首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It is already known (Froeschlé et al., 1997a) that the fast Lyapunov indicator (hereafter FLI), i.e. the computation on a relatively short time of a quantity related to the largest Lyapunov indicator, allows us to discriminate between ordered and weak chaotic motion. Using the FLI many results have been obtained on the standard map taken as a model problem. On this model we are not only able to discriminate between a short time weak chaotic motion and an ordered one, but also among regular motion between non resonant and resonant orbits. Moreover, periodic orbits are characterised by constant FLI values which appear to be related to the order of periodic orbits (Lega and Froeschlé, 2001). In the present paper we extend all these results to the case of continuous dynamical systems (the Hénon and Heiles system and the restricted three-body problem). Especially for the periodic orbits we need to introduce a new value: the orthogonal FLI in order to fully recover the results obtained for mappings.  相似文献   

2.
It is already known (Froeschlé, Lega and Gonczi, 1997) that the Fast Lyapunov Indicator (FLI), that is the computation on a relatively short time of the largest Lyapunov indicator, allows to discriminate between ordered and weak chaotic motion. We have found that, under certain conditions, the FLI also discriminates between resonant and non-resonant orbits, not only for two-dimensional symplectic mappings but also for higher dimensional ones. Using this indicator, we present an example of the Arnold web detection for four and six-dimensional symplectic maps. We show that this method allows to detect the global transition of the system from an exponentially stable Nekhoroshevs like regime to the diffusive Chirikovs one.  相似文献   

3.
4.
Fast Lyapunov Indicator (FLI) maps are presented as a tool for solving spacecraft preliminary trajectory design problems in multi-body environments with long-term stability requirements. In particular, the FLI maps are shown to provide a global overview of the dynamics in the restricted three-body problem that can guide mission designers in selecting long-term stable regions of phase space which are inherently more robust to model parameter perturbations. The FLI is also shown to numerically detect the normally hyperbolic manifolds associated with unstable periodic orbits. These, in turn, provide a global map of the principal heteroclinic connections between the various resonance regions which form the basic backbone of dynamical transfers design. Examples of maps and transfers are provided in the restricted three-body problem modeling the Jupiter–Europa system.  相似文献   

5.
In a previous work [Guzzo et al. DCDS B 5, 687–698 (2005)] we have provided numerical evidence of global diffusion occurring in slightly perturbed integrable Hamiltonian systems and symplectic maps. We have shown that even if a system is sufficiently close to be integrable, global diffusion occurs on a set with peculiar topology, the so-called Arnold web, and is qualitatively different from Chirikov diffusion, occurring in more perturbed systems. In the present work we study in more detail the chaotic behaviour of a set of 90 orbits which diffuse on the Arnold web. We find that the largest Lyapunov exponent does not seem to converge for the individual orbits while the mean Lyapunov exponent on the set of 90 orbits does converge. In other words, a kind of average mixing characterizes the diffusion. Moreover, the Local Lyapunov Characteristic Numbers (LLCNs), on individual orbits appear to reflect the different zones of the Arnold web revealed by the Fast Lyapunov Indicator. Finally, using the LLCNs we study the ergodicity of the chaotic part of the Arnold web.  相似文献   

6.
The study of the stochasticity of the asteroid belt requires the analysis of a large number of orbits. We detect the dynamical character of a set of 5 400 asteroids using the Fast Lyapunov Indicator, a method of analysis closely related to the computation of the Lyapunov Characteristic Exponents, but cheaper in computational time. For both regular and chaotic orbits we try to associate the motion to the underlying resonances network. For it we consider different methods of classification of rational numbers proposed by number theory, and we choose the one which seems to be strictly related to the dynamical behaviour of a system. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

7.
An enlarged averaged Hamiltonian is introduced to compute some families of periodic orbits of the planar elliptic 3-body problem, in the Sun-Jupiter-Asteroid system, near the 3:1 resonance. Five resonant families are found and their stability is studied, The families of symmetric periodic orbits of the elliptic problem appear near the corresponding fixed points which have been computed in this model and the coincidence is good for moderate values of the eccentricity of the asteroid for two of these families; the other three families do not fulfil the Sundman condition and they cannot be considered as families of periodic orbits of the real model.  相似文献   

