首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Calcareous aeolianites are an integral part of many carbonate platforms and ramps. Such limestones are particularly common in heterozoan, Late Cenozoic carbonate systems, and it has been postulated that they could contain a particularly sensitive record of their offshore source. This hypothesis is tested herein by documenting and interpreting part of the most extensive and temporally longest such system in the modern world. The deposits are a combination of extraclasts and biofragments. Extraclasts are detrital quartz, relict allochems, older Pleistocene particles and Oligocene–Miocene limestone clasts. Biofragments are penecontemporaneous coralline algae, echinoderms, small benthic foraminifera, molluscs and bryozoans. The aeolianites differ in composition from distant, open shelf sediments because they contain more mollusc fragments and many fewer bryozoans. This difference is interpreted to be due to (i) most sediment was derived from near‐shore seagrass meadows and macroalgal reefs; (ii) all sediments were modified by hydrodynamics in near‐shore and beach environments; and (iii) fragments of infaunal, beach‐dwelling bivalves were added to the sediment at the strandline. Extraclasts should be expected in older Pleistocene and Cenozoic heterozoan deposits, because the limestones are poorly lithified, largely due to the lack of meteoric cementation, and so easily eroded. Thus, cool‐water aeolianites ought to contain more extraclasts than their warm‐water, tropical cousins. Seagrasses in temperate environments are more productive than in the tropics and thus potentially might contribute many more particles to the beach and dunes than do tropical systems. Although particle breakage in the surf zone cannot be proven, herein the abundance of whole benthic foraminifera and delicate bryozoans implies that suspension and flotsam shoreward transport was an essential process. The similarity of Pleistocene aeolianites over such a long time period herein suggests that the combination of postulated sedimentological, biogenic and hydrodynamic processes could be universally important.  相似文献   

2.
Post‐glacial, neritic cool‐water carbonates of the Western Mediterranean Sea were examined by means of hydroacoustic data, sediment surface sampling and vibrocoring to unravel geometries and to reconstruct sedimentary evolution in response to the last sea‐level rise. The analysed areas, located on the Alboran Ridge, in the Bay of Oran, and at the southern shelf of the island of Mallorca, are microtidal and bathed by oligotrophic to weakly mesotrophic waters. Seasonal water temperature varies between 13 °C and 27 °C. Echosounder profiles show that the Bay of Oran and the southern shelf of Mallorca are distally steepened ramps, while the Alboran Ridge forms a steep‐flanked rugged plateau around the Alboran Island. In the three areas, an up to 10 m thick post‐glacial sediment cover overlies an unconformity. In Oran and Mallorca, stacked lowstand wedges occur in water depths of 120 to 130 m. On the Alboran Ridge and in the Bay of Oran, highstand wedges occur at 35 to 40 m. Up to 5 m long cores of upper Pleistocene to Holocene successions were recovered in water depths between 40 and 81 m. Deposits contain more than 80% carbonate, with mixed carbonate‐volcaniclastics in the lower part of some cores in Alboran. The carbonates consist of up to 53% of aragonite and up to 83% of high magnesium calcite. Radiocarbon dating of bivalve shells, coralline algae and serpulid tubes indicates that deposits are as old as 12 400 cal yr bp . The carbonate factories in the three areas are dominated mostly by red algae, but some intervals in the cores are richer in bivalves. A facies rich in the gastropod Turritella, reflecting elevated surface productivity, is restricted to the Mallorca Shelf. Rhodoliths occur at the sediment surface in most areas at water depths shallower than 70 m; they form a 10 to 20 cm thick veneer overlying rhodolith‐poor bioclastic sediments which, nonetheless, contain abundant red algal debris. This rhodolith layer has been developing for the past 800 to 1000 years. Similar layers at different positions in the cores are interpreted as reflecting in situ growth of rhodoliths at times of reduced net sedimentation. Sedimentary successions in the cores record the post‐glacial sea‐level rise and the degree of sediment exposure to bottom currents. Deepening‐upward trends in the successions are either reflected by shallow to deep facies transitions or by a corresponding change of depth‐indicative red algae. There are only weak downcore variations of carbonate mineralogy, which indicate that no dissolution or high magnesium to low magnesium calcite neomorphism occurs in the shallow subsurface. These new data support the approach of using the Recent facies distribution for interpretation of past cool‐water, low‐energy, microtidal carbonate depositional systems. Hydroacoustic data show that previous Pleistocene transgressive and highstand inner ramp deposits and wedges were removed during sea‐level lowstands and accumulated downslope as stacked lowstand wedges; this suggests that, under conditions of high‐amplitude sea‐level fluctuations, the stratigraphic record of similar cool‐water carbonates may be biased.  相似文献   

