首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fluvial systems and their preserved stratigraphic expression as the fill of evolving basins are controlled by multiple factors, which can vary both spatially and temporally, including prevailing climate, sediment provenance, localized changes in the rates of creation and infill of accommodation in response to subsidence, and diversion by surface topographic features. In basins that develop in response to halokinesis, mobilized salt tends to be displaced by sediment loading to create a series of rapidly subsiding mini‐basins, each separated by growing salt walls. The style and pattern of fluvial sedimentation governs the rate at which accommodation becomes filled, whereas the rate of growth of basin‐bounding salt walls governs whether an emergent surface topography will develop that has the potential to divert and modify fluvial drainage pathways and thereby dictate the resultant fluvial stratigraphic architecture. Discerning the relative roles played by halokinesis and other factors, such as climate‐driven variations in the rate and style of sediment supply, is far from straightforward. Diverse stratigraphic architectures present in temporally equivalent, neighbouring salt‐walled mini‐basins demonstrate the effectiveness of topographically elevated salt walls as agents that partition and guide fluvial pathways, and thereby control the loci of accumulation of fluvial successions in evolving mini‐basins: drainage pathways can be focused into a single mini‐basin to preserve a sand‐prone fill style, whilst leaving adjoining basins relatively sand‐starved. By contrast, over the evolutionary history of a suite of salt‐walled mini‐basins, region‐wide changes in fluvial style can be shown to have been driven by changes in palaeoclimate and sediment‐delivery style. The Triassic Moenkopi Formation of the south‐western USA represents the preserved expression of a dryland fluvial system that accumulated across a broad, low‐relief alluvial plain, in a regressive continental to paralic setting. Within south‐eastern Utah, the Moenkopi Formation accumulated in a series of actively subsiding salt‐walled mini‐basins, ongoing evolution of which exerted a significant control on the style of drainage and resultant pattern of stratigraphic accumulation. Drainage pathways developed axial (parallel) to salt walls, resulting in compartmentalized accumulation of strata whereby neighbouring mini‐basins record significant variations in sedimentary style at the same stratigraphic level. Despite the complexities created by halokinetic controls, the signature of climate‐driven sediment delivery can be deciphered from the preserved succession by comparison with the stratigraphic expression of part of the system that accumulated beyond the influence of halokinesis, and this approach can be used to demonstrate regional variations in climate‐controlled styles of sediment delivery.  相似文献   

2.
The south Uralian foreland basin forms part of the giant, yet sparsely documented, PreCaspian salt tectonic province. The basin can potentially add much to the understanding of fluviolacustrine sedimentation within salt‐walled minibasins, where the literature has been highly reliant on only a few examples (such as the Paradox Basin of Utah). This paper describes the Late Permian terrestrial fill of the Kul’chumovo salt minibasin near Orenburg in the south Urals in which sediments were deposited in a range of channel, overbank and lacustrine environments. Palaeomagnetic stratigraphy shows that, during the Late Permian, the basin had a relatively slow and uniform subsidence pattern with widespread pedogenesis and calcrete development. Angular unconformities or halokinetic sequence boundaries cannot be recognized within the relatively fine‐grained fill, and stratigraphic and spatial variations in facies are therefore critical to understanding the subsidence history of the salt minibasin. Coarse‐grained channel belts show evidence for lateral relocation within the minibasin while the development of a thick stack of calcrete hardpans indicates that opposing parts of the minibasin became largely inactive for prolonged periods (possibly in the order of one million years). The regular vertical stacking of calcrete hardpans within floodplain mudstones provides further evidence that halokinetic minibasin growth is inherently episodic and cyclical.  相似文献   