8.
In the framework of the planar restricted three-body problem we study a considerable number of resonances associated to the basic dynamical features of Kuiper belt and located between 30 and 48 a.u. Our study is based on the computation of resonant periodic orbits and their stability. Stable periodic orbits are surrounded by regular librations in phase space and in such domains the capture of trans-Neptunian object is possible. All the periodic orbits found are symmetric and there is an indication of the existence of asymmetric ones only in a few cases. In the present work first, second and third order resonances are under consideration. In the planar circular case we found that most of the periodic orbits are stable. The families of periodic orbits are temporarily interrupted by collisions but they continue up to relatively large values of the Jacobi constant and highly eccentric regular motion exists for all cases. In the elliptic problem and for a particular eccentricity value of the primary bodies, the periodic orbits are isolated. The corresponding families, where they belong to, bifurcate from specific periodic orbits of the circular problem and seem to continue up to the rectilinear problem. Both stable and unstable orbits are obtained for each case. In the elliptic problem, the unstable orbits found are associated with narrow chaotic domains in phase space. The evolution of the orbits, which are located in such chaotic domains, seems to be practically regular and bounded for long time intervals.  相似文献   

9.
Applying the method of analytical continuation of periodic orbits, we study quasi-satellite motion in the framework of the three-body problem. In the simplest, yet not trivial model, namely the planar circular restricted problem, it is known that quasi-satellite motion is associated with a family of periodic solutions, called family f, which consists of 1:1 resonant retrograde orbits. In our study, we determine the critical orbits of family f that are continued both in the elliptic and in the spatial models and compute the corresponding families that are generated and consist the backbone of the quasi-satellite regime in the restricted model. Then, we show the continuation of these families in the general three-body problem, we verify and explain previous computations and show the existence of a new family of spatial orbits. The linear stability of periodic orbits is also studied. Stable periodic orbits unravel regimes of regular motion in phase space where 1:1 resonant angles librate. Such regimes, which exist even for high eccentricities and inclinations, may consist dynamical regions where long-lived asteroids or co-orbital exoplanets can be found.  相似文献   

10.
We have shown, in previous publications, that stable chaos is associated with medium/high-order mean motion resonances with Jupiter, for which there exist no resonant periodic orbits in the framework of the elliptic restricted three-body problem. This topological “defect” results in the absence of the most efficient mechanism of eccentricity transport (i.e., large-amplitude modulation on a short time scale) in three-body models. Thus, chaotic diffusion of the orbital elements can be quite slow, while there can also exist a nonnegligible set of chaotic orbits which are semiconfined (stable chaos) by “quasi-barriers” in the phase space. In the present paper we extend our study to all mean motion resonances of order q≤9 in the inner main belt (1.9-3.3 AU) and q≤7 in the outer belt (3.3-3.9 AU). We find that, out of the 34 resonances studied, only 8 possess resonant periodic orbits that are continued from the circular to the elliptic three-body problem (regular families), namely, the 2/1, 3/1, 4/1, and 5/2 in the inner belt and the 7/4, 5/3, 11/7, and 3/2 in the outer belt. Numerical results indicate that the 7/3 resonance also carries periodic orbits but, unlike the aforementioned resonances, 7/3-periodic orbits belong to an irregular family. Note that the five inner-belt resonances that carry periodic orbits correspond to the location of the main Kirkwood gaps, while the three outer-belt resonances correspond to gaps in the distribution of outer-belt asteroids noted by Holman and Murray (1996, Astron. J.112, 1278-1293), except for the 3/2 case where the Hildas reside. Fast, intermittent eccentricity increase is found in resonances possessing periodic orbits. In the remaining resonances the time-averaged elements of chaotic orbits are, in general, quite stable, at least for times t∼250 Myr. This slow diffusion picture does not change qualitatively, even if more perturbing planets are included in the model.  相似文献   

11.
We present a global view of the resonant structure of the phase space of a planetary system with two planets, moving in the same plane, as obtained from the set of the families of periodic orbits. An important tool to understand the topology of the phase space is to determine the position and the stability character of the families of periodic orbits. The region of the phase space close to a stable periodic orbit corresponds to stable, quasi periodic librations. In these regions it is possible for an extrasolar planetary system to exist, or to be trapped following a migration process due to dissipative forces. The mean motion resonances are associated with periodic orbits in a rotating frame, which means that the relative configuration is repeated in space. We start the study with the family of symmetric periodic orbits with nearly circular orbits of the two planets. Along this family the ratio of the periods of the two planets varies, and passes through rational values, which correspond to resonances. At these resonant points we have bifurcations of families of resonant elliptic periodic orbits. There are three topologically different resonances: (1) the resonances (n + 1):n, (2:1, 3:2, ...), (2) the resonances (2n + 1):(2n-1), (3:1, 5:3, ...) and (3) all other resonances. The topology at each one of the above three types of resonances is studied, for different values of the sum and of the ratio of the planetary masses. Both symmetric and asymmetric resonant elliptic periodic orbits exist. In general, the symmetric elliptic families bifurcate from the circular family, and the asymmetric elliptic families bifurcate from the symmetric elliptic families. The results are compared with the position of some observed extrasolar planetary systems. In some cases (e.g., Gliese 876) the observed system lies, with a very good accuracy, on the stable part of a family of resonant periodic orbits.  相似文献   

