首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Thresholds of aeolian sand transport: establishing suitable values   总被引:4,自引:0,他引:4  
This paper assesses the practical use and applicability of the time fraction equivalence method (TFEM; Stout & Zobeck, 1996) of calculating a wind speed threshold for sand grain entrainment in field situations. A modification of the original method is used and is applied to 1 Hz measurements of wind speed and sand transport on a beach surface. Calculated grain entrainment thresholds are tested in terms of the percentage of sand transport events that they explain. It was found that the calculated thresholds offered a poor representation of the occurrence of saltation activity, explaining only about 50% of the measured transport events. Results are discussed in terms of system response time, wind speed measurement height, undetected events and sampling period. A shear velocity threshold for grain entrainment was also calculated, but this also failed to explain a high proportion of the sand transport events. The best results (67–91% of transport events explained) were found by calculating a threshold based on time‐averaged (≈ 40 s) wind velocity measurements. The applicability of a single threshold to a natural grain population is discussed. A natural surface is likely to possess a range of thresholds varying over short time scales in response to parameters such as grain rearrangement and changes in moisture conditions. The results show that calculated thresholds based on 40 s time‐averaged data consistently explain a high proportion of the recorded sand transport events. This is because such a time‐averaged approach accounts for higher frequency variability inherent in the sand transport system.  相似文献   

2.
Aeolian sand entrainment, saltation and deposition are important and closely related near surface processes. Determining how grains are sorted by wind requires a detailed understanding of how aerodynamic sand transport processes vary within the saltating layer with height above the bed. Grain‐size distribution of sand throughout the saltation layer and, in particular, how the associated flux of different grain size changes with variation in wind velocity, remain unclear. In the present study, a blowdown wind tunnel with a 50 cm thick boundary layer was used to investigate saltating sand grains by analyzing the weight percentage and transport flux of different grain‐size fractions and the mean grain size at different wind velocities. It was found that mean grain size decreases with height above the sand bed before undergoing a reversal. The height of the reversal point ranges from 4 to 40 cm, and increases with wind velocity following a non‐linear relationship. The content of the finer fractions (very fine and fine sand) initially increases above the sand bed and then decreases slightly with height, whereas that of the coarser fractions (medium and coarse sand) exhibits the opposite trend. The content of coarser grains and the mean grain size of sand in the saltation layer increase with wind velocity, indicating erosional selectivity with respect to grains in multi‐sized sand beds; but this size selectivity decreases with increasing wind velocity. The vertical mass flux structure of fine sand and very fine sand does not obey a general exponential decay pattern under strong wind conditions; and the coarser the sand grain, the greater the decrease rate of their transport mass with height. The results of these experiments suggest that the grain‐size distribution of a saltating sand cloud is governed by both wind velocity and height within the near‐surface boundary layer.  相似文献   

3.
Creep and saltation are the primary modes of surface transport involved in the fluid‐like movement of aeolian sands. Although numerous studies have focused on saltation, few studies have focused on creep, primarily because of the experimental difficulty and the limited amount of theoretical information available on this process. Grain size and its distribution characteristics are key controls on the modes of sand movement and their transport masses. Based on a series of wind tunnel experiments, this paper presents new data regarding the saltation flux, obtained using a flat sampler, and on the creeping mass, obtained using a specifically designed bed trap, associated with four friction velocities (0·41, 0·47, 0·55 and 0·61 m sec?1). These data yielded information regarding creeping and saltating sand grains and their particle size characteristics at various heights, which led to the following conclusions: (i) the creeping masses increased as a power function (q = ?1·02 + 14·19u*3) of friction wind velocities, with a correlation (R2) of 0·95; (ii) the flux of aeolian sand flow decreases exponentially with increasing height (q = a exp(–z/b)) and increases as a power function (q = ?26·30 + 428·40 u*3) of the friction wind velocity; (iii) the particle size of creeping sand grains is ca 1·15 times of the mean diameter of salting sand grains at a height of 0 to 2 cm, which is 1·14 times of the mean diameter of sand grains in a bed; and (iv) the mean diameter of saltating sand grains decreases rapidly with increasing height whereas, while at a given height, the mean diameter of saltating sand grains is positively correlated with the friction wind velocity. Although these results require additional experimental validation, they provide new information for modelling of aeolian sand transport processes.  相似文献   