3.
Brown and red, and to a lesser extent green, macroalgae are a hallmark of intertidal rocky coasts and adjacent shallow marine environments swept by stormy seas in middle and high latitudes. Such environments produce carbonate sediment but the sediment factory is neither well‐documented nor well‐understood. This study documents the general marine biology and sedimentology of rocky coastal substrates around Kaikoura Peninsula, a setting that typifies many similar cold‐temperate environments with turbid waters and somewhat elevated trophic resources along the eastern coast of South Island, New Zealand. The macroalgal community extends down to 20 m and generally comprises a phaeophyte canopy beneath which is a prolific rhodophyte community and numerous sessile calcareous invertebrates on rocky substrates. The modern biota is strongly depth zoned and controlled by bottom morphology, variable light penetration, hydrodynamic energy and substrate. Most calcareous organisms live on the lithic substrates beneath macroalgae or on algal holdfasts with only a few growing on macroalgal fronds. A live biota of coralline red algae [geniculate, encrusting and nodular (rhodoliths)], bryozoans, barnacles and molluscs (gastropods and epifaunal bivalves), together with spirorbid and serpulid worms, small benthonic foraminifera and echinoids produce sediments that are mixed with terrigenous clastic particles in this overall siliciclastic depositional system. The resultant sediments within macroalgal rocky substrates at Kaikoura contain bioclasts typified by molluscs, corallines and rhodoliths, barnacles and other calcareous invertebrates. In the geological record, however, the occurrence of macroalgal produced sediments is restricted to unconformity‐related early transgressive systems tract stratigraphic intervals and temporally constrained to a Cenozoic age owing to the timing of the evolution of large brown macroalgae.  相似文献   

4.
Core SG120 recovered 3.65 m of Quaternary sediment from a northern, shallow-water environment of Spencer Gulf, a marine embayment into the southern continental margin of Australia. Previous investigations had revealed that the upper interval 0 – 148 cm is Holocene marine bioclastic sediment, and that the lower Late Pleistocene interval 250 – 365 cm, with its carbonate palaeosol, had a similar marine origin. However, the age and origin of the interval 148 – 250 cm remained subject to ambiguous interpretation. Re-examination of core SG120, employing detailed foraminiferal analysis, has revealed that this middle unit records the earliest sedimentation associated with the postglacial marine transgression into the northern gulf. These basal Holocene sediments, which incorporated broken, corroded and carbonate-encrusted tests from the underlying palaeosol, together with tests of more pristine appearance, were deposited in a shallow-water, seagrass sandflat environment similar to those in coastal settings of the modern gulf. The lithological change at 148 cm has therefore been reinterpreted as a facies change related to increasing water depth. Radiocarbon analyses of fossil molluscs support this interpretation and reveal that marine transgression, at the site of SG120, was initiated prior to 8600 y cal BP. Selected species of foraminifers (Nubecularia lucifuga, Massilina milletti, Peneroplis planatus, Discorbis dimidiatus, Elphidium crispum and E. macelliforme) together reveal a consistent record of the final stages of the transgression with maximum water depth indicated at a core depth of 90 cm. Subsequent regression, which has been attributed to the combined effects of hydroisostatic uplift and sediment aggradation, is equally recorded by the foraminiferal assemblages.  相似文献   

