首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
Potential predictability and skill of simulated Eurasian snow cover are explored using a suite of seasonal ensemble hindcasts (i.e. retrospective forecasts), an ensemble climate simulation (spanning the years 1982–1998) and observations. Using remotely sensed observations of snow cover, we find significant point-wise correlation over the North Atlantic and North Pacific between winter and spring averaged sea-surface temperatures and Eurasian snow cover area. The observed correlation shows no discernible pattern related to the El Niño-Southern Oscillation (ENSO). The hindcasts show correlation patterns similar to the observations. However, the climate simulation shows an exaggerated ENSO pattern. The results underscore the importance of initialization in seasonal climate forecasts, and that the observed potential predictability of Eurasian snowcover cannot be solely attributed to ENSO.  相似文献   

2.
文中通过长时间中国雪深序列数据集、ERA-5的反照率数据,以及CESM-CAM5的辐射数据,分析了1988—2016年中国积雪的辐射强迫,并通过DICE/RICE模型计算其大气碳当量,进而对中国年均积雪气候调节服务价值进行了核算,同时分析其时空变化,由此得到功能分区。结果表明,中国积雪对于全球的辐射强迫贡献等价于-0.22 (±0.01) W/m2,相当于减少大气碳当量17 (±1) Gt C带来的降温效应,从能源转变的替代成本角度出发,其气候调节服务价值可达到3.9 (±2.1)万亿元。同时发现,由于积雪减少趋势引起的中国积雪气候调节服务衰减,相当于碳当量以0.67亿t/a的速率减少,这相当于每年气候调节服务衰减造成的替代成本达到150 (±12)亿元,在29年间累积损失可达4100 (±328)亿元。最后基于评估结果对中国积雪气候调节服务功能进行了分区讨论。  相似文献   

3.
This study quantitatively evaluated how insulation by snow depth (SND) affected the soil thermal regime and permafrost degradation in the pan-Arctic area, and more generally defined the characteristics of soil temperature (TSOIL) and SND from 1901 to 2009. This was achieved through experiments performed with the land surface model CHANGE to assess sensitivity to winter precipitation as well as air temperature. Simulated TSOIL, active layer thickness (ALT), SND, and snow density were generally comparable with in situ or satellite observations at large scales and over long periods. Northernmost regions had snow that remained relatively stable and in a thicker state during the past four decades, generating greater increases in TSOIL. Changes in snow cover have led to changes in the thermal state of the underlying soil, which is strongly dependent on both the magnitude and the timing of changes in snowfall. Simulations of the period 2001–2009 revealed significant differences in the extent of near-surface permafrost, reflecting differences in the model’s treatment of meteorology and the soil bottom boundary. Permafrost loss was greater when SND increased in autumn rather than in winter, due to insulation of the soil resulting from early cooling. Simulations revealed that TSOIL tended to increase over most of the pan-Arctic from 1901 to 2009, and that this increase was significant in northern regions, especially in northeastern Siberia where SND is responsible for 50 % or more of the changes in TSOIL at a depth of 3.6 m. In the same region, ALT also increased at a rate of approximately 2.3 cm per decade. The most sensitive response of ALT to changes in SND appeared in the southern boundary regions of permafrost, in contrast to permafrost temperatures within the 60°N–80°N region, which were more sensitive to changes in snow cover. Finally, our model suggests that snow cover contributes to the warming of permafrost in northern regions and could play a more important role under conditions of future Arctic warming.  相似文献   

4.
李文杰  袁潮霞  赵平 《气象科学》2018,38(6):719-729
为了探究青藏高原积雪不同观测资料间的差异,本文通过定义积雪覆盖率(Snow Cover Percentage,SCP)对比了NOAA-CDR卫星可见光遥感积雪资料、卫星被动微波遥感积雪资料和我国146个台站观测的积雪资料在高原地区的气候态及年际变动特征。从年平均气候态看,微波与可见光资料的SCP分布较为接近,高值区均位于念青唐古拉山与喜马拉雅山南缘之间的山区。而台站资料SCP的高值区范围则相对较小,在高原东部的巴颜喀拉山及南部的念青唐古拉山。3种资料的积雪低值区均位于高原中南部沿雅鲁藏布江一带、阿尔金山北侧以及东边界的内陆省份。从季节平均场看,不同资料的积雪分布在冬季及秋季,无论是气候态还是年际变动均较为类似。在春季时,微波和台站资料间较为一致。而在夏季,资料间差异很大,不同资料间的两两相关接近于零,甚至为负数。本文同时选取了青藏高原地区4个典型台站(索县、清水河、康定、甘孜),将卫星资料插值于台站上,对比3种资料间的异同,以及与地表气温异常间的关系。结果表明,在这4个典型站上,台站SCP在过去36 a中为线性减少的趋势,而卫星SCP主要为线性增加的趋势,且台站年平均SCP与地表气温异常的协同性最好。  相似文献   

