首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 34 毫秒
1.
The derivatives of the Earth gravitational potential are considered in the global Cartesian Earth-fixed reference frame. Spherical harmonic series are constructed for the potential derivatives of the first and second orders on the basis of a general expression of Cunningham (Celest Mech 2:207–216, 1970) for arbitrary order derivatives of a spherical harmonic. A common structure of the series for the potential and its first- and second-order derivatives allows to develop a general procedure for constructing similar series for the potential derivatives of arbitrary orders. The coefficients of the derivatives are defined by means of recurrence relations in which a coefficient of a certain order derivative is a linear function of two coefficients of a preceding order derivative. The coefficients of the second-order derivatives are also presented as explicit functions of three coefficients of the potential. On the basis of the geopotential model EGM2008, the spherical harmonic coefficients are calculated for the first-, second-, and some third-order derivatives of the disturbing potential T, representing the full potential V, after eliminating from it the zero- and first-degree harmonics. The coefficients of two lowest degrees in the series for the derivatives of T are presented. The corresponding degree variances are estimated. The obtained results can be applied for solving various problems of satellite geodesy and celestial mechanics.  相似文献   

2.
This research represents a continuation of the investigation carried out in the paper of Petrovskaya and Vershkov (J Geod 84(3):165–178, 2010) where conventional spherical harmonic series are constructed for arbitrary order derivatives of the Earth gravitational potential in the terrestrial reference frame. The problem of converting the potential derivatives of the first and second orders into geopotential models is studied. Two kinds of basic equations for solving this problem are derived. The equations of the first kind represent new non-singular non-orthogonal series for the geopotential derivatives, which are constructed by means of transforming the intermediate expressions for these derivatives from the above-mentioned paper. In contrast to the spherical harmonic expansions, these alternative series directly depend on the geopotential coefficients ${\bar{{C}}_{n,m}}$ and ${\bar{{S}}_{n,m}}$ . Each term of the series for the first-order derivatives is represented by a sum of these coefficients, which are multiplied by linear combinations of at most two spherical harmonics. For the second-order derivatives, the geopotential coefficients are multiplied by linear combinations of at most three spherical harmonics. As compared to existing non-singular expressions for the geopotential derivatives, the new expressions have a more simple structure. They depend only on the conventional spherical harmonics and do not depend on the first- and second-order derivatives of the associated Legendre functions. The basic equations of the second kind are inferred from the linear equations, constructed in the cited paper, which express the coefficients of the spherical harmonic series for the first- and second-order derivatives in terms of the geopotential coefficients. These equations are converted into recurrent relations from which the coefficients ${\bar{{C}}_{n,m}}$ and ${\bar{{S}}_{n,m}}$ are determined on the basis of the spherical harmonic coefficients of each derivative. The latter coefficients can be estimated from the values of the geopotential derivatives by the quadrature formulas or the least-squares approach. The new expressions of two kinds can be applied for spherical harmonic synthesis and analysis. In particular, they might be incorporated in geopotential modeling on the basis of the orbit data from the CHAMP, GRACE and GOCE missions, and the gradiometry data from the GOCE mission.  相似文献   

3.
 The Cartesian moments of the mass density of a gravitating body and the spherical harmonic coefficients of its gravitational field are related in a peculiar way. In particular, the products of inertia can be expressed by the spherical harmonic coefficients of the gravitational potential as was derived by MacCullagh for a rigid body. Here the MacCullagh formulae are extended to a deformable body which is restricted to radial symmetry in order to apply the Love–Shida hypothesis. The mass conservation law allows a representation of the incremental mass density by the respective excitation function. A representation of an arbitrary Cartesian monome is always possible by sums of solid spherical harmonics multiplied by powers of the radius. Introducing these representations into the definition of the Cartesian moments, an extension of the MacCullagh formulae is obtained. In particular, for excitation functions with a vanishing harmonic coefficient of degree zero, the (diagonal) incremental moments of inertia also can be represented by the excitation coefficients. Four types of excitation functions are considered, namely: (1) tidal excitation; (2) loading potential; (3) centrifugal potential; and (4) transverse surface stress. One application of the results could be model computation of the length-of-day variations and polar motion, which depend on the moments of inertia. Received: 27 July 1999 / Accepted: 24 May 2000  相似文献   