3.
Basin‐scale models are required to interpret ancient continental sedimentary successions, and reduce uncertainty in assessing geological resources in basins. Recently, modern studies show distributive fluvial systems to comprise a substantial proportion of modern sedimentary basins, but their role in ancient basin fills has yet to be quantitatively documented at the basin scale. This study analysed key fluvial characteristics to construct a detailed basin‐wide model of the Palaeogene Fort Union and Willwood formations (Bighorn Basin, Wyoming), using observations from modern studies, and ancient system scale studies of distributive fluvial systems, to guide interpretations. Mapping showed these formations to be highly heterogeneous with channel‐body proportion (from 12 to 81%) and geometry types (large amalgamated bodies to isolated channels), grain size (silt to conglomerate), average channel‐body thickness (4 to 20 m) and average storey thickness (3 to 10 m) varying significantly across the basin. Distributive fluvial systems in the form of alluvial and fluvial fans in transverse configurations were recognized as well as a wide axial system, with heterogeneity in the formations being closely aligned to these interpretations. Furthermore, numerous individual depositional systems were identified within the formations (Beartooth Absaroka, Washakie, Owl Creek and axial). Predicted downstream distributive fluvial system trends (i.e. downstream decrease in channel proportion, size and grain size) were identified in the Beartooth, Absaroka and Owl Creek systems. However, predicted trends were not identified in the Washakie system where intrabasinal thrusting disturbed the sequence. Importantly, a wide axial fluvial system was identified, where reverse downstream distributive fluvial system trends were present, interpreted to be the result of the input of transverse systems of variable size. This study provides a new level of detail in the application of basin‐scale models, demonstrating their usefulness in trying to understand and predict alluvial architecture distribution and heterogeneity, with important implications for economic resources and palaeogeographic reconstructions.  相似文献   

4.
Regional mapping of Middle Albian, shallow‐marine clastic strata over ca 100 000 km2 of the Western Canada Foreland Basin was undertaken to investigate the relationship between large‐scale stratal architecture and lithology. Results suggest that, over ca 5 Myr, stratal geometry and facies were dynamically linked to tectonic activity in the adjacent Cordillera. Higher frequency modulation of accommodation is most reasonably ascribed to eustasy. The Harmon and Cadotte alloformations were deposited at the southern end of an embayment of the Arctic Ocean. The Harmon alloformation, forming the lower part of the succession, constitutes a wedge of marine mudstone that thickens westward over 400 km from <5 m near the forebulge to >150 m in the foredeep. Constituent allomembers are also wedge‐shaped but lack distinct clinothems, a rollover point or downlapping geometry. Ubiquitous wave ripples indicate that the sea floor lay above storm wave base. Deposition took place on an extremely low‐gradient ramp, where accommodation was limited by effective wave base. Lobate, river‐dominated deltas fringed the southern margin of the basin. The largest deltas are stacked in the same area, suggesting protracted stability of the feeder river. A buried palaeo‐valley on the underlying sub‐Cretaceous unconformity may have influenced compaction and controlled river location for ca 3 Myr. Adjacent to the western Cordillera, a predominantly mudstone succession is interbedded with abundant storm beds of very fine‐grained sandstone and siltstone that reflect supply from the adjacent orogen. Bioturbation indices in the Harmon alloformation range from zero to six which reflects the influence of stressors related to river‐mouth proximity. Harmon alloformation mudstone grades abruptly upward into marine sandstone and conglomerate of the overlying Cadotte alloformation. The Cadotte is composed of three allomembers ‘CA’ to ‘CC’, that represent the deposits of prograding strandplains 200 × 300 km in extent. Allomembers ‘CA’ and ‘CB’ are strongly sandstone‐dominated, whereas allomember ‘CC’ contains abundant conglomerate in the west. The dominantly aggradational wedge of Harmon alloformation mudstone records flexural subsidence driven by active thickening in the adjacent orogen: the high accommodation rate trapped coarser clastic detritus close to the basin margin. In contrast, the tabular, highly progradational sandstone and conglomerate bodies of the Cadotte alloformation record a low subsidence rate, implying tectonic quiescence in the adjacent orogen. Erosional unloading of the orogen through Cadotte time steepened rivers to the extent that they delivered gravel to the shore. These observations support an ‘anti‐tectonic’ model of gravel supply proposed previously for the United States portion of the Cretaceous foreland basin. Because Cadotte allomembers do not thicken appreciably into the foredeep, accommodation changes that controlled these transgressive–regressive successions were probably of eustatic origin.  相似文献   