5.
Spencer Gulf is a large (ca 22 000 km2), shallow (<60 m water depth) embayment with active heterozoan carbonate sedimentation. Gulf waters are metahaline (salinities 39 to 47‰) and warm‐temperate (ca 12 to ?28°C) with inverse estuarine circulation. The integrated approach of facies analysis paired with high‐resolution, monthly oceanographic data sets is used to pinpoint controls on sedimentation patterns with more confidence than heretofore possible for temperate systems. Biofragments – mainly bivalves, benthic foraminifera, bryozoans, coralline algae and echinoids – accumulate in five benthic environments: luxuriant seagrass meadows, patchy seagrass sand flats, rhodolith pavements, open gravel/sand plains and muddy seafloors. The biotic diversity of Spencer Gulf is remarkably high, considering the elevated seawater salinities. Echinoids and coralline algae (traditionally considered stenohaline organisms) are ubiquitous. Euphotic zone depth is interpreted as the primary control on environmental distribution, whereas seawater salinity, temperature, hydrodynamics and nutrient availability are viewed as secondary controls. Luxuriant seagrass meadows with carbonate muddy sands dominate brightly lit seafloors where waters have relatively low nutrient concentrations (ca 0 to 1 mg Chl‐a m?3). Low‐diversity bivalve‐dominated deposits occur in meadows with highest seawater salinities and temperatures (43 to 47‰, up to 28°C). Patchy seagrass sand flats cover less‐illuminated seafloors. Open gravel/sand plains contain coarse bivalve–bryozoan sediments, interpreted as subphotic deposits, in waters with near normal marine salinities and moderate trophic resources (0·5 to 1·6 mg Chl‐a m?3) to support diverse suspension feeders. Rhodolith pavements (coralline algal gravels) form where seagrass growth is arrested, either because of decreased water clarity due to elevated nutrients and associated phytoplankton growth (0·6 to 2 mg Chl‐a m?3), or bottom waters that are too energetic for seagrasses (currents up to 2 m sec?1). Muddy seafloors occur in low‐energy areas below the euphotic zone. The relationships between oceanographic influences and depositional patterns outlined in Spencer Gulf are valuable for environmental interpretations of other recent and ancient (particularly Neogene) high‐salinity and temperate carbonate systems worldwide.  相似文献   

6.
7.
A piston core from the Maldives carbonate platform was investigated for carbonate mineralogy, grain‐size distributions, calcium carbonate content and organic carbon. The sedimentary record was linked to Late Pleistocene sea‐level variations, using an age model based on oxygen isotopes obtained from planktonic foramanifera, nannofossil biostratigraphy and 14C age determinations. The correlation between the sedimentary record and Late Pleistocene sea‐level showed that variations in aragonite and mud during the past 150 000 years were clearly related to flooding and sea floor exposure of the main lagoons of the atolls of the Maldives carbonate platform. Platform flooding events were characterized by strongly increased deposition of aragonite and mud within the Inner Sea of the Maldives. Exposure events, in contrast, can be recognized by rapid decreases in the values of both proxy records. The results show that sediments on the Maldives carbonate platform contain a continuous record of Pleistocene sea‐level variations. These sediments may, therefore, contribute to a better understanding of regional and even global sea‐level changes, and yield new insights into the interplay between ocean currents and carbonate platform morphology.  相似文献   