4.
The computational requirements in the simulations of geopotential estimation from satellite gravity gradiometry are discussed. Fast algorithms for spherical harmonic synthesis and least squares accumulation on a vectorizing supercomputers are presented. Using these methods, in a test case estimation of 2595 coefficients of a degree and order 50 gravity field, sustained program execution speeds of 275 Mflops (87 % peak machine speed) on a single processor of a CRAY Y-MP were achieved, with spherical harmonics computation accounting for less than 1 % of total cost. From the results, it appears that brute-force estimation of a degree and order 180 field would require 537 Million Words of memory and 85 hours of CPU time, assuming mission duration of 1 month, and execution speed of 1 Gflops. Both memory size and execution speed requirements are within the capabilities of modern multi-processor supercomputers.  相似文献   

5.
全张量重力梯度数据的谱表示方法   总被引:4,自引:1,他引:3  
在文献「1」的基础上,进一步研究全张量重力梯度数据的全局和局部分量的广义球谐谱表示和轨道根数据表示,并给出了广义球谐函数与球谐函数这间的关系,从理论上得到了全张量重力梯度数据的描述方法和由全张量重力梯度网格数据恢复全球重力位谱系数的基本公式,本文对全张量重力梯度数据的谱表示和谱分析所做的工作,对由重力梯度张量的部分分量恢复全球重力位普系数有一定的参考价值。  相似文献   

6.
Based upon a data set of 25 points of the Baltic Sea Level Project, second campaign 1993.4, which are close to mareographic stations, described by (1) GPS derived Cartesian coordinates in the World Geodetic Reference System 1984 and (2) orthometric heights in the Finnish Height Datum N60, epoch 1993.4, we have computed the primary geodetic parameter W 0(1993.4) for the epoch 1993.4 according to the following model. The Cartesian coordinates of the GPS stations have been converted into spheroidal coordinates. The gravity potential as the additive decomposition of the gravitational potential and the centrifugal potential has been computed for any GPS station in spheroidal coordinates, namely for a global spheroidal model of the gravitational potential field. For a global set of spheroidal harmonic coefficients a transformation of spherical harmonic coefficients into spheroidal harmonic coefficients has been implemented and applied to the global spherical model OSU 91A up to degree/order 360/360. The gravity potential with respect to a global spheroidal model of degree/order 360/360 has been finally transformed by means of the orthometric heights of the GPS stations with respect to the Finnish Height Datum N60, epoch 1993.4, in terms of the spheroidal “free-air” potential reduction in order to produce the spheroidal W 0(1993.4) value. As a mean of those 25 W 0(1993.4) data as well as a root mean square error estimation we computed W 0(1993.4)=(6 263 685.58 ± 0.36) kgal × m. Finally a comparison of different W 0 data with respect to a spherical harmonic global model and spheroidal harmonic global model of Somigliana-Pizetti type (level ellipsoid as a reference, degree/order 2/0) according to The Geodesist's Handbook 1992 has been made. Received: 7 November 1996 / Accepted: 27 March 1997  相似文献   

7.
 The structure of normal matrices occurring in the problem of weighted least-squares spherical harmonic analysis of measurements scattered on a sphere with random noises is investigated. Efficient algorithms for the formation of the normal matrices are derived using fundamental relations inherent to the products of two surface spherical harmonic functions. The whole elements of a normal matrix complete to spherical harmonic degree L are recursively obtained from its first row or first column extended to degree 2L with only O(L 4) computational operations. Applications of the algorithms to the formation of surface normal matrices from geoid undulations and surface gravity anomalies are discussed in connection with the high-degree geopotential modeling. Received: 22 March 1999 / Accepted: 23 December 1999  相似文献   