5.
回顾了青藏高原雪盖的季节内变化及其影响研究的新进展。高原大部分地区雪盖不稳定且持续时间短,导致高原雪盖具有显著的季节内快速变化特征。局地气温和降水的季节内变化是控制高原雪盖季节内变化的直接原因,这种直接关系是区域大气环流季节内活动的结果。高原雪盖季节内变化还与大尺度大气环流的季节内活动有关,热带季节内振荡、北极涛动和北大西洋涛动引起的大气季节内过程可解释部分高原雪盖季节内变率。高原雪盖季节内变化通过雪-反照率效应迅速对大气施加影响,雪盖造成的冷异常通过大气平流过程影响高原及其下游地区,造成东亚高空急流和东亚大槽增强。由于高原雪盖季节内变化的重要影响,数值预报中高原雪盖的初始场和预报场会影响次季节预报技巧。  相似文献   

6.
Snow cover changes in the middle (2040–2059) and end (2080–2099) of the twenty-first century over China were investigated with a regional climate model, nested within the global model BCC_CSM1.1. The simulations had been conducted for the period of 1950–2099 under the RCP4.5 and RCP8.5 scenarios. Results show that the model perform well in representing contemporary (1986–2005) spatial distributions of snow cover days (SCDs) and snow water equivalent (SWE). However, some differences between observation and simulation were detected. Under the RCP4.5 scenarios, SCDs are shortened by 10–20 and 20–40 days during the middle and end of the twenty-first century, respectively. Whereas simulated SWE is lowered by 0.1–10 mm in most areas over the Tibetan Plateau (TP). On the other hand, the spatial distributions of SWE are reversed between the middle and end terms in the northeast China. Furthermore, compared with the changes of RCP4.5 scenario, SCDs are reduced by 5–20 days in the middle period under RCP8.5 scenario with even larger decreasing amplitude in the end term. SWE was lowered by 0.1–2.5 mm in most areas except the northeast of China in middle term under RCP8.5 scenario. The great center of SCDs and SWE changes are always located over TP. The regional mean of SCDs and SWE for the TP and for China display a declining trend from 2006 to 2099 with more pronounced changes in the TP than in China as a whole. Under the RCP8.5 scenario, the changes are enhanced compared to those under RCP4.5.  相似文献   

7.
We use a state of the art climate model (CAM3–CLM3) to investigate the sensitivity of surface climate and land surface processes to treatments of snow thermal conductivity. In the first set of experiments, the thermal conductivity of snow at each grid cell is set to that of the underlying soil (SC-SOIL), effectively eliminating any insulation effect. This scenario is compared against a control run (CTRL), where snow thermal conductivity is determined as a prognostic function of snow density. In the second set of experiments, high (SC-HI) and low (SC-LO) thermal conductivity values for snow are prescribed, based on upper and lower observed limits. These two scenarios are used to envelop model sensitivity to the range of realistic observed thermal conductivities. In both sets of experiments, the high conductivity/low insulation cases show increased heat exchange, with anomalous heat fluxes from the soil to the atmosphere during the winter and from the atmosphere to the soil during the summer. The increase in surface heat exchange leads to soil cooling of up to 20 K in the winter, anomalies that persist (though damped) into the summer season. The heat exchange also drives an asymmetric seasonal response in near-surface air temperatures, with boreal winter anomalies of +6 K and boreal summer anomalies of −2 K. On an annual basis there is a net loss of heat from the soil and increases in ground ice, leading to reductions in infiltration, evapotranspiration, and photosynthesis. Our results show land surface processes and the surface climate within CAM3–CLM3 are sensitive to the treatment of snow thermal conductivity.  相似文献   