8.
9.
Cold‐water coral ecosystems present common carbonate factories along the Atlantic continental margins, where they can form large reef structures. There is increasing knowledge on their ecology, molecular genetics, environmental controls and threats available. However, information on their carbo‐nate production and accumulation is still very limited, even though this information is essential for their evaluation as carbonate sinks. The aim of this study is to provide high‐resolution reef aggradation and carbonate accumulation rates for Norwegian cold‐water coral reefs from various settings (sunds, inner shelf and shelf margin). Furthermore, it introduces a new approach for the evaluation of the cold‐water coral preservation within cold‐water coral deposits by computed tomography analysis. This approach allows the differentiation of various kinds of cold‐water coral deposits by their macrofossil clast size and orientation signature. The obtained results suggest that preservation of cold‐water coral frameworks in living position is favoured by high reef aggradation rates, while preservation of coral rubble prevails by moderate aggradation rates. A high degree of macrofossil fragmentation indicates condensed intervals or unconformities. The observed aggradation rates with up to 1500 cm kyr?1 exhibit the highest rates from cold‐water coral reefs so far. Reef aggradation within the studied cores was restricted to the Early and Late Holocene. Available datings of Norwegian cold‐water corals support this age pattern for other fjords while, on the shelf, cold‐water coral ages are reported additionally from the early Middle Holocene. The obtained mean carbonate accumulation rates of up to 103 g cm?2 kyr?1 exceed previous estimates of cold‐water coral reefs by a factor of two to three and by almost one order of magnitude to adjacent sedimentary environments (shelf, slope and deep sea). Only fjord basins locally exhibit carbonate accumulation rates in the range of the cold‐water coral reefs. Furthermore, cold‐water coral reef carbonate accumulation rates are in the range of tropical reef carbonate accumulation rates. These results clearly suggest the importance of cold‐water coral reefs as local, maybe regional to global, carbonate sinks.  相似文献   

10.
11.
Oligo–Miocene carbonates associated with the Padthaway Ridge form the southern margin of the Murray Basin, South Australia. The carbonates are a thin, somewhat condensed succession of echinoid and bryozoan‐rich limestones that record accumulation in the complex of islands and seaways and progressive burial of the Ridge through time. The rocks are grainy to muddy bioclastic packstones, grainstones and floatstones, composed of infaunal echinoderms, bryozoans, coralline algae and benthic foraminifera, with lesser contributions from molluscs and serpulid worms. Locally as much as half of these skeletal components are Fe‐stained, relict grains that imbue the lithologies with a conspicuous yellow to orange hue. This variably lithified succession is partitioned into metre‐scale, firmground‐bounded and hardground‐bounded beds textured by extensive Thalassinoides burrows. Dominant lithologies are interpreted as temperate seagrass facies. Limestones contain attributes indicative of both seagrass‐dominated palaeoenvironments and carbonate production and accumulation on unconsolidated, barren sandflat palaeoenvironments. Together these two depositional systems are thought to have generated a single multigenerational, amalgamated facies recording sedimentation within a complex temperate seagrass environment. Limestones overlying the Padthaway Ridge reflect a gradually warming climate, increasing water temperature and decreasing nutrient content, within the framework of a ridge gradually being buried in sediment. This succession from cool–temperate to warm–temperate to subtropical through time permits recognition of the relative influence of changing oceanography on a seagrass‐dominated shallow inter‐island sea floor. Criteria are proposed herein to enable future recognition of similar temperate seagrass facies in Cenozoic limestones elsewhere.  相似文献   

12.
Abstract The north-east Australian margin is the largest modern example of a tropical mixed siliciclastic/carbonate depositional system, with an outer shelf hosting the Great Barrier Reef (GBR) and an inner shelf dominated by fluvially sourced siliciclastic sediment wedges. The long-term interplay between these sediment components and sea level is recorded in the Queensland Trough, a 1–2 km deep N–S elongate basin situated between the GBR platform and the Queensland Plateau. In this paper, 154 samples from 45 surface grabs and six well-dated piston cores were analysed for total carbonate content, carbonate mineralogy and Sr concentration to establish spatial and temporal patterns of carbonate accumulation in the Queensland Trough over the last 300 kyr. Surface carbonate contents are lowest on the inner-shelf (<5%) and in the trough axis (<60%) because of siliciclastic dilution. Carbonate on the shelf is mostly Sr-rich aragonite and high-Mg calcite (HMC), whereas that in the basin is mostly low-Mg calcite. Once normalized to remove the effects of siliciclastic dilution, surface Sr-rich aragonite and HMC abundances decrease linearly to background levels ≈ 100 km seaward of the shelf edge. Core samples show that, over time, normalized aragonite and Sr abundances are greatest during periods of shelf flooding and lowest when sea level drops below the shelf edge. This is consistent with changes in the production of coral and calcareous algae, and the shedding of their debris from the shelf. Interestingly, normalized HMC concentrations on the slope peak during periods of major transgression, perhaps because of maximum off-shelf transport from inter-reef areas or intermediate water dissolution. After accounting for siliciclastic dilution, there are strong similarities in both spatial and temporal patterns of carbonate minerals between slopes and basins of the north-east Australian margin and those of pure carbonate margins such as the Bahamas. A limited set of basic processes, including the formation and breakdown of carbonate on the shelf, the transport of carbonate off the shelf and eustatic sea level, probably controls carbonate accumulation in slope and basin settings of tropical environments, irrespective of proximal siliciclastic sediment sources.  相似文献   