8.
Comparisons between high-degree models of the Earth’s topographic and gravitational potential may give insight into the quality and resolution of the source data sets, provide feedback on the modelling techniques and help to better understand the gravity field composition. Degree correlations (cross-correlation coefficients) or reduction rates (quantifying the amount of topographic signal contained in the gravitational potential) are indicators used in a number of contemporary studies. However, depending on the modelling techniques and underlying levels of approximation, the correlation at high degrees may vary significantly, as do the conclusions drawn. The present paper addresses this problem by attempting to provide a guide on global correlation measures with particular emphasis on approximation effects and variants of topographic potential modelling. We investigate and discuss the impact of different effects (e.g., truncation of series expansions of the topographic potential, mass compression, ellipsoidal versus spherical approximation, ellipsoidal harmonic coefficient versus spherical harmonic coefficient (SHC) representation) on correlation measures. Our study demonstrates that the correlation coefficients are realistic only when the model’s harmonic coefficients of a given degree are largely independent of the coefficients of other degrees, permitting degree-wise evaluations. This is the case, e.g., when both models are represented in terms of SHCs and spherical approximation (i.e. spherical arrangement of field-generating masses). Alternatively, a representation in ellipsoidal harmonics can be combined with ellipsoidal approximation. The usual ellipsoidal approximation level (i.e. ellipsoidal mass arrangement) is shown to bias correlation coefficients when SHCs are used. Importantly, gravity models from the International Centre for Global Earth Models (ICGEM) are inherently based on this approximation level. A transformation is presented that enables a transformation of ICGEM geopotential models from ellipsoidal to spherical approximation. The transformation is applied to generate a spherical transform of EGM2008 (sphEGM2008) that can meaningfully be correlated degree-wise with the topographic potential. We exploit this new technique and compare a number of models of topographic potential constituents (e.g., potential implied by land topography, ocean water masses) based on the Earth2014 global relief model and a mass-layer forward modelling technique with sphEGM2008. Different to previous findings, our results show very significant short-scale correlation between Earth’s gravitational potential and the potential generated by Earth’s land topography (correlation +0.92, and 60% of EGM2008 signals are delivered through the forward modelling). Our tests reveal that the potential generated by Earth’s oceans water masses is largely unrelated to the geopotential at short scales, suggesting that altimetry-derived gravity and/or bathymetric data sets are significantly underpowered at 5 arc-min scales. We further decompose the topographic potential into the Bouguer shell and terrain correction and show that they are responsible for about 20 and 25% of EGM2008 short-scale signals, respectively. As a general conclusion, the paper shows the importance of using compatible models in topographic/gravitational potential comparisons and recommends the use of SHCs together with spherical approximation or EHCs with ellipsoidal approximation in order to avoid biases in the correlation measures.  相似文献   

9.
An algorithm for the determination of the spherical harmonic coefficients of the terrestrial gravitational field representation from the analysis of a kinematic orbit solution of a low earth orbiting GPS-tracked satellite is presented and examined. A gain in accuracy is expected since the kinematic orbit of a LEO satellite can nowadays be determined with very high precision, in the range of a few centimeters. In particular, advantage is taken of Newton's Law of Motion, which balances the acceleration vector with respect to an inertial frame of reference (IRF) and the gradient of the gravitational potential. By means of triple differences, and in particular higher-order differences (seven-point scheme, nine-point scheme), based upon Newton's interpolation formula, the local acceleration vector is estimated from relative GPS position time series. The gradient of the gravitational potential is conventionally given in a body-fixed frame of reference (BRF) where it is nearly time independent or stationary. Accordingly, the gradient of the gravitational potential has to be transformed from spherical BRF to Cartesian IRF. Such a transformation is possible by differentiating the gravitational potential, given as a spherical harmonics series expansion, with respect to Cartesian coordinates by means of the chain rule, and expressing zero- and first-order Ferrer's associated Legendre functions in terms of Cartesian coordinates. Subsequently, the BRF Cartesian coordinates are transformed into IRF Cartesian coordinates by means of the polar motion matrix, the precession–nutation matrices and the Greenwich sidereal time angle (GAST). In such a way a spherical harmonic representation of the terrestrial gravitational field intensity with respect to an IRF is achieved. Numerical tests of a resulting Gauss–Markov model document not only the quality and the high resolution of such a space gravity spectroscopy, but also the problems resulting from noise amplification in the acceleration determination process.  相似文献   