12.
We use numerical continuation and bifurcation techniques in a boundary value setting to follow Lyapunov families of periodic orbits and subsequently bifurcating families. The Lyapunov families arise from the polygonal equilibrium of n bodies in a rotating frame of reference. When the frequency of a Lyapunov orbit and the frequency of the rotating frame have a rational relationship, then the orbit is also periodic in the inertial frame. We prove that a dense set of Lyapunov orbits, with frequencies satisfying a diophantine equation, correspond to choreographies. We present a sample of the many choreographies that we have determined numerically along the Lyapunov families and along bifurcating families, namely for the cases \(n=3\), 4, and 6–9. We also present numerical results for the case where there is a central body that affects the choreography, but that does not participate in it. Animations of the families and the choreographies can be seen at the link below.  相似文献   

13.
The 2/1 resonant dynamics of a two-planet planar system is studied within the framework of the three-body problem by computing families of periodic orbits and their linear stability. The continuation of resonant periodic orbits from the restricted to the general problem is studied in a systematic way. Starting from the Keplerian unperturbed system, we obtain the resonant families of the circular restricted problem. Then, we find all the families of the resonant elliptic restricted three-body problem, which bifurcate from the circular model. All these families are continued to the general three-body problem, and in this way we can obtain a global picture of all the families of periodic orbits of a two-planet resonant system. The parametric continuation, within the framework of the general problem, takes place by varying the planetary mass ratio ρ. We obtain bifurcations which are caused either due to collisions of the families in the space of initial conditions or due to the vanishing of bifurcation points. Our study refers to the whole range of planetary mass ratio values  [ρ∈ (0, ∞)]  and, therefore we include the passage from external to internal resonances. Thus, we can obtain all possible stable configurations in a systematic way. As an application, we consider the dynamics of four known planetary systems at the 2/1 resonance and we examine if they are associated with a stable periodic orbit.  相似文献   

14.
In a previous publication (Tsiganis et al. 2000, Icarus146, 240-252), we argued that the occurrence of stable chaos in the 12/7 mean motion resonance with Jupiter is related to the fact that there do not exist families of periodic orbits in the planar elliptic restricted problem and in the 3-D circular problem corresponding to this resonance. In the present paper we show that nonexistence of resonant periodic orbits, both for the planar and for the 3-D problem, also occurs in other jovian resonances—namely the 11/4, 22/9, 13/6, and 18/7—where cases of real asteroids on stable-chaotic orbits have been identified. This property may provide a “protection mechanism”, leading to semiconfinement of chaotic orbits and extremely slow migration in the space of proper elements, so that diffusion is practically unrelated to the value of the Lyapunov time, TL, of chaotic orbits. However, we show that, in more complicated dynamical models, the long-term evolution of chaotic orbits initiated in the vicinity of these resonances may also be governed by secular resonances. Finally, we find that stable-chaotic orbits have a characteristic spectrum of autocorrelation times: for the action conjugate to the critical argument the autocorrelation time is of the order of the Lyapunov time, while for the eccentricity- and inclination-related actions the autocorrelation time may be longer than 103TL. This behavior is consistent with the trajectory being sticky around a manifold of lower-than-full dimensionality in phase space (e.g., a 4-D submanifold of the 5-D energy manifold in a three-degrees-of-freedom autonomus Hamiltonian system) and reflects the inability of these “flawed” resonances to modify secular motion significantly, at least for times of the order of 200 Myr.  相似文献   

15.
We investigate the escape regions of a quartic potential and the main types of irregular periodic orbits. Because of the symmetry of the model the zero velocity curve consists of four summetric arcs forming four open channels around the lines y = ± x through which an orbit can escape. Four unstable Lyapunov periodic orbits bridge these openings.We have found an infinite sequence of families of periodic orbits which is the outer boundary of one of the escape regions and several infinite sequences of periodic orbits inside this region that tend to homoclinic and heteroclinic orbits. Some of these sequences of periodic orbits tend to homoclinic orbits starting perpendicularly and ending asymptotically at the x-axis. The other sequences tend to heteroclinic orbits which intersect the x-axis perpendicularly for x > 0 and make infinite oscillations almost parallel to each of the two Lyapunov orbits which correspond to x > 0 or x < 0.  相似文献   