5.
The Pliocene–Early Pleistocene Mangas Basin in SW New Mexico, USA, was a N–NW-trending full graben that changed southward to an eastward-tilted half graben. Unlike the facies distribution predicted in existing models, the half-graben part of the Mangas Basin was characterized by broad alluvial fans derived from the footwall scarp, smaller hangingwall-derived alluvial fans, and a shallow, closed lake (Lake Buckhorn) that locally lapped onto the hangingwall hills. The distribution of facies within the full-graben part of the Mangas Basin was also unlike that predicted in current models, primarily because of a broad belt of alluvial-fan sediment derived from the eastern footwall scarp and a narrow belt of axial-fluvial sediment adjacent to the western footwall scarp. The distribution of facies in the Mangas Basin does not appear to have been controlled by the eastward tilt of the floor of the half graben or ‘see-saw’ motion of the floor of the full graben, as predicted by existing models, but rather by the large size of the alluvial fans on the eastern side of the basin. These fans were derived from large, high-relief catchments on the footwall scarp of the Mogollon Mountains, the uplift of which began during Early Miocene. This example illustrates how earlier uplift and drainage development in a mountain range may influence facies distribution in a younger extensional basin.  相似文献   

6.
对于断陷盆地拗陷期远离滨岸的河流而言,其层序划分是层序地层学研究的难点。本研究在已有钻测井、岩心及地震资料分析基础上,以渤海湾盆地沙垒田凸起区新近系明化镇组下段(简称“明下段”)作为研究对象,将其划分为1个完整的三级层序、4个四级层序(即SQm1-SQm4)。沉积间断面、宽浅下切谷及复合连片砂体是该地区河流层序界面重要的识别标志。每个四级层序均由低可容空间和高可容空间体系域组成。地震地貌学定量分析表明,低可容空间体系有利于低弯度河流(辫状河、低弯度曲流河)发育,高可容空间体系域有利于中高弯度河流发育。新增可容空间和沉积物供给速率的变化对于河流不同体系域的砂体样式具有重要控制作用。  相似文献   

7.
The sequence classification is a difficulty of sequence stratigraphic study on rivers that are distal to coast area during the depression phase of rift basin. Based on the integrated analysis of logging,cores and seismic data,the case study shows that the Lower Member of Neogene Minghuazhen Formation in the Shaleitian Uplift area in the western Bohai Sea region corresponds to one complete third-order sequence which can be divided into four fourth-order sequences(i.e. SQm1-SQm4). Sedimentary hiatus,wide and shallow incised valley and amalgamated channel sand bodies are the main recognition of sequence boundaries in fluvial sequence stratigraphy of the study area. Each fourth-order sequence comprises low and high accommodation systems tracts. According to seismic sedimentological and quantitative geomorphological analysis,low-sinuosity rivers including braided river and low-sinuosity meandering river are well developed in the low accommodation systems tract,whereas the medium- to high-sinuosity meandering rivers are well preserved in the high accommodation systems tract. The change in the new creation of accommodation and the sediment supply exert a significant control on the stacked pattern within different systems tracts.  相似文献   