4.
《Sedimentology》2018,65(6):1859-1874
Ripples are prevalent in aeolian landscapes. Many researchers have focused on the shape and formation of sand ripples, but few have studied the differences in the particle size of sand on crests and in troughs along bed, especially the variations caused by changes in friction velocity and the wind‐blowing duration. A particle size of 158 μm (d ) was used to create aeolian ripples in a wind tunnel under four friction velocities (u *) with different wind duration times (t ). Samples were collected from the surfaces of ripple crests and troughs, respectively, at seven sites, and particle sizes were measured using a Malvern Mastersizer 2000. The main results were: (i) The particle size distributions of sand in troughs are unimodal with slight variations of particle size parameters, including mean particle size, standard deviation, skewness and kurtosis, etc., under different conditions, while these particle size parameters of sand on crests change with friction velocity and deflation time. Moreover, some of the particle distribution curves for the sand on crests do not follow typical unimodal curves. (ii) With increasing friction velocity or deflation duration, the sand on the crests shows a coarsening process relative to those on the bed surface. The particle size of sand on crests at a 1 m bed increases linearly with friction velocity (=  344·27 + 34·54 u *) at a given wind‐blowing duration. The particle sizes of sand on crests at 1 m, 2 m and 4 m beds increase with a power‐law relationship (= a + t b, where a and b are fitting parameters) with deflation time at a given friction velocity. (iii) The probability cumulative curves of sand showed a three‐section pattern in troughs and on most of the crests but a four‐section pattern at crest locations due to increased influence by friction velocity and deflation time. The proportions of the sediment moved by suspension, saltation and creep in the three‐section pattern were within the ranges of 0·2% to 2·0%, 97·0% to 98·9%, and 0·8% to 3·0%, respectively. For the four‐section pattern, suspension accounted for 0·3% and 3·0%, and the proportion of creep increased with friction velocity and deflation time, while saltation decreased accordingly. Although these results require additional validation, they help to advance current understanding of the grain‐size characteristics of aeolian ripples.  相似文献   

5.
The analysis of the aeolian content of marine cores collected off the coast of the Atacama Desert (Mejillones Bay, Chile) suggests that marine sediments can record inter‐annual to inter‐decadal variations in the regional southerly winds responsible for particle entrainment at the surface of the nearby desert. However, the establishment of a simple and direct correlation between the sediment and wind records is complicated by the difference of time scales between the erosion and accumulation processes. The aim of this work is to: (i) assess the inter‐annual variability of the surface winds responsible for the sand movements; and (ii) determine whether the integration over periods of several months completely smoothes the rapid changes in characteristics of the transported and deposited aeolian material. To accomplish this aim, 14 years of 10 m hourly wind speed, measured at the Cerro Moreno (Antofagasta) Airport between 1991 and 2003 and at the Orica Station between 2000 and 2004, were analyzed. For each year, the wind speed statistical distribution can be represented by a combination of two to three Weibull functions. Winds of the lowest Weibull mode are too weak to move the sand grains at the surface of the pampa; this is not the case for the intermediate mode and especially for the highest speed mode which are able to erode the arid surface and transport particles to the bay. In each individual year of the period of study, the highest speed mode only accounted for a limited number of strong erosion events. Quantitative analysis of the distribution of the friction velocities and of their impact on erosion using a saltation model suggests that, although all wind speeds above threshold produce erosion events, values around 0·45 m sec?1 contribute less to the erosion flux. This gap allows separation of the erosion events into low and high saltation modes. The correlation (r = 0·997) between the importance of the third Weibull mode and the extent of higher rate saltation indicates that the inter‐annual variability of the erosion at the surface of the pampa, as well as the transport of coarse particles (>100 μm), are directly related to inter‐annual variations in the prevalence of the strongest winds. Finally, a transport and deposition model is used to assess the possible impact of the wind inter‐annual variability on the deposition flux of mineral particles in the bay. The results suggest that inter‐annual differences in the wind speed distributions have a quantifiable effect on the intensity and size‐distribution of this deposition flux. This observation suggests that a detailed analysis of the sediment cores collected from the bay could be used for reconstructing the inter‐annual variability of past winds.  相似文献   