10.
We present an alternate mathematical technique than contemporary spherical harmonics to approximate the geopotential based on triangulated spherical spline functions, which are smooth piecewise spherical harmonic polynomials over spherical triangulations. The new method is capable of multi-spatial resolution modeling and could thus enhance spatial resolutions for regional gravity field inversion using data from space gravimetry missions such as CHAMP, GRACE or GOCE. First, we propose to use the minimal energy spherical spline interpolation to find a good approximation of the geopotential at the orbital altitude of the satellite. Then we explain how to solve Laplace’s equation on the Earth’s exterior to compute a spherical spline to approximate the geopotential at the Earth’s surface. We propose a domain decomposition technique, which can compute an approximation of the minimal energy spherical spline interpolation on the orbital altitude and a multiple star technique to compute the spherical spline approximation by the collocation method. We prove that the spherical spline constructed by means of the domain decomposition technique converges to the minimal energy spline interpolation. We also prove that the modeled spline geopotential is continuous from the satellite altitude down to the Earth’s surface. We have implemented the two computational algorithms and applied them in a numerical experiment using simulated CHAMP geopotential observations computed at satellite altitude (450 km) assuming EGM96 (n max = 90) is the truth model. We then validate our approach by comparing the computed geopotential values using the resulting spherical spline model down to the Earth’s surface, with the truth EGM96 values over several study regions. Our numerical evidence demonstrates that the algorithms produce a viable alternative of regional gravity field solution potentially exploiting the full accuracy of data from space gravimetry missions. The major advantage of our method is that it allows us to compute the geopotential over the regions of interest as well as enhancing the spatial resolution commensurable with the characteristics of satellite coverage, which could not be done using a global spherical harmonic representation. The results in this paper are based on the research supported by the National Science Foundation under the grant no. 0327577.  相似文献   

11.
The second-order derivatives of the Earth’s potential in the local north-oriented reference frame are expanded in series of modified spherical harmonics. Linear relations are derived between the spectral coefficients of these series and the spectrum of the geopotential. On the basis of these relations, recurrence procedures are developed for evaluating the geopotential coefficients from the spectrum of each derivative and, inversely, for simulating the latter from a known geopotential model. Very simple structure of the derived expressions for the derivatives is convenient for estimating the geopotential coefficients by the least-squares procedure, at a certain step of processing satellite gradiometry data. Due to the orthogonality of the new series, the quadrature formula approach can be also applied, which allows avoidance of aliasing errors caused by the series truncation. The spectral coefficients of the derivatives are evaluated on the basis of the derived relations from the geopotential models EGM96 and EIGEN-CG01C at a mean orbital sphere of the GOCE satellite. Various characteristics of the spectra are studied corresponding to the EGM96 model. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

12.
卫星重力径向梯度数据的最小二乘配置调和分析   总被引:3,自引:2,他引:1  
吴星  张传定  刘晓刚 《测绘学报》2010,39(5):471-477
本文深入研究了利用卫星重力梯度径向分量确定地球引力场位系数的最小二乘配置(LSC)调和分析方法。首先论述了最小二乘配置法的原理,推导了扰动引力梯度观测量与球谐系数之间的协方差和自协方差矩阵,在扰动引力梯度观测数据为等经差规则网格数据的情况下,引力位与扰动引力梯度之间的协方差矩阵具有分块Toeplitz循环阵的结构,有效的利用FFT变换技术将其降阶;研究利用截断奇异值分解法(TSVD)解决协方差阵的病态性问题;最后得到了引力梯度径向分量的最小二乘配置调和分析的完整计算公式。模拟试算结果表明,基于TSVD的最小二乘配置调和分析方法,能够以较高的精度还原全球重力场,验证了本文算法的有效性和实用性。  相似文献   