8.
The Miocene Gorgoglione Flysch Formation records the stratigraphic product of protracted sediment transfer and deposition through a long‐lived submarine channel system developed in a narrow and elongate thrust‐top basin of the Southern Apennines (Italy). Channel‐fill deposits are exposed in an outcrop belt approximately 500 m thick and 15 km long, oriented oblique to the palaeoflow, which was roughly south‐eastward. These exceptional exposures of channel‐fill strata allow the stacking architectures and the evolution of the channel system to be analyzed at multiple scales, enabling the effects of syn‐sedimentary thrust tectonics and basin confinement on the depositional system development to be deciphered. Two end‐member types of elementary channel architecture have been identified: high‐aspect‐ratio, weakly‐confined channels, and low‐aspect‐ratio, incisional channels. Their systematic stacking results in a complex pattern of seismic‐scale depositional architectures that determines the stratigraphic framework of the deep‐water system. From the base of the succession, two prominent channel complex sets have been recognized, namely CS1 and CS2, consisting of amalgamated incisional channel elements and weakly‐confined channel elements. These channelized units are overlain by isolated incisional channels, erosional into mud‐prone slope deposits. The juxtaposition of different channel architectures is interpreted to have been governed by regional thrust‐tectonics, in combination with a high subsidence rate that promoted significant aggradation. In this scenario, the alternating ‘in sequence’ and ‘out of sequence’ tectonic pulses of the basin‐bounding thrusts controlled the activation of coarse‐clastic inputs in the basin and the resulting stacking architectures of channelized units. The tectonically‐driven confinement of the depositional system limited the lateral offset in channel stacking, preventing large‐scale avulsions. This study represents an excellent opportunity to analyze the stratigraphic evolution of a submarine channel system in tectonically‐active settings from an outcrop perspective. It should find wide applicability in analogous depositional systems, whose stratigraphic architecture has been influenced by tectonically‐controlled lateral confinement and associated lateral tilting.  相似文献   

9.
The Permo-Carboniferous Saar-Nahe Basin in south-west Germany and north-east France formed at the boundary between the Rhenohercynian and Saxothuringian zones within the Variscan orogen, where non-marine sediments were deposited in a narrow, structurally controlled basin. The basin has an asymmetrical geometry perpendicular to the South Hunsruck Fault. However, there is a lack of growth of the sediment pile into the fault, and isopach maps show the depocentre always located adjacent to the South Hunsrück Fault, but migrating towards the north-east with time. This pattern is typical of a strike-slip basin, indicating that the South Hunsruck Fault was a dextral strike-slip fault during sedimentation. Tectonic subsidence curves indicate that, during the Middle Devonian to Early Carboniferous, the basin subsided due to thermal relaxation of the lithosphere. A change to very rapid subsidence at the start of the Westphalian continued until late in the Autunian. This was due to mechanical subsidence associated with strike-slip movement on the South Hunsruck Fault. Towards the end of subsidence in the Saar-Nahe Basin, the Grenzlager volcanics introduced a thermal pulse into the crust, leading to thermal cooling and relaxation of the lithosphere.  相似文献   

10.
《Sedimentology》2018,65(6):1918-1946
In southern Patagonia, outcrops of the Upper Cretaceous Cerro Toro Formation preserve a >150 km long deep‐water axial channel belt in the Magallanes–Austral Basin, providing a unique opportunity to investigate longitudinal variations in the depositional characteristics of a deep‐water channel system. This study documents sedimentological, stratigraphical and geochronological data from the Cerro Toro Formation in the Argentine sector of the basin. New results are integrated with previous work from the Chilean basin sector to conduct a basin‐scale comparison of the timing of deposition, provenance and lithofacies proportions. The Cerro Toro channel belt includes a nearly 1000 m thick section characterized by high‐density turbidites and mass‐wasting deposits. Two ash beds from the base of the section yield U–Pb zircon ages of 90·4 ± 2 Ma and 88·0 ± 3 Ma, indicating similar initiation ages as documented in the Chilean sector. The U–Pb detrital zircon age spectra from samples in the study area reveal similar provenance trends to samples from the Chilean basin sector, with peak age populations at 310 to 260 Ma, 160 to 135 Ma and 110 to 82 Ma. The maximum depositional age of the channel belt in the Argentine sector is 87·8 ± 1·5 Ma and all new geochronology data corroborate an 86 to 80 Ma depositional age for the main Cerro Toro channel belt. Statistical analyses of 7370 beds from nearly 8000 m of new and previously published stratigraphic sections along the entire outcrop belt suggest progressive variations in the down‐system proportion of lithofacies. In the up‐slope region, lithofacies representing mass wasting processes (for example, debris‐flow and mass‐transport deposits) account for ca 29% of the stratigraphic thickness, as opposed to 5% in the down‐slope region of the channel belt, where turbidity current deposits are more prevalent. The proportion of beds >1 m thick also decreases systematically down slope, particularly for conglomeratic turbidite deposits. This work highlights that: (i) the proportion of thick beds and distribution of lithofacies are key down‐system changes in the stratigraphic fill of this deep‐water channel belt; (ii) detrital zircon trends suggest a relatively well‐mixed longitudinal depositional system; and (iii) geochronology of the main Cerro Toro outcrop belt supports but does not necessitate the model of a single, roughly age‐equivalent, channel system. This study has implications for understanding the downslope variability in depositional processes, stratigraphic architecture and reservoir quality of submarine channel systems.  相似文献   

