicator. It also implements additional components for model execution and orchestration, knowledge management, and visualization.The proposed approach has been successfully applied at global, regional and national scales and advances the vision of (1) establishing data analytics platforms that can potentially support countries to discover, access and use the necessary datasets to assess land degradation; and (2) developing new capacities to effectively and efficiently use EO-based resources.  相似文献   

17.
Abstract

A strategy for the development of the Australian spatial information industry called ‘Spatially Enabling Australia’ has recently been developed by the Cooperative Research Centre for Spatial Information. It comprises three fundamental research programs and an integrated applications program. Research Program 1, ‘Positioning,’ underpins a full framework of continuous operating reference stations to ultimately enable all of continental Australia to be capable of real-time precise positioning services based on global navigation satellite systems. Research Program 2, ‘Automated Spatial Information Generation,’ addresses complex processing of multiple remote sensing sources. Research Program 3, ‘Spatial Infrastructures,’ helps form the foundation for development of an Australian Spatial Marketplace that will make accessible vast amounts of government held data under a new licensing and access regime which supports combination with user-generated content from the mass market. The three core programs are integrated with Program 4, ‘Applications,’ to support users from the Health, Defense and Security, Energy and Utilities, Urban Development, and Agriculture–Natural Resources–Climate Change sectors. Program 4 drives outputs from the three core research programs in sector-specific deployments for high impact. This will see a rapid acceleration of the use and value adding of information products and services that utilize spatial information. There are considerable research and development challenges that must be met in order to achieve the strategic outcomes.  相似文献   

18.
Abstract

This paper introduces a new concept, distributed geospatial information processing (DGIP), which refers to the process of geospatial information residing on computers geographically dispersed and connected through computer networks, and the contribution of DGIP to Digital Earth (DE). The DGIP plays a critical role in integrating the widely distributed geospatial resources to support the DE envisioned to utilise a wide variety of information. This paper addresses this role from three different aspects: 1) sharing Earth data, information, and services through geospatial interoperability supported by standardisation of contents and interfaces; 2) sharing computing and software resources through a GeoCyberinfrastructure supported by DGIP middleware; and 3) sharing knowledge within and across domains through ontology and semantic searches. Observing the long-term process for the research and development of an operational DE, we discuss and expect some practical contributions of the DGIP to the DE.  相似文献   

19.
There is much interest in using volunteered geographic information (VGI) in formal scientific analyses. This analysis uses VGI describing land cover that was captured using a web-based interface, linked to Google Earth. A number of control points, for which the land cover had been determined by experts allowed measures of the reliability of each volunteer in relation to each land cover class to be calculated. Geographically weighted kernels were used to estimate surfaces of volunteered land cover information accuracy and then to develop spatially distributed correspondences between the volunteer land cover class and land cover from 3 contemporary global datasets (GLC-2000, GlobCover and MODIS v.5). Specifically, a geographically weighted approach calculated local confusion matrices (correspondences) at each location in a central African study area and generated spatial distributions of user's, producer's, portmanteau, and partial portmanteau accuracies. These were used to evaluate the global datasets and to infer which of them was 'best’ at describing Tree cover at each location in the study area. The resulting maps show where specific global datasets are recommended for analyses requiring Tree cover information. The methods presented in this research suggest that some of the concerns about the quality of VGI can be addressed through careful data collection, the use of control points to evaluate volunteer performance and spatially explicit analyses. A research agenda for the use and analysis of VGI about land cover is outlined.  相似文献   

20.
Providing land cover spatio-temporal information and geo-computing through web service is a new challenge for supporting global change research, earth system simulation and many other societal benefit areas. This requires an integrated knowledge representation and web implementation of static land cover and change information, as well as the related operations for geo-computing. The temporal logic relations among land cover snapshots and increments were examined with a matrix-based three-step analysis. Twelve temporal logic relations were identified and five basic spatial operations were formalized with set operators, which were all used to develop algorithms for deriving implicit change information. A knowledge representation for land cover change information was then developed based on these temporal logic and operation relations. A prototype web-service system was further implemented based on OWL-DL. Both online access and conversion of land cover spatio-temporal information can be facilitated with such a web service system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号