13.
The Meissl scheme for the geodetic ellipsoid   总被引:2,自引:1,他引:1  
We present a variant of the Meissl scheme to relate surface spherical harmonic coefficients of the disturbing potential of the Earth’s gravity field on the surface of the geodetic ellipsoid to surface spherical harmonic coefficients of its first- and second-order normal derivatives on the same or any other ellipsoid. It extends the original (spherical) Meissl scheme, which only holds for harmonic coefficients computed from geodetic data on a sphere. In our scheme, a vector of solid spherical harmonic coefficients of one quantity is transformed into spherical harmonic coefficients of another quantity by pre-multiplication with a transformation matrix. This matrix is diagonal for transformations between spheres, but block-diagonal for transformations involving the ellipsoid. The computation of the transformation matrix involves an inversion if the original coefficients are defined on the ellipsoid. This inversion can be performed accurately and efficiently (i.e., without regularisation) for transformation among different gravity field quantities on the same ellipsoid, due to diagonal dominance of the matrices. However, transformations from the ellipsoid to another surface can only be performed accurately and efficiently for coefficients up to degree and order 520 due to numerical instabilities in the inversion.  相似文献   

14.
Kaula’s rule of thumb has been used in producing geopotential models from space geodetic measurements, including the most recent models from satellite gravity missions CHAMP. Although Xu and Rummel (Manuscr Geod 20 8–20, 1994b) suggested an alternative regularization method by introducing a number of regularization parameters, no numerical tests have ever been conducted. We have compared four methods of regularization for the determination of geopotential from precise orbits of COSMIC satellites through simulations, which include Kaula’s rule of thumb, one parameter regularization and its iterative version, and multiple parameter regularization. The simulation results show that the four methods can indeed produce good gravitational models from the precise orbits of centimetre level. The three regularization methods perform much better than Kaula’s rule of thumb by a factor of 6.4 on average beyond spherical harmonic degree 5 and by a factor of 10.2 for the spherical harmonic degrees from 8 to 14 in terms of degree variations of root mean squared errors. The maximum componentwise improvement in the root mean squared error can be up to a factor of 60. The simplest version of regularization by multiplying a positive scalar with a unit matrix is sufficient to better determine the geopotential model. Although multiple parameter regularization is theoretically attractive and can indeed eliminate unnecessary regularization for some of the harmonic coefficients, we found that it only improved its one parameter version marginally in this COSMIC example in terms of the mean squared error.  相似文献   

15.
If satellite range-rate information is given continuously on an extra terrestrial sphere (S), the spherical harmonic coefficients of the gravitational potential of the Earth can be determined by direct integration of the data. An exact solution is given in the case when circular satellite orbits crosses S in all directions. A simpler acquisition of the data is achieved when the observations are restricted to polar satellite orbits. However, in this case the solutions become more complex due to attenuation. A solution to order sin Δ, where Δ is the separation angle of the two satellites, is given for the zonal harmonics. For tesseral hamonics a zero-order solution is derived. Corrections are given for observations out of S. Finally, the along track configuration of the satellite pair is compared with a radially designed satellite system (one above the other). The former is found most favourable for the recovery of geopotential coefficients.  相似文献   

16.
Optimized formulas for the gravitational field of a tesseroid   总被引:7,自引:3,他引:4  
Various tasks in geodesy, geophysics, and related geosciences require precise information on the impact of mass distributions on gravity field-related quantities, such as the gravitational potential and its partial derivatives. Using forward modeling based on Newton’s integral, mass distributions are generally decomposed into regular elementary bodies. In classical approaches, prisms or point mass approximations are mostly utilized. Considering the effect of the sphericity of the Earth, alternative mass modeling methods based on tesseroid bodies (spherical prisms) should be taken into account, particularly in regional and global applications. Expressions for the gravitational field of a point mass are relatively simple when formulated in Cartesian coordinates. In the case of integrating over a tesseroid volume bounded by geocentric spherical coordinates, it will be shown that it is also beneficial to represent the integral kernel in terms of Cartesian coordinates. This considerably simplifies the determination of the tesseroid’s potential derivatives in comparison with previously published methodologies that make use of integral kernels expressed in spherical coordinates. Based on this idea, optimized formulas for the gravitational potential of a homogeneous tesseroid and its derivatives up to second-order are elaborated in this paper. These new formulas do not suffer from the polar singularity of the spherical coordinate system and can, therefore, be evaluated for any position on the globe. Since integrals over tesseroid volumes cannot be solved analytically, the numerical evaluation is achieved by means of expanding the integral kernel in a Taylor series with fourth-order error in the spatial coordinates of the integration point. As the structure of the Cartesian integral kernel is substantially simplified, Taylor coefficients can be represented in a compact and computationally attractive form. Thus, the use of the optimized tesseroid formulas particularly benefits from a significant decrease in computation time by about 45 % compared to previously used algorithms. In order to show the computational efficiency and to validate the mathematical derivations, the new tesseroid formulas are applied to two realistic numerical experiments and are compared to previously published tesseroid methods and the conventional prism approach.  相似文献   