6.
Abstract Reliable predictions of wind erosion depend on the accuracy of determining whether erosion occurs or not. Among the several factors that govern the initiation of soil movement by wind, surface moisture is one of the most significant. Some widely used models that predict the threshold shear velocity for particle detachment of wet soils by wind were critically reviewed and evaluated. Wind‐tunnel experiments were conducted on pre‐wetted dune sand with moisture contents ranging from 0·00 to 0·04 kg kg?1. Sand samples were exposed to different wind speeds for 2 min. Moisture content was determined gravimetrically before and after each experiment, and the saltation of sand particles was recorded electronically with a saltiphone. Shear velocities were deduced from the wind speed profiles. For each moisture content, the experiments were repeated at different shear velocities, with the threshold shear velocity being determined by least‐squares analysis of the relationships between particle number rates and shear velocity. Within the 2‐min test runs, temporal changes in particle number rates and moisture contents were detected. A steep increase in the threshold shear velocity with moisture content was observed. When comparing the models, large differences between the predicted results became apparent. At a moisture content of 0·007 kg kg?1, which is half the moisture content retained to the soil matrix at a water tension (or matric potential) of ?1·5 MPa, the increase in ‘wet’ threshold shear velocity predicted with the different models relative to the dry threshold shear velocity ranged from 117% to 171%. The highest care should therefore be taken when using current models to predict the threshold shear velocity of wet sediment. Nevertheless, the models of Chepil (1956; Proc. Soil Sci. Soc. Am., 20, 288–292) and Saleh & Fryrear (1995; Soil Sci., 160, 304–309) are the best alternatives available.  相似文献   

7.
In this study, wind tunnel tests were performed to determine the relationships between sediment transport, the surface moisture content, and wind velocity using beach sands from a tropical humid coastal area of China. The variation in the properties of the creep proportion, relative decay rate as a function of height, and average saltation height in the flux profile were determined. Sand transport was measured using a standard vertical sand trap. The creep proportion (i.e., the proportion of the particles that move along the surface rather than undergoing saltation) and relative decay rate decreased and more particles were ejected to higher positions as moisture content and wind velocity increased. The creep proportion ranged between 0.12 and 0.33, and averaged 0.22. The creep proportion and relative decay rate decreased abruptly at moisture contents between 0.587 and 1.448%; the latter value was close to 1.591%, the moisture content at a matric potential of ?1.5 MPa. This moisture content limit may indicate a change in the form of soil water from adsorbed films on particle surfaces to capillary forces created by inter-particle water bridges. The surface moisture content therefore appears to decisively determine the degree of the restraint on particle entrainment by the wind. The average heights, below which 25, 50, 75, and 90% of sand transport occurred, increased with increasing moisture content (except at 0.231% moisture content) and wind velocity. The mean saltation height at various wind velocities increased linearly with increasing moisture content.  相似文献   

8.
Field measurements of the flux and speed of wind-blown sand   总被引:13,自引:0,他引:13  
A field experiment was conducted to measure the flux and speed of wind-blown sand under known conditions in a natural setting. The experiment, run at Pismo Beach, California, involved a tract 100 m long (parallel with the wind) by 20 m wide. The site was instrumented with four arrays of anemometers to obtain wind velocity profiles through the lower atmospheric boundary-layer, temperature probes to determine atmospheric stability and wind vanes to determine wind direction. From these measurements, wind friction speeds were derived for each experimental run. In order to measure sand saltation flux, a trench 3 m long by 10 m wide (transverse to the wind direction) by 0·5 m deep was placed at the downwind end of the tract and lined with 168 collector bins, forming an ‘egg-box’ pattern. The mass of particles collected in each bin was determined for four experimental runs. In order to assess various sand-trap systems used in previous experiments, 12 Leatherman traps, one Fryberger trap and one array of Ames traps were deployed to collect particles concurrently with the trench collection. Particle velocities were determined from analysis of high-speed (3000 and 5000 frames per second) motion pictures and from a particle velocimeter. Sand samples were collected from the trench bins and the various sand traps and grain size distributions were determined. Fluxes for each run were calculated using various previously published expressions, and then compared with the flux derived from the trench collection. Results show that Bagnold's (1941) model and White's (1979) equation most closely agree with values derived from the trench. Comparison of the various collector systems shows that the Leatherman and Ames traps most closely agree with the flux derived from the trench, although these systems tended to under-collect particles. Particle speeds were measured from analysis of motion pictures for saltating particles in ascending and descending parts of their trajectories. Results show that particle velocities from the velocimeter are in the range 0·5–7·0 m s?1, compared to a wind friction velocity of 0·32–0·43 m s?1 and a wind velocity of 2·7–3·9 m s?1 at the height of the particle measurements. Descending particles tended to exceed the speeds of ascending particles by ~ 0·5 m s?1.  相似文献   