11.
The Late Cretaceous Gürsökü Formation represents the proximal fill of the Sinop–Samsun Forearc Basin that was probably initiated by extension during the Early Cretaceous. The succession records sedimentation in two contrasting depositional systems: a slope-apron flanking a faulted basin margin and coarse-grained submarine fans. The slope-apron deposits consist of thinly bedded turbiditic sandstones and mudstones, interbedded with non-channelized chaotic boulder beds and intraformational slump sheets representing a spectrum of processes ranging from debris flow to submarine slides. The submarine fan sediments are represented by conglomerates and sandstones interpreted as deposited from high density turbidity currents and non-cohesive debris flows. The occurrence of both slope apron and submarine fan depositional systems in the Gürsökü Formation may indicates that the region was a tectonically active basin margin during the Late Cretaceous.  相似文献   

12.
Detailed facies analysis of the Neogene successions of the Pishin Belt (Katawaz Basin) has enabled documentation of successive depositional systems and paleogeographic settings of the basin formed by the collision of the northwestern continental margin of the Indian Plate and the Afghan Block. During the Early Miocene, subaerial sedimentation started after the final closure of the Katawaz Remnant Ocean. Based on detailed field data, twelve facies were recognized in Neogene successions exposed in the Pishin Belt. These facies were further organized into four facies associations i.e. channels, crevasse splay, natural levee and floodplain facies associations. Facies associations and variations provided ample evidence to recognize a number of fluvial architectural components in the succession e.g., low‐sinuosity sandy braided river, mixed‐load meandering, high‐sinuosity meandering channels, single‐story sandstone and/or conglomerate channels, lateral accretion surfaces (point bars) and alluvial fans. Neogene sedimentation in the Pishin Belt was mainly controlled by active tectonism and thrusting in response to the oblique collision of the Indian Plate with the Afghan Block of the Eurasian Plate along the Chaman‐Nushki Fault. Post Miocene deformation of these formations successively caused them to contribute as an additional source terrain for the younger formations.  相似文献   

13.
 This integrated study of the sedimentology, magnetostratigraphic chronology and petrography of the mostly continental clastics of the Oligocene to Miocene Swiss Molasse Basin underpins a reconstruction of facies architecture and delineates relationships between the depositional evolution of a foreland-basin margin and exhumation phases and orogenic events in the adjacent orogen. A biostratigraphically based high-resolution magnetostratigraphy provides a detailed temporal framework and covers nearly the whole stratigraphic record of the Molasse Basin (31.5–13 Ma). Three transverse alluvial fan systems evolved at the southern basin margin. They are characterized by distinct petrographic compositions and document the exhumation and denudation history of the growing eastern Swiss Alps. Enhanced northward propagation of the orogenic wedge is interpreted to have occurred between 31.5 and 26 Ma. During the period 24–19 Ma, intense in-sequence and out-of-sequence thrusting took place as Molasse strata were accreted to the orogenic wedge. A third active tectonic phase, possibly caused by backthrusting of the Plateau Molasse, probably occurred between ca. 15 and 13 Ma. Fan head migration between 31.5 and 13 Ma is probably controlled by the structural evolution of the thrust front due to Molasse accretion and backthrusting. Received: 11 March 1998 / Accepted: 12 March 1999  相似文献   