13.
Cool‐water carbonate sedimentation has dominated Mediterranean shelves since the Early Pliocene. Skeletal sand and gravel herein consist of remains of heterozoan organisms, which are susceptible to reworking due to weak early cementation in non‐tropical waters. This study documents the Lower Pleistocene carbonate wedge of Favignana Island (Italy), which prograded from a 5   km wide passage between two palaeo‐islands into a perpendicular, 10 to 15   km wide strait between the palaeo‐islands at one side and Sicily at the other during the Emilian highstand (1·6   Ma to 1·1   Ma). The clinoformed carbonate wedge, which is 50   m thick and 6   km long, formed by east/south‐east progradation of a platform on the submarine sill by currents that were funnelled between the two palaeo‐islands. Platform‐slope clinoforms evolved from initial aggradation (thin and low‐angle) into a progradation phase (thick and high‐angle). Both clinoform types are characterized by a bimodal facies stacking pattern defined by sedimentary structures created by: (i) subaqueous dunes associated with dilute subcritical currents; and (ii) upper‐flow‐regime bedforms associated with sediment‐laden supercritical turbidity currents. Focusing of episodic currents on the platform by funnelling between the islands controlled the downstream formation of a sediment body, here named carbonate delta. The carbonate delta interfingers with subaqueous dune deposits formed in the perpendicular strait. This study uses a reconstruction of bedform dynamics to unravel the evolution of this gateway‐related carbonate accumulation.  相似文献   

14.
The Meikirch drilling site in the Swiss Midlands north of Bern is re‐interpreted using a combination of sedimentological logging, pollen analyses and luminescence dating. The sedimentary sequence comprises about 70 m of lacustrine deposits, overlain by about 39 m of coarse glacial outwash interpreted to represent at least two independent ice advances. Pollen analyses of the apparently complete limnic sequence reveal a basal late glacial period followed by three warm phases that are interrupted by two stadial periods (Meikirch complex). The warm periods were previously correlated with the Holsteinian and Eemian Interglacials. According to luminescence dating, and with consideration of evidence for Middle Pleistocene climate patterns at other central European sites, a correlation of the Meikirch complex with marine isotope stage (MIS) 7 is now proposed. If this correlation is correct, it implies the presence of three intervals with interglacial character during MIS 7. However, the late Middle Pleistocene vegetational features of the Meikirch complex show significant differences when compared with the pollen record from the Velay region, central France. Possible explanations for this discrepancy are distinct Middle Pleistocene patterns of atmospheric circulation over central Europe and a different distribution of vegetation refugia compared to the Eemian Interglacial and the Holocene. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

15.
Sediment proxy records from a continuous, 1.5 million year long deep‐sea sediment core from a site in the western Norwegian Sea were used to obtain new insights into the nature of palaeoceanographic change in the northern North Atlantic (Nordic seas) during the climatic shift of the Mid‐Pleistocene Revolution (MPR). Red‐green sediment colour and magnetic susceptibility records both reveal significant differences in their mean values when comparing the intervals older than 700 000 yr (700 ka) with those from the past 500 kyr. The timing and duration of these changes indicates that the MPR in the Nordic seas is characterised by a gradual transition lasting about 200 kyr. Together with further sedimentological evidence this suggests that the mid‐Pleistocene climate shift was accompanied by a general change in ice‐drift pattern. It is further proposed that prior to the onset of the major late Pleistocene glaciations in the Northern Hemisphere a significant proportion of the ice in the eastern Nordic seas originated from a southern provenance, whereas later it dominantly came from the surrounding landmasses. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