17.
All gravity field functionals obtained from an Earth gravitational model (EGM) depend on the underlying terrestrial reference frame (TRF), with respect to which the EGM’s spherical harmonic coefficients refer to. In order to maintain a coherent framework for the comparison of current and future EGMs, it is thus important to investigate the consistency of their inherent TRFs, especially when their use is intended for high precision studies. Following the methodology described in an earlier paper by Kleusberg (1980), the similarity transformation parameters between the associated reference frames for several EGMs (including the most recent CHAMP/GRACE models at the time of writing this paper) are estimated in the present study. Specifically, the differences between the spherical harmonic coefficients for various pairs of EGMs are parameterized through a 3D-similarity spatial transformation model that relates their underlying TRFs. From the least-squares adjustment of such a parametric model, the origin, orientation and scale stability between the EGMs’ reference frames can be identified by estimating their corresponding translation, rotation and scale factor parameters. Various aspects of the estimation procedure and its results are highlighted in the paper, including data weighting schemes, the sensitivity of the results with respect to the selected harmonic spectral band, the correlation structure and precision level of the estimated transformation parameters, the effect of the estimated differences of the EGMs’ reference frames on their height anomaly signal, and the overall feasibility of Kleusberg’s formulae for the assessment of TRF inconsistencies among global geopotential models.  相似文献   

18.
The currently practiced methods of harmonic analysis on the sphere are studied with respect to aliasing and filtering. It is assumed that a function is sampled on a regular grid of latitudes and longitudes. Then, transformations to and from the Cartesian plane yield formulations of the aliasing error in terms of spherical harmonic coefficients. The following results are obtained: 1) The simple quadratures method and related methods are biased even with band-limited functions. 2) A new method that eliminates this bias is superior to Colombo's method of least squares in terms of reducing aliasing. 3) But, a simple modification of the least-squares model makes it identical to the new method as one is the dual of the other. 4) The essential elimination of aliasing can only be effected with spherical cap averages, not with the often used constant angular block averages.  相似文献   

19.
The gravitational potential of a constant density general polyhedron can be expressed both in terms of a closed analytical expression and as a series expansion involving the corresponding spherical harmonic coefficients. The latter can be obtained from two independent algorithms, which differ not only in their algorithmic architecture but in their efficiency and overall performance, especially when computing the coefficients of higher degree and order. In the present paper a comparative study of all these three approaches is carried out focusing on the numerical implementation of the recursive relations appearing in the two algorithms for the computation of the polyhedral potential harmonic coefficients. The performed numerical investigations show that the linear algorithm proposed by Jamet and Thomas (Proceedings of the second international GOCE user workshop, ‘GOCE, The Geoid and Oceanography’, ESA-ESRIN, Frascati, Italy, 8–10 March 2004, ESA SP-569, 2004), but so far not implemented, achieves a reasonable accuracy at a computational expense that opens to practical applications, for instance in the field of satellite gravimetry/gradiometry interpretation. The convergence behavior of the linear recursion algorithm is studied thoroughly and a computational procedure is proposed that enables the stable computation of potential harmonic coefficients up to degree 60 when referring to an arbitrarily shaped polyhedral body.  相似文献   

20.
分析研究了最小二乘求解重力场模型的六种位系数排列方式下的块对角形态及三种不同条件下的块对角近似:BD-1、BD-2、BD-3,探讨了块对角最小二乘方法在联合早期卫星重力场模型和最新GRACE-only模型中的应用,通过实验计算,结果表明,块对角最小二乘方法较之于积分方法,能更好的提高所恢复模型的精度,说明在卫星重力飞速发展、地面重力数据不断完善的今天,块对角最小二乘法在超高阶地球重力场模型构建方面的优势逐渐突出。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号