14.
ABSTRACT This paper details the influence of syndepositional tectonics in controlling the architecture of a well‐exposed confined turbiditic sandbody, which crops out in the eastern part of the Tertiary Piedmont Basin (Castagnola Basin, northern Italy). The Castagnola Basin was tectonically active during sedimentation of the sandbody, and the lateral distribution of turbidity‐current deposits has been used to constrain both how the basin subsided and the impact of basin topography on flow behaviour and deposition. The sandbody occurs in the lower member of an Upper Oligocene–Lower Miocene turbidite system (the Castagnola Formation). The sandbody is ≈30 m thick and can be followed laterally for ≈1·8 km; it shows onlap terminations onto both northern and southern basin margins. The outcrop is sufficiently large to allow a detailed analysis of the facies and geometrical heterogeneity, as viewed approximately parallel to the average palaeocurrent trend (SW–NE). Correlation between 41 sedimentological logs reveals the diachronous development of a succession of sandstone packages (subunits). Nine vertically stacked and laterally juxtaposed packages have been recognized (subunits B to I from oldest to youngest), which reflect changes in basin floor accommodation as a result of synsedimentary tectonism. Each package shows the development of different vertical stacking patterns with thinning‐ and ‐fining‐upward small‐scale sequences and variable lateral facies arrangements, as a consequence of the position relative to the basin margins. The geometry, stratigraphic relationships, facies distribution and palaeocurrent directions indicate that turbidite deposition during accumulation of most of the sandbody was controlled by (1) synsedimentary tilting of the basin slopes; (2) the distribution of structural and depositional relief within the basin; (3) the thickness and volume of the turbidite flows; and (4) the angle of impingement of turbidity currents against the basin slopes.  相似文献   

15.
Sandstone bodies in the Sunnyside Delta Interval of the Eocene Green River Formation, Uinta Basin, previously considered as point bars formed in meandering rivers and other types of fluvial bars, are herein interpreted as delta mouth‐bar deposits. The sandstone bodies have been examined in a 2300 m long cliff section along the Argyle and Nine Mile Canyons at the southern margin of the Uinta lake basin. The sandstone bodies occur in three stratigraphic intervals, separated by lacustrine mudstone and limestone. Together these stratigraphic intervals form a regressive‐transgressive sequence. Individual sandstone bodies are texturally sharp‐based towards mudstone substratum. In proximal parts, the mouth‐bar deposits only contain sandstone, whereas in frontal and lateral positions mudstone drapes separate mouth‐bar clinothems. The clinothems pass gradually into greenish‐grey lacustrine mudstone at their toes. Horizontally bedded or laminated lacustrine mudstone onlaps the convex‐upward sandstone bars. The mouth‐bar deposits are connected to terminal distributary channel deposits. Together, these mouth‐bar/channel sandstone bodies accumulated from unidirectional jet flow during three stages of delta advance, separated by lacustrine flooding intervals. Key criteria to distinguish the mouth‐bar deposits from fluvial point bar deposits are: (i) geometry; (ii) bounding contacts; (iii) internal structure; (iv) palaeocurrent orientations; and (v) the genetic association of the deposits with lacustrine mudstone and limestone.  相似文献   