16.
Facies architecture and platform evolution of an early Frasnian reef complex in the northern Canning Basin of north‐western Australia were strongly controlled by syn‐depositional faulting during a phase of basin extension. The margin‐attached Hull platform developed on a fault block of Precambrian basement with accommodation largely generated by movement along the Mount Elma Fault Zone. Recognition of major subaerial exposure and flooding surfaces in the Hull platform (from outcrop and drillcore) has enabled comparison of facies associations within a temporal framework and led to identification of three stages of platform evolution. Stage 1 records initial ramp development on the hangingwall dip slope with predominantly deep subtidal conditions that prevented any cyclic facies arrangements. This stage is characterised by basal siliciclastic deposits and a major deepening‐upward facies pattern that is capped by a sequence boundary towards the footwall (north‐west) and a major flooding surface towards the hangingwall. Stage 2 reflects the bulk of platform aggradation, significant platform growth towards the hangingwall and the development of reef margins and cyclic facies arrangements. Thickening of this stage towards the hangingwall indicates that accommodation was generated by rotation of the fault block and overlying platform. Stage 3 records a major flooding and backstep of the platform margin. The Hull platform illustrates important elements of margin‐attached carbonate platforms in a half‐graben setting, including: (i) prominent, but limited, coarse siliciclastic input that does not have a major detrimental effect on carbonate production near the rift margin in arid to semi‐arid settings; (ii) wedge‐shaped accommodation created by syn‐depositional rotation of fault blocks and tilting of the hangingwall dip slope, resulting in shallow‐water facies and subaerial exposure up‐dip of the rotational axis and deeper water facies down‐dip; and (iii) evolution of a ramp to rimmed shelf, coincident with a sequence boundary–flooding surface, that is accelerated by tilting of the hangingwall dip slope during fault‐block rotation.  相似文献   

17.
A middle Pleistocene coarse‐grained canyon fill succession (the Serra Mulara Formation) crops out in the northern sector of the Crotone Basin, a forearc basin located on the Ionian side of the Calabrian Arc and active from the Serravallian to middle Pleistocene. This succession is an example of coarse‐grained submarine canyon fill, which consists of a north‐west to south‐east elongated body (4·25 km long and up to 1·5 km wide) laterally confined by a deep‐water clayey and silty succession and located behind the modern Neto delta (north of Crotone). The thickness of the unit reaches 178 m. The lower part of the canyon fill is dominated by gravelly to sandy density‐flow deposits containing abundant bivalve and gastropod fragments, passing upward into a succession composed of metre‐scale to decimetre‐scale density‐flow deposits forming sandstone–mudstone couplets. Sandstone deposits are mostly structureless and planar‐laminated, whereas the clayey layers record hemipelagic deposition during quieter phases. This succession is overlain by another composed of thicker structureless sandstones alternating with layers of interlaminated mudstones and sandstones, which contain leaf remnants and fresh water ostracods, and are linked directly to river floods. The canyon fill is overlain by gravelly to sandy continental deposits recording a later stage of emergence. Facies analysis, together with micropalaeontological data from the hemipelagic units, suggests that the studied canyon fill records, firstly, a progressive gravel material cut‐off during deposition due to an overall relative sea‐level rise, leading to a progressive increase in the entrapment of sediment in fluvial to shallow‐marine systems, and secondly, a generalized relative sea‐level lowering. This trend probably reflects high‐magnitude glacio‐eustatic changes combined with the regional uplift of the region, ultimately leading to emergence.  相似文献   