8.
The role of terrestrial snow cover in the climate system   总被引:2,自引:0,他引:2  
Snow cover is known to exert a strong influence on climate, but quantifying its impact is difficult. This study investigates the global impact of terrestrial snow cover through a pair of GCM simulations run with prognostic snow cover and with all snow cover on land eliminated (NOSNOWCOVER). In this experiment all snowfall over land was converted into its liquid–water equivalent upon reaching the surface. Compared with the control run, NOSNOWCOVER produces mean-annual surface air temperatures up to 5 K higher over northern North America and Eurasia and 8–10 K greater during winter. The globally averaged warming of 0.8 K is one-third as large as the model’s response to 2 × CO2 forcing. The pronounced surface heating propagates throughout the troposphere, causing changes in surface and upper-air circulation patterns. Despite the large atmospheric warming, the absence of an insulating snow pack causes soil temperatures in NOSNOWCOVER to fall throughout northern Asia and Canada, including extreme wintertime cooling of over 20 K in Siberia and a 70% increase in permafrost area. The absence of snow melt water also affects extratropical surface hydrology, causing significantly drier upper-layer soils and dramatic changes in the annual cycle of runoff. Removing snow cover also drastically affects extreme weather. Extreme cold-air outbreaks (CAOs)—defined relative to the control climatology—essentially disappear in NOSNOWCOVER. The loss of CAOs appears to stem from both the local effects of eliminating snow cover in mid-latitudes and a remote effect over source regions in the Arctic, where −40°C air masses are no longer able to form.  相似文献   

9.
中国西部积雪类型划分   总被引:7,自引:0,他引:7  
何丽烨  李栋梁 《气象学报》2012,70(6):1292-1301
利用中国105°E以西地区189个地面气象台站1960-2004年积雪日资料和1981-2004年SMMR、SSM/Ⅰ反演的逐日雪深资料,使用积雪年际变率方法划分中国西部积雪类型,并与积雪日数方法的划分结果进行比较.在此基础上,尝试建立了结合以上两种要素的综合分类指标.利用积雪年际变率方法和台站资料,将中国西部积雪划分为3类.其中,稳定积雪区主要包括北疆、天山和青藏高原东部高海拔山区;年周期性不稳定积雪区包括南疆和东疆盆地周边、河西走廊、青海北部、青藏高原中西部、藏南谷地以及青藏高原东南缘;其他积雪区均为非年周期性不稳定积雪区.气候突变后,积雪日数方法划分的积雪类型变化反映出沙漠和低纬度地区积雪变幅增大,在积雪年际变率方法的结果中体现出青藏高原东部地区趋于稳定的积雪面积在增加.在没有台站记录地区,卫星遥感资料很大程度上弥补了台站观测的缺陷,使用这种资料划分积雪类型时,积雪年际变率方法比积雪日数方法的结果更符合西部积雪的分布特点,反映出积雪分布与地形的密切关系.利用综合分类指标划分西部积雪类型的结果表明,台站资料的划分结果很大程度上受积雪持续时间的影响,而在卫星遥感结果中,积雪年际变率则是影响类型划分的主要因素.  相似文献   

10.
This paper presents the impact of two snow cover schemes (NY07 and SL12) in the Community Land Model version 4.5 (CLM4.5) on the snow distribution and surface energy budget over the Tibetan Plateau. The simulated snow cover fraction (SCF), snow depth, and snow cover days were evaluated against in situ snow depth observations and a satellite-based snow cover product and snow depth dataset. The results show that the SL12 scheme, which considers snow accumulation and snowmelt processes separately, has a higher overall accuracy (81.8%) than the NY07 (75.8%). The newer scheme performs better in the prediction of overall accuracy compared with the NY07; however, SL12 yields a 15.1% underestimation rate while NY07 overestimated the SCF with a 15.2% overestimation rate. Both two schemes capture the distribution of the maximum snow depth well but show large positive biases in the average value through all periods (3.37, 3.15, and 1.48 cm for NY07; 3.91, 3.52, and 1.17 cm for SL12) and overestimate snow cover days compared with the satellite-based product and in situ observations. Higher altitudes show larger root-mean-square errors (RMSEs) in the simulations of snow depth and snow cover days during the snow-free period. Moreover, the surface energy flux estimations from the SL12 scheme are generally superior to the simulation from NY07 when evaluated against ground-based observations, in particular for net radiation and sensible heat flux. This study has great implications for further improvement of the subgrid-scale snow variations over the Tibetan Plateau.  相似文献   