9.
Using a model that couples wind flow with the motion of sand particles under different atmospheric stability intensities, this paper studied the effects of atmospheric stability on the trajectory and velocity of sand particles in the saltation layer, and the duration before a steady state was achieved. The vertical velocity, horizontal distance, and the maximum height of saltating sand particles increased with increasingly negative stability intensity under unstable conditions. The wind–sand flow reached equilibrium more quickly with increasingly negative stability intensity under unstable conditions, but reached equilibrium more slowly with increasing stability intensity under stable conditions.  相似文献   

10.
Experimental data are presented demonstrating the influence of boundary layer flow conditions on aerodynamic entrainment of grains in the absence of intersaltation collisions. New methods are proposed for (1) the unambiguous determination of aerodynamic threshold for any grain population and (2) approximation of the probability density function (PDF) distributions of threshold shear velocity for aerodynamic entrainment. In wind tunnel experiments, the orderly spatial development of flow conditions within a developing boundary layer over the roughened surface of a flat plate constrains the aerodynamic threshold condition in terms of both mean and fluctuating values. Initial grain dislodgements and subsequent erosion from narrow strips of loose, finely fractionated ballotini were recorded photographically as wind speed was increased. Boundary layer parameters, including average threshold shear velocity (U*t), were calculated using the momentum integral method. Direct observations show that sporadic oscillation of grains preceded dislodgement. At slightly higher velocities most grains rolled over their neighbours before entering saltation. Initial entrainment in spatially semi-organized flurries of 50 or more grains was followed by quiescent periods at airflow velocities close to threshold. These observations provide strong circumstantial evidence linking both the nature and spatial pattern of initial grain motions to sweep events during the fluid bursting process. For each grain fraction, values of U*t were found to span an unexpectedly wide range and to decrease downwind from the leading edge of the plate as turbulence intensity increased. A probabilistic entrainment model is applied to the aerodynamic threshold condition so as to incorporate the effects of changing turbulent flow regimes over the plate. Analysis of strip erosion curves gives both an objective definition of the threshold condition and usable approximations of the PDF for U*t required by the model and for future stochastic treatment of the threshold condition.  相似文献   

11.
The effect of wind speed and bed slope on sand transport   总被引:7,自引:0,他引:7  
This paper reports on a wind tunnel study of the effects of bed slope and wind speed on aeolian mass transport. The use of a sloping wind tunnel has enabled estimation of the friction angle α to be about 40° for saltating particles in the range 170–540 μm. A formula relating dimensionless mass transport to friction speed and bed slope is proposed, and mass transport data for five uniform sand samples and one non-uniform sand sample are shown to fit the equation well. In particular, the relationship reveals an overshoot in mass transport slightly above threshold collisions, a feature also evident when previous experimental data is re-examined. As the number of mid-air collisions between the saltating particles increases greatly with wind speed, the overshoot may occur as a result of increasing energy losses resulting from the collisions. Finally, it is demonstrated that data for saltating snow shows a similar overshoot in the dimensionless transport rate.  相似文献   