18.
《Sedimentology》2018,65(5):1631-1666
Detailed logging and analysis of the facies architecture of the upper Tithonian to middle Berriasian Aguilar del Alfambra Formation (Galve sub‐basin, north‐east Spain) have made it possible to characterize a wide variety of clastic, mixed clastic–carbonate and carbonate facies, which were deposited in coastal mudflats to shallow subtidal areas of an open‐coast tidal flat. The sedimentary model proposed improves what is known about mixed coastal systems, both concerning facies and sedimentary processes. This sedimentary system was located in an embayed, non‐protected area of a wide C‐shaped coast that was seasonally dominated by wave storms. Clastic and mixed clastic–carbonate muds accumulated in poorly drained to well‐drained, marine‐influenced coastal mudflat areas, with local fluvial sandstones (tide‐influenced fluvial channels and sheet‐flood deposits) and conglomerate tsunami deposits. Carbonate‐dominated tidal flat areas were the loci of deposition of fenestral‐laminated carbonate muds and grainy (peloidal) sediments with hummocky cross‐stratification. Laterally, the tidal flat was clastic‐dominated and characterized by heterolithic sediments with hummocky cross‐stratification and local tidal sandy bars. Peloidal and heterolithic sediments with hummocky cross‐stratification are the key facies for interpreting the wave (storm) dominance in the tidal flat. Subsidence and high rates of sedimentation controlled the rapid burial of the storm features and thus preserved them from reworking by fair‐weather waves and tides.  相似文献   

19.
This study focuses on the Plio‐Pleistocene fluvial deposits preserved in the terrace staircases in the south‐eastern Alpine foreland of the Mislinja (MV) and Upper Savinja valleys (USV) in northern Slovenia. The area is located at the north‐eastern margin of the Adria microplate, where neotectonic activity is the prevailing driving force for the terrace formation. The aim of this study is to determine the morphostratigraphy and provenance of the Pliocene to Early Pleistocene gravels using geomorphic and clast lithological analysis. The established morphostratigraphic framework encompasses three terraces in the MV and five terraces in the USV. Due to the lack of age‐relevant data, the morphostratigraphy of the MV and USV is based on the results of geomorphic analysis, clast petrography and data from the literature. Low‐level, middle‐level and high‐level terrace groups were tentatively attributed to the Late and Middle Pleistocene, Early Pleistocene–Pliocene and Pliocene, and compared with the traditional Quaternary stratigraphy of the Alpine foreland. The results of the clast lithological analysis revealed major provenance areas. Moreover, the evolution of long‐term drainage from the Miocene onward was inferred, which suggests that the system reached conformity with the present‐day drainage pattern at the Miocene to Plio‐Pleistocene transition. Copyright © 2019 John Wiley & Sons, Ltd.  相似文献   

20.
The development of soft‐sediment deformation structures in clastic sediments is now reasonably well‐understood but their development in various deltaic subenvironments is not. A sedimentological analysis of a Pleistocene (ca 13·1 to 15 10Be ka) Gilbert‐type glaciolacustine delta with gravity‐induced slides and slumps in the Mosty‐Danowo tunnel valley (north‐western Poland) provides more insight, because the various soft‐sediment deformation structures in these deposits were considered in the context of their specific deltaic subenvironment. The sediments show three main groups of soft‐sediment deformation structures in layers between undeformed sediments. The first group consists of deformed cross‐bedding (inclined, overturned, recumbent, complex and sheath folds), large‐scale folds (recumbent and sheath folds) and pillows forming plastic deformations. The second group comprises pillar structures (isolated and stress), clastic dykes with sand volcanoes and clastic megadykes as examples of water‐escape structures. The third group consists of faults (normal and reverse) and extensional fissures (small fissures and neptunian dykes). Some of the deformations developed shortly after deposition of the deformed sediment, other structures developed later. This development must be ascribed to hydroplastic movement in a quasi‐solid state, and due to fluidization and liquefaction of the rapidly deposited, water‐saturated deltaic sediments. The various types of deformations were triggered by: (i) a high sedimentation rate; (ii) erosion (by wave action or meltwater currents); and (iii) ice‐sheet loading and seasonal changes in the ablation rate. Analysis of these triggers, in combination with the deformational mechanisms, have resulted – on the basis of the spatial distribution of the various types of soft‐sediment deformation structures in the delta under study – in a model for the development of soft‐sediment deformation structures in the topsets, foresets and bottomsets of deltas. This analysis not only increases the understanding of the deformation processes in both modern and ancient deltaic settings but also helps to distinguish between the various subenvironments in ancient deltaic deposits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号