11.
Modelled atmospheric response to changes in Northern Hemisphere snow cover   总被引:1,自引:0,他引:1  
The surface boundary conditions are altered in a numerical simulation of January climate by prescribing (a) higher and (b) lower than average snow extent over Northern Hemisphere land masses. The anomalies in snow cover are shown to have quite a strong impact on the mean climatic state. Associated with an increase in the areal extent of the snow, there is a significant reduction in temperature throughout the lower troposphere. There are also large increases in sea-level pressure over most land areas. Significant responses in the mass field are also seen at 500 hPa where reductions in atmospheric thickness lead to significant negative anomalies in the height field. Responses are also seen non-locally, over both the North Pacific and North Atlantic basins. The impact of increased snow on cyclone tracks is also examined. A reduction in cyclones is noted over both continents and over the western sectors of both ocean basins. Over the North Atlantic basin this reduction extends across over Europe, significantly weakening the storm track. In the North Pacific, cyclone density is reduced in the west while in the east, there is actually a strengthening of the storm tracks. There are corresponding changes in the genesis of cyclones in both of these regions. The change in cyclogenesis, intensity and density is demonstrated to be associated with changes in baroclinicity between the two experiments. The anomalous snow boundary conditions lead to significant changes in the meridional temperature gradients over both ocean basins which impact on the baroclinic zones. Received: 5 January 1996 / Accepted: 4 May 1996  相似文献   

12.
The variations of albedo and absorptivity of the snow cover are considered caused by the presence of the snow roughness in the form of sastrugi. The numerical modeling is carried out within the framework of statistical approach based on the analytic averaging of the radiative transfer equation and statistically homogeneous model on the basis of Poisson flows of points at the straight lines. The estimates of the influence of 3D-effects of the rough surface are represented depending on optical and geometrical characteristics of sastrugi and on the illumination conditions. It is demonstrated that if the absorption by the snow particles is weak (the single scattering albedo w = 0.9999) the reflection of radiation by snow decreases by ∼ 2–3% when the sastrugi appear. This effect is more significant in near infrared spectral region where w is below 0.99.  相似文献   

13.
An empirical formula to compute snow cover fraction in GCMs   总被引:10,自引:0,他引:10  
There exists great uncertainty in parameterizing snow cover fraction in most general circulation models (GCMs) using various empirical formulae, which has great influence on the performance of GCMs. This work reviews the commonly used relationships between region-averaged snow depth (or snow water equivalent) and snow cover extent (or fraction) and suggests a new empirical formula to compute snow cover fraction, which only depends on the domain-averaged snow depth, for GCMs with different horizontal resolution. The new empirical formula is deduced based on the 10-yr (1978-1987) 0.5°× 0.5° weekly snow depth data of the scanning multichannel microwave radiometer (SMMR) driven from the Nimbus-7 Satellite. Its validation to estimate snow cover for various GCM resolutions was tested using the climatology of NOAA satellite-observed snow cover.  相似文献   

14.
The chemical composition ofprecipitation from May 2012 to March 2013 and snow cover in the south of the Primorsky krai are studied. The measured parameters are pH and the concentration of principal ions, dissolved organic carbon, silicon, and metals in the samples of precipitation and snow cover taken in Vladivostok and in the background area of the Sikhote-Alin mountain range. Data from Primorskaya, Ternei, and Sadgorod stations are presented for comparison.  相似文献   

15.
1962-2008年辽宁省积雪变化特征   总被引:2,自引:0,他引:2       下载免费PDF全文
采用1962-2008年辽宁省52个气象观测站逐日积雪深度以及同期温度、降水资料,用统计方法和小波方法分析了辽宁省积雪气候变化规律。结果表明:近47 a辽宁省积雪日数呈不显著增加趋势,共增加了3 d;年最大雪深随时间变化呈不明显增加趋势,平均每10 a增加0.2 cm;年累积雪深也呈不显著增加趋势,气候倾向率为8.9 cm/10 a。从年代际变化来看,20世纪80年代前辽宁省积雪日数、年最大雪深和年累积雪深偏小;而20世纪80年代后至今,则经历了一个积雪日数、年最大雪深和年累积雪深均增加的过程。  相似文献   