16.
Pliocene age deposits of the palaeo‐Orinoco Delta are evaluated in the Mayaro Formation, which crops out along the western margin of the Columbus Basin in south‐east Trinidad. This sandstone‐dominated interval records the diachronous, basinwards migration of the shelf edge of the palaeo‐Orinoco Delta, as it prograded eastwards during the Pliocene–Pleistocene (ca 3·5 Ma). The basin setting was characterized by exceptionally high rates of growth‐fault controlled sediment supply and accommodation space creation resulting in a gross basin‐fill of around 12 km, with some of the highest subsidence rates in the world (ca 5 to 10 m ka?1). This analysis demonstrates that the Mayaro Formation was deposited within large and mainly wave‐influenced shelf‐edge deltas. These are manifested as multiple stacks of coarsening upward parasequences at scales ranging from tens to hundreds of metres in thickness, which are dominated by storm‐influenced and wave‐influenced proximal delta‐front sandstones with extensive, amalgamated swaley and hummocky cross‐stratification. These proximal delta‐front successions pass gradationally downwards into 10s to 100 m thick distal delta front to mud‐dominated upper slope deposits characterized by a wide variety of sedimentary processes, including distal river flood and storm‐related currents, slumps and other gravity flows. Isolated and subordinate sandstone bodies occur as gully fills, while extensive soft sediment deformation attests to the high sedimentation rates along a slope within a tectonically active basin. The vertical stratigraphic organization of the facies associations, together with the often cryptic nature of parasequence stacking patterns and sequence stratigraphic surfaces, are the combined product of the rapid rates of accommodation space creation, high rates of sediment supply and glacio‐eustasy in the 40 to 100 Ka Milankovitch frequency range. The stratigraphic framework described herein contrasts strikingly with that described from passive continental margins, but compares favourably to other tectonically active, deltaic settings (for example, the Baram Delta Province of north‐west Borneo).  相似文献   

17.
The Upper Jurassic Tordillo Formation at Cañada Ancha area, northern Neuquén Basin, Argentina, comprises a multi-stage suit of predominantly alluvial sediments that is heterolithic in nature. In that suit, several lithofacies, architectural elements, and bounding surfaces of different order have been identified and their lateral and vertical distribution characterized. This analysis allowed the differentiation of 3 main units (lower, middle and upper), 20 subunits (C-1 to C-20), and the characterization of their alluvial styles.The lower unit (which comprises subunits C-1 to C-4) is mainly formed by fine- to medium-grained sandstones, which become medium- to coarse-grained towards the top. These sandstones characterize settings ranging from floodplains with isolated, unconfined flows, to more complex, vertically stacked, multi-storey sheet sandstones of braided fluvial systems. The middle unit (C-5 to C-10) is dominated by pale brown-grey fine-to coarse-grained sands and medium size subangular to angular conglomerates, which reflect amalgamated complexes of sandstone sheets and downstream accretion macroforms. Remarkably, this alluvial sedimentation was episodically punctuated by volcaniclastic flows. The upper unit (C-11 to C-20) consists of finer sediments, mainly pink to white fine-to medium grained sandstones and red to green siltstones. Towards the top, bioturbation becomes important, and also the presence of volcanosedimentary flows is noticeable. Fluvial settings include braided sheet sandstones with waning flood deposits evolving to isolated high-sinuosity fluvial systems, with flash flood deposits. At the top of this unit, facies may suggest marine influence.Vertical changes in the fluvial style result from both climatic and tectonic controls. A semiarid to arid climate and the active tectonism linked to the eastward migration of the Andean volcanic arc determined major bounding surfaces, fluvial style evolution and the presence of the volcano-sedimentary deposits. Different stages of high and low subsidence rates has been deduced from the vertical stacking of sediments.  相似文献   

18.