16.
We consider the general spatial three body problem and study the dynamics of planetary systems consisting of a star and two planets which evolve into 2/1 mean motion resonance and into inclined orbits. Our study is focused on the periodic orbits of the system given in a suitable rotating frame. The stability of periodic orbits characterize the evolution of any planetary system with initial conditions in their vicinity. Stable periodic orbits are associated with long term regular evolution, while unstable periodic orbits are surrounded by regions of chaotic motion. We compute many families of symmetric periodic orbits by applying two schemes of analytical continuation. In the first scheme, we start from the 2/1 (or 1/2) resonant periodic orbits of the restricted problem and in the second scheme, we start from vertical critical periodic orbits of the general planar problem. Most of the periodic orbits are unstable, but many stable periodic orbits have been, also, found with mutual inclination up to 50?–60?, which may be related with the existence of real planetary systems.  相似文献   

17.
We present families of periodic orbits and their stability for the exterior mean motion resonances 1:2, 1:3 and 1:4 with Neptune in the framework of the planar circular restricted three-body problem. We found that in each resonance there exist two branches of symmetric elliptic periodic orbits with stable and unstable segments. Asymmetric periodic orbits bifurcate from the corresponding symmetric ones. Asymmetric periodic orbits are stable and the motion in their neighbourhood is a libration with respect to the resonant angle variable. In all the families of asymmetric periodic orbits the eccentricity extends to high values. Poincaré sections reveal the changes of the topology in phase space.  相似文献   

18.
We study two and three-dimensional resonant periodic orbits, usingthe model of the restricted three-body problem with the Sun andNeptune as primaries. The position and the stability character ofthe periodic orbits determine the structure of the phase space andthis will provide useful information on the stability and longterm evolution of trans-Neptunian objects. The circular planarmodel is used as the starting point. Families of periodic orbitsare computed at the exterior resonances 1/2, 2/3 and 3/4 withNeptune and these are used as a guide to select the energy levelsfor the computation of the Poincaré maps, so that all basicresonances are included in the study. Using the circular planarmodel as the basic model, we extend our study to more realisticmodels by considering an elliptic orbit of Neptune and introducingthe inclination of the orbit. Families of symmetric periodicorbits of the planar elliptic restricted three-body problem andthe three-dimensional problem are found. All these orbitsbifurcate from the families of periodic orbits of the planarcircular problem. The stability of all orbits is studied. Althoughthe resonant structure in the circular problem is similar for allresonances, the situation changes if the eccentricity of Neptuneor the inclination of the orbit is taken into account. All theseresults are combined to explain why in some resonances there aremany bodies and other resonances are empty.  相似文献   

19.
We investigate the regular or chaotic nature of star orbits moving in the meridional plane of an axially symmetric galactic model with a disk and a spherical nucleus. We study the influence of some important parameters of the dynamical system, such as the mass and the scale length of the nucleus, the angular momentum or the energy, by computing in each case the percentage of chaotic orbits, as well as the percentages of orbits of the main regular resonant families. Some heuristic arguments to explain and justify the numerically derived outcomes are also given. Furthermore, we present a new method to find the threshold between chaos and regularity for both Lyapunov Characteristic Numbers and SALI, by using them simultaneously.  相似文献   

20.
In several previous papers we had investigated the orbits of the stars that make up galactic satellites, finding that many of them were chaotic. Most of the models studied in those works were not self-consistent, the single exception being the Heggie and Ramamani (1995) models; nevertheless, these ones are built from a distribution function that depends on the energy (actually, the Jacobi integral) only, what makes them rather special. Here we built up two self-consistent models of galactic satellites, freezed theirs potential in order to have smooth and stationary fields, and investigated the spatial structure of orbits whose initial positions and velocities were those of the bodies in the self-consistent models. We distinguished between partially chaotic (only one non-zero Lyapunov exponent) and fully chaotic (two non-zero Lyapunov exponents) orbits and showed that, as could be expected from the fact that the former obey an additional local isolating integral, besides the global Jacobi integral, they have different spatial distributions. Moreover, since Lyapunov exponents are computed over finite time intervals, their values reflect the properties of the part of the chaotic sea they are navigating during those intervals and, as a result, when the chaotic orbits are separated in groups of low- and high-valued exponents, significant differences can also be recognized between their spatial distributions. The structure of the satellites can, therefore, be understood as a superposition of several separate subsystems, with different degrees of concentration and trixiality, that can be recognized from the analysis of the Lyapunov exponents of their orbits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号