12.
This article reported a wind tunnel test of sediment transport related to surface moisture content and wind velocity using sands from tropical humid coastal area. A 1 mm-thick portion of surface sand was scraped using a self-made sediment sampler, and the gravimetric moisture content was determined. Sand transport was measured via a standard vertical sand trap with a 60 cm height. The result shows that the sand transport profile above the wet surface can be expressed with an exponential equation. In general, the influence of moisture content on sand transport profile mainly focuses on the bottom of the blowing sand cloud. Meanwhile, with moisture content increased, total sand transport dropped, and a relatively larger proportion is transported at greater heights. The vertical movement of particles on higher moisture surface (0.587% < M < 1.448%) is more sensitive to moisture content variation as compared to those on low wet surface (M < 0.587%), total sand transport rate tends to be rather low (0.99 g cm−1 s−1) when M > 1.448%. The total sand transport rate varying with moisture content is divided into three regions of differing gradient at the moisture contents of 0.587 and 1.448%. The gradient of the curve reflected the different influences of the various water forms in surface sediments. The higher moisture surface (M > 1.448%) merely functions as a transport plain for the saltation material. Surface moisture content was the dominant control factor for saltation activity between the moisture contents of 0.587 and 1.448%, wind velocity could resume control saltation after the surface dried to the extent (M < 0.587%).  相似文献   

13.
Dynamic processes acting on a longitudinal (seif) sand dune   总被引:4,自引:0,他引:4  
HAIM TSOAR 《Sedimentology》1983,30(4):567-578
ABSTRACT Field measurements were made on a longitudinal dune in the Sinai Desert in order to understand its morphology and dynamics. The field measurements contradicted the wind structure indicated by the helicoidal flow theory. Rather, it was found that winds coming from two basically different directions at different times and striking the dune obliquely were responsible for sand transport and erosion or deposition along the lee flank.
The essence of this mechanism is the deflection of the wind airflow on the lee flank of the dune to a direction parallel to the crest line. The occurrence of erosion or deposition depends upon the angle of incidence between the wind and the crest line. When this angle is < 40° the velocity of the deflected wind is higher than on the crest line or the windward flank and longitudinal sand transport occurs. When the angle is less acute (> 40°) the velocity of the deflected wind drops and deposition takes place on the lee flank.
The angle of incidence in each wind storm is changed intermittently between 30° and 100° along the dune because the dune meanders and because of the sinuous outline of the crest line. In this manner sand transport and erosion or deposition occurs along the lee flank depending on the angle of incidence between the wind and the crest line. As a result of the deflection of the wind the dune elongates at an average rate of more than 1 m per month. Peaks and saddles along the crest line advance at an average rate of 0.7 m per month.
The lack of uniformity in the effects of the wind on both sides of the dune creates a lack of uniformity in the rate of erosion and deposition. This can explain the formation of peaks along the crest line of the dune.  相似文献   

14.
Quasi-horizontal trajectories of salting sand grains were found using high-speed video-recording in the desertified territory of the Astrakhan region. The sizes and displacement velocities of the saltating sand grains were determined. A piecewise logarithmic approximation of the wind profile in a quasi-stationary wind–sand flow is suggested, which is consistent with the data of observations and modeling. It was established that, in the regime of stationary saltation, the wind profile in the lower saltation layer of the wind–sand flow depends only slightly on the wind profile variations in the upper saltation layer. The vertical profiles of the horizontal wind component gradient in a quasi-stationary wind–sand flow were calculated and plotted. It was shown using high-speed video recording of the trajectory of a sand grain with an approximate diameter of 95 μm that the weightlessness condition in the desertified territory of the Astrakhan region in a stationary wind–sand flow is satisfied at a height of approximately 0.15 mm. The electric parameters of a wind–sand flow, which can provide for compensation of the force of gravity by the electric force, were estimated. In particular, if the specific charge of a sand grain is 100 μC/kg, the force of gravity applied to the sand grain can be compensated by the electric force if the vertical component of the electric field in a wind–sand flow reaches approximately 100 kV/m. It was shown that the quasi-horizontal transport of sand grains in the lower millimeter saltation layer observed in the desertified territory can be explained by the joint action of the aerodynamic drag, the force of gravity, the Saffman force, the lift force, and the electric force.  相似文献   