16.
积雪分布及其对中国气候影响的研究进展   总被引:12,自引:0,他引:12  
对北半球不同地区的积雪分布状况、积雪异常影响中国气候的事实以及影响机理等问题的研究成果进行了较系统的回顾与总结。青藏高原、蒙古高原、欧洲阿尔卑斯山脉及北美中西部是北半球积雪分布的关键区,其中青藏高原是北半球积雪异常变化最强烈的区域。中国积雪分布范围广泛,其中新疆、东北和青藏高原是3个大值区。总体来看,北半球积雪有减少的趋势,而中国积雪却有弱的增加趋势。冬、春季高原积雪与欧亚积雪对中国夏季降水的影响是相反的。积雪影响中国气候的机理解释为:冬季积雪反照率效应起主要作用,春夏季积雪水文效应起主要作用。积雪被视为中国短期气候预测的一个重要物理因子,继续加强该领域的研究对于提高中国短期气候预测的准确率将有重要意义。  相似文献   

17.
18.
RelationshipsbetweenRegionalIndianSummerMonsoonRainfallandEurasianSnowCoverB.Parthasarathy(IndianinstituteofTropicalMeteorolo...  相似文献   

19.
Based on historical runs,one of the core experiments of the fifth phase of the Coupled Model Intercomparison Project (CMIP5),the snow depth (SD) and snow cover fraction (SCF) simulated by two versions of the Flexible Global OceanAtmosphere-Land System (FGOALS) model,Grid-point Version 2 (g2) and Spectral Version 2 (s2),were validated against observational data.The results revealed that the spatial pattern of SD and SCF over the Northern Hemisphere (NH) are simulated well by both models,except over the Tibetan Plateau,with the average spatial correlation coefficient over all months being around 0.7 and 0.8 for SD and SCF,respectively.Although the onset of snow accumulation is captured wellby the two models in terms of the annual cycle of SD and SCF,g2 overestimates SD/SCF over most mid-and high-latitude areas of the NH.Analysis showed that g2 produces lower temperatures than s2 because it considers the indirect effects of aerosols in its atmospheric component,which is the primary driver for the SD/SCF difference between the two models.In addition,both models simulate the significant decreasing trend of SCF well over (30°-70°N) in winter during the period 1971-94.However,as g2 has a weak response to an increase in the concentration of CO2 and lower climate sensitivity,it presents weaker interannual variation compared to s2.  相似文献   

20.
 Snow cover fraction (SCF) has a significant influence on the surface albedo and thus on the radiation balance and surface climate. Long-term three dimensional simulations with general circulation models (GCMs) show that the SCF greatly affects the climate in the Northern Hemisphere. By means of both ground observations and remotely sensed data, several deficiencies in the SCF simulated by the current ECHAM4 GCM were identified: over mountainous areas a substantial overestimation in the SCF was found whereas flat areas showed a distinctly underestimated SCF. This work proposes a new parametrization of the SCF for use in GCMs. Evaluations illustrate that it is beneficial to distinguish between the following three terrains: (1) flat, non-forested areas, (2) mountainous regions and (3) forests. The modified SCF parametrization for flat, non-forested areas was derived by using global datasets of ground-based snow depth and remote sensing observations of snow cover data. A 3-dimensional ECHAM4 simulation showed that this modification raises the SCF by up to approximately 20%, mainly in areas with a relatively thin snow cover. The comparison between remotely sensed and simulated mean monthly surface albedo revealed a significant overestimation of the surface albedo in snow-covered mountainous areas. An extension of the current SCF parametrization in ECHAM4 to take into account mountain effects, based on the French climate model Arpège, yielded a close agreement with satellite-derived surface albedo. The adoption of the submodel for snow albedo, as used in the Canadian Land Surface Scheme (CLASS), combined with a newly developed simple snow interception model, demonstrated the ability to capture the main physical processes of snow-covered canopies, including the albedo. The validation of the new parametrization with Boreal Ecosystem-Atmosphere Study (BOREAS) field data showed that the modification is appropriate to capture the main features of the albedo over snow-covered forests during and after heavy snowfall events. Furthermore, the proposed modification has a beneficial impact on the delayed snow melt in spring, a well-known problem in many current GCMs: The simulated surface albedo over the boreal forests decreases by approximately 0.1 during winter and spring, which is in better agreement with ground-based observations. This induces a significant rise in the surface temperature over extended parts of Eurasia and North America in late spring, which subsequently yields a faster snowmelt and an accelerated retreat of the snow line. Received: 28 April 2000 / Accepted: 18 December 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号