From the early Late Permian onwards, the northeastern part of the Sydney Basin, New South Wales, (encompassing the Hunter Coalfield) developed as a foreland basin to the rising New England Orogen lying to the east and northeast. Structurally, Permian rocks in the Hunter Coalfield lie in the frontal part of a foreland fold‐thrust belt that propagated westwards from the adjacent New England Orogen. Thrust faults and folds are common in the inner part of the Sydney Basin. Small‐scale thrusts are restricted to individual stratigraphic units (with a major ‘upper decollement horizon’ occurring in the mechanically weak Mulbring Siltstone), but major thrusts are inferred to sole into a floor thrust at a poorly constrained depth of approximately 3 km. Folds appear to have formed mainly as hangingwall anticlines above these splaying thrust faults. Other folds formed as flat‐topped anticlines developed above ramps in that floor thrust, as intervening synclines ahead of such ramp anticlines, or as decollement folds. These contractional structures were overprinted by extensional faults developed during compressional deformation or afterwards during post‐thrusting relaxation and/or subsequent extension. The southern part of the Hunter Coalfield (and the Newcastle Coalfield to the east) occupies a structural recess in the western margin of the New England Orogen and its offshore continuation, the Currarong Orogen. Rocks in this recess underwent a two‐stage deformation history. West‐northwest‐trending stage one structures such as the southern part of the Hunter Thrust and the Hunter River Transverse Zone (a reactivated syndepositional transfer fault) developed in response to maximum regional compression from the east‐northeast. These were followed by stage two folds and thrusts oriented north‐south and developed from maximum compression oriented east‐west. The Hunter Thrust itself was folded by these later folds, and the Hunter River Transverse Zone underwent strike‐slip reactivation.  相似文献   

19.
Coarse‐grained deep‐water strata of the Cerro Toro Formation in the Cordillera Manuel Señoret, southern Chile, represent the deposits of a major channel belt (4 to 8 km wide by >100 km long) that occupied the foredeep of the Magallanes basin during the Late Cretaceous. Channel belt deposits comprise a ca 400 m thick conglomeratic interval (informally named the ‘Lago Sofia Member’) encased in bathyal fine‐grained units. Facies of the Lago Sofia Member include sandy matrix conglomerate (that show evidence of traction‐dominated deposition and sedimentation from turbulent gravity flows), muddy matrix conglomerate (graded units interpreted as coarse‐grained slurry‐flow deposits) and massive sandstone beds (high‐density turbidity current deposits). Interbedded sandstone and mudstone intervals are present locally, interpreted as inner levée deposits. The channel belt was characterized by a low sinuousity planform architecture, as inferred from outcrop mapping and extensive palaeocurrent measurements. Laterally adjacent to the Lago Sofia Member are interbedded mudstone and sandstone facies derived from gravity flows that spilled over the channel belt margin. A levée interpretation for these fine‐grained units is based on several observations, which include: (i) palaeocurrent measurements that indicate flows diverged (50° to 100°) once they spilled over the confining channel margin; (ii) sandstone beds progressively thin, away from the channel belt margin; (iii) evidence that the eroded channel base was not very well indurated, including a stepped margin and injection of coarse‐grained channel material into surrounding fine‐grained units; and (iv) the presence of sedimentary features common to levées, including slumped units inferring depositional slopes dipping away from the channel margin, lenticular sandstone beds thinning distally from the channel margin, soft sediment deformation and climbing ripples. The tectonic setting and foredeep architecture influenced deposition in the axial channel belt. A significant downstream constriction of the channel belt is reflected by a transition from more tabular units to an internal architecture dominated by lenticular beds associated with a substantially increased degree of scour. Differential propagation of the fold‐thrust belt from the west is speculated to have had a major control on basin, and subsequently channel, width. The confining influence of the basin slopes that paralleled the channel belt, as well as the likelihood that numerous conduits fed into the basin along the length of the active fold‐thrust belt to the west, suggest that proximal–distal relationships observed from large channels in passive margin settings are not necessarily applicable to axial channels in elongate basins.  相似文献   

20.
Nine different types of cross‐stratified packages from the coal‐bearing, deltaic succession of the Barakar Formation (Permian) of the Satpura Gondwana Basin, central India, are described. The deposits are characterized by periodic mudstone drapes, reactivation surfaces including all other features suggestive of deposition from periodically unsteady, tidally‐influenced flows. The inferred flow patterns varied from purely bidirectional to pulsating unidirectional. The different types of cross‐stratified packages are interpreted to have resulted from superimposition of ebb‐oriented, steady, unidirectional fluvial currents of variable strength on the tidal flow in a deltaic setting. The study helps to distinguish cross‐strata that may develop in settings where fluvial and tidal currents interact. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号