15.
Measurements of sand transport by wind on a natural beach   总被引:6,自引:0,他引:6  
Bagnold's (1954) and Kawamura's (1951) formulae may be used for the calculation of the sand movement on a natural beach, provided the shear stress velocity U* > 0·D4 m/s. Great discrepancies have been found between calculated and measured sand transport rates for U* < 0·D4 m/s, mainly because of the capillary forces acting on a wet beach. The measured critical shear velocity U*c at the beginning of sand movement on a clean dry beach agrees very well with that predicted by Bagnold's formula. On a dry beach where the sand grains are stuck together, U*c was found to be about 10% higher. On a wet beach U*c appeared to depend on the moisture content of the surface layer. Grain size is a determining parameter in the U*c-moisture content relation. When the angle a between the wind direction at sea and the dune face is between 15° and 85° the streamlines of the wind will bend in the vicinity of the dune face. In consequence this may influence the direction of sediment movement.  相似文献   

16.
R. D. SARRE 《Sedimentology》1988,35(4):671-679
Sand transport rates were measured using a vertical sand trap along the intertidal zone of a beach in North Devon, England, together with simultaneous monitoring of the wind speed on the beach and moisture levels in the surface layers of sand. The results of 88 sand trap samples in a wide range of wind speeds showed that moisture levels up to 14%, in the top 1–2 mm of the beach sand, have no discernible effect on the transport rates. Transport rates measured from areas of the beach where the moisture was below this level are compared with the rates predicted by seven expressions based on theoretical and wind tunnel research together with the empirical results of other published research. Measured transport rates range from 0.0001 to 0.22 kg m-1 s-1. The results indicate that expressions based on a power relation between the wind speed and the transport rate, and which include a threshold velocity term, provide the best estimates of the observed transport rates.  相似文献   

17.
Over the past 100 years, the Isles Dernieres, a low lying barrier island chain along the coast of central Louisiana, Usa , has undergone more than 1 km of northward beach face retreat with the loss of 70% of its surface area. The erosion results from a long term relative sea level rise coupled with day to day wind and wave action that ultimately favours erosion over deposition. At a site in the central Isles Dernieres, 8 days of wind and beach profile measurements during the passage of one winter cold front documented aeolian erosion and deposition patterns under both onshore and offshore winds. For offshore winds, the theoretical erosion rate, based on wind shear velocity, closely matched the measured erosion rate; for onshore winds, the theoretical rate matched the measured rate only after being corrected by a factor that accounted for beach face morphology. In late February 1989, a strong cold front moved into coastal Louisiana. That cold front stalled over the Gulf of Mexico, resulting in 4 days of strong northerly winds at a study site on the Isles Dernieres. During those 4 days, the wind moved sand from the backshore to the upper beach face. When the cold front finally moved out of the area, the wind shifted to the south and decreased in strength. The onshore wind then restored some of the upper beach face sand to the backshore while increased wave activity moved the rest into the nearshore. The theoretical estimate of 1·28 m3 m?1 for the rate of sand transport by the northerly wind compares well with the measured backshore erosion rate of 1·26 m3 m?1, which was determined by comparing beach profiles from the start and end of the period of northerly winds. The theoretical estimate of 0·04 m3 m?1 for the rate of sand transport by the southerly wind, however, is notably less than the measured rate of 0·45 m3 m?1. The large discrepancy between the two rates can be explained by a difference in the shear velocity of the wind between the beach face, where the erosion occurred, and the backshore, where the wind stress was measured. Using an empirical relationship for the wind shear drag coefficient as a function of coastal environment, the theoretical estimate for the rate of sand transport by the southerly wind becomes 0·44 m3 m?1  相似文献   

18.
Reported here are results from new flume experiments examining deposition and entrainment of inert, silt‐sized particles (with spherical diameters in the range from 20 to 60 μm) to and from planar, impermeable and initially starved beds underlying channel flows. Bed surfaces comprised smooth or fixed sand‐size granular roughness and provided hydraulically smooth to transitionally rough boundaries. Results of these experiments were analysed with a simple model that describes the evolution of vertically averaged concentration of suspended sediment and accommodates the simultaneous delivery to and entrainment of grains from the bed. The rate of particle arrival to a bed diminishes linearly, and the rate of particle entrainment increases by the 5/2 power, as the value of the dimensionless Saffman parameter S = u*3/g’ν approaches a threshold value of order unity, where u is the conventional friction velocity of the turbulent channel flow, g’ is the acceleration due to gravity adjusted for the submerged buoyancy of individual particles and ν is the kinematic viscosity of the transporting fluid. This transport behaviour is consistent with the notion that non‐cohesive, silt‐sized particles can neither reach nor remain on an impermeable bed under flow conditions where mean lift imposed on stationary particles in the viscous sublayer equals or exceeds the submerged weight of individual particles. Within the size range of particles used in these experiments, particle size and the characteristic size of granular roughness, up to that of medium sand, did not affect rates of dimensionless arrival or entrainment to a significant degree. Instead, a new but consistent picture of fine‐particle transport is emerging. Silt‐sized material, at least, is subject to potentially significant interaction with the bed during intermittent suspension transport at intermediate flow speeds greater than the value required for initiation of transport (ca 20 cm sec?1) but less than the value (ca 50 cm sec?1) required by the Saffman criterion ensuring transport in fully passive suspension or, equivalently, ‘wash‐load’.  相似文献   

19.
Rates of aerodynamic entrainment in a developing boundary layer   总被引:1,自引:0,他引:1  
Despite its significance for inception of grain transport by wind, the initial dislodgement of grains from a static surface by aerodynamic forces of drag and lift in the absence of grain collision has received little attention. This paper describes a series of wind-tunnel experiments in which the erosion of narrow strips of loose grains from the roughened surface of a flat plate exposed to a range of wind speeds was examined. The progressive downwind development of the boundary layer over the plate provided a range of airflow conditions which permitted systematic evaluation of grain entrainment rates arising from purely aerodynamic forces. Use of closely graded size fractions in flat, single grain layers resting on identical, fixed grain support eliminated the effects of surface irregularities and impacts from saltation. Results show that erosion of strips of loose grains develops with time according to an inverse exponential function in which the entrainment rate time constant relates to Shields dimensionless shear stress function. An empirical expression defining aerodynamic entrainment rate in terms of rate of strip erosion is derived and comparisons are made between present and published data. The need for additional data to resolve several questions raised by the present investigation is stressed. In addition, a simple, objective technique for accurate determination of the aerodynamic entrainment threshold of any loose, granular sediment is proposed.  相似文献   

20.
Development of deflation lag surfaces   总被引:3,自引:0,他引:3  
A series of wind tunnel tests were carried out to investigate the development of deflation lags in relation to the non-erodible roughness element concentration. Glass spheres (18 mm in diameter) were placed along the complete length of the wind tunnel working section in regular staggered arrays using three different spacings (d=18, 30 and 60 mm) and completely covered with a 0.27-mm erodible sand. A pre-selected free stream velocity above threshold (8m s?1) was established above the surface and the sediment transport measured at 2-s intervals using a wedge-shaped trap in which an electronic balance is incorporated. Throughout each test, the emerging lag surface was periodically photographed from above at two locations upwind of the trap. The photographs were electronically scanned and analysed to calculate the lag element coverage and location, as well as mean height and frontal area for each time period. Test results indicate that lag development has a profound effect on both the sediment flux and wind profile characteristics. Initially, there is an increase in sediment flux above that for a rippled sand bed because of increased erosion around and reduced kinetic energy loss in highly elastic collisions with the emerging roughness elements. With further emergence, a dynamic threshold is reached whereupon the sediment flux decreases rapidly, tending towards zero. At this point, the supply of grains to the air stream through fluid drag follows a reduction in aerodynamic roughness and, therefore, surface shearing stress. At least as important is the lesser potential for grain ejection at impact because of reduced momentum imparted from the air stream during saltation. Although recent shear stress partitioning models indicate when particle movement may commence on varying surfaces, our experimental results demonstrate that this partitioning has a further direct bearing upon the saltation flux ratio.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号