首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Neogene-Quaternary post-collisional volcanism in Central Anatolian Volcanic Province (CAVP) is mainly characterized by calc-alkaline andesites-dacites, with subordinate tholeiitic-transitional-mildly alkaline basaltic volcanism of the monogenetic cones. Tepekoy Volcanic Complex (TVC) in Nigde area consists of base surge deposits, and medium to high-K andesitic-dacitic lava flows and basaltic andesitic flows associated with monogenetic cones. Tepekoy lava flows petrographically exhibit disequilibrium textures indicative of magma mixing/mingling and a geochemisty characterized by high LILE and low HFSE abundances, negative Nb–Ta, Ba, P and Ti anomalies in mantle-normalized patterns. In this respect, they are similar to the other calc-alkaline volcanics of the CAVP. However, TVC lava flows have higher and variable Ba/Ta, Ba/Nb, Nb/Zr, Ba/TiO2 ratios, indicating a heterogeneous, variably fluid-rich source. All the geochemical features of the TVC are comparable to orogenic andesites elsewhere and point to a sub-continental lithospheric mantle source enriched in incompatible elements due to previous subduction processes. Basaltic monogenetic volcanoes of CAVP display similar patterns, and HFS anomalies on mantle-normalized diagrams, and have incompatible element ratios intermediate between orogenic andesites and within-plate basalts (e.g. OIB). Accordingly, the calc-alkaline and transitional-mildly alkaline basaltic magmas may have a common source region. Variable degrees of partial melting of a heterogeneous source, enriched in incompatible elements due to previous subduction processes followed by fractionation, crustal contamination, and magma mixing in shallow magma chambers produced the calc-alkaline volcanism in the CAVP. Magma generation in the TVC, and CAVP in general is via decompression melting facilitated by a transtensional tectonic regime. Acceleration of the extensional regime, and transcurrent fault systems extending deep into the lithosphere favoured asthenospheric upwelling at the base of the lithosphere, and as a consequence, an increase in temperature. This created fluid-present melting of a fluid-enriched upper lithospheric mantle or lower crustal source, but also mixing with asthenosphere-derived melts. These magmas with hybrid source characteristics produced the tholeiitic-transitional-mildly alkaline basalts depending on the residence times within the crust. Hybrid magmas transported to the surface rapidly, favored by extensional post-collision regime, and produced mildly alkaline monogenetic volcanoes. Hybrid magmas interacted with the calc-alkaline magma chambers during the ascent to the surface suffered slight fractionation and crustal contamination due to relatively longer residence time compared to rapidly rising magmas. In this way they produced the mildly alkaline, transitional, and tholeiitic basaltic magmas. This model can explain the coexistence of a complete spectrum of q-normative, ol-hy-normative, and ne-normative monogenetic basalts with both subduction and within-plate signatures in the CAVP.  相似文献   

2.
Central Anatolian Volcanic Province (CAVP) is a fine example of Neogene-Quaternary post-collisional volcanism in the Alpine-Mediterranean region. Volcanism in the Alpine-Mediterranean region comprises tholeiitic, transitional, calc-alkaline, and shoshonitic types with an “orogenic” fingerprint. Following the orogenic volcanism, subordinate, within-plate alkali basalts (sl) showing little or no orogenic signature are generally reported in the region. CAVP is mainly characterized by widespread calc-alkaline andesitic-dacitic volcanism with orogenic trace element signature, reflecting enrichment of their source regions by subduction-related fluids. Cora Maar (CM) located within the Erciyes pull-apart basin, is an example to numerous Quaternary monogenetic volcanoes of the CAVP, generally considered to be alkaline. Major and trace element geochemical and geochronological data for the CM are presented in comparison with other CAVP monogenetic volcanoes. CM scoria is basaltic andesitic, transitional-calc-alkaline in nature, and characterized by negative Nb–Ta, Ba, P and Ti anomalies in mantle-normalized patterns. Unlike the “alkaline” basalts of the Mediterranean region, other late-stage basalts from the CAVP monogenetic volcanoes are classified as tholeiitic, transitional and mildly alkaline. They display the same negative anomalies and incompatible element ratios as CM samples. In this respect, CM is comparable to other CAVP monogenetic basalts (sl), but different from the Meditterranean intraplate alkali basalts. Several lines of evidence suggest derivation of CM and other CAVP monogenetic basalts from shallow depths within the lithospheric mantle, that is from a garnet-free source. In a wider regional context, CAVP basalts (sl) are comparable to Apuseni (Romania) and Big Pine (Western Great Basin, USA) volcanics, except the former have depleted Ba contents. This is a common feature for the CAVP volcanics and might be related to crustal contamination or source characteristics. Indeed, HFS and other incompatible element ratios suggest the role of crustal contamination in the genesis of the CAVP monogenetic basalts.  相似文献   

3.
《Geodinamica Acta》2001,14(1-3):159-167
Pliocene–Pleistocene volcanism accompanied strike-slip-related transtensional deformation along the Kızılırmak fault segment of the Central Anatolian fault zone (CAFZ) in the west of Şarkışla (Sivas–central Turkey). These volcanic rocks are represented by alkali olivine basalts. They can be divided into four different sub-groups on the basis of their Zr, Nb, TiO2 contents. A primitive mantle-normalized incompatible trace element diagram for four subgroups shows close similarity to typical OIB pattern. Some of the incompatible trace element ratios (Ce/Y, Zr/Nb, La/Ba, La/Nb) are also akin to OIB values. Highly fractionated REE patterns (La/YbN=24.7–9.2) with no Eu anomaly are the main features of the alkali basalts and are comparable to alkaline volcanism in continental rift zones. On the basis of Al2O3/TiO2, Nb/Y, Zr/Y Zr/Nb ratios, the geochemical differences among four sub-groups can be explained by variable degrees of partial melting of compositionally similar mantle source. Th/Nb, Th/Y, Nb/Y ratios and the primitive mantle-normalized trace element diagram suggests significant amount of crustal involvement for most of the alkali olivine basalts erupted along the CAFZ. Rupture of the continental lithosphere by strike-slip-related transtensional deformation might have caused decompressional partial melting of the asthenospheric mantle and generating alkali olivine basalts in this region.  相似文献   

4.
Abstract

Pliocene-Pleistocene volcanism accompanied strike-slip-related transtensional deformation along the K?z?l?rmak fault segment of the Central Anatolian fault zone (CAFZ) in the west of ?ark??la (Sivas-central Turkey). These volcanic rocks are represented by alkali olivine basalts. They can be divided into four different sub-groups on the basis of their Zr, Nb, TiO2 contents. A primitive mantle-normalized incompatible trace element diagram for four subgroups shows close similarity to typical OIB pattern. Some of the incompatible trace element ratios (Ce/Y, Zr/Nb, La/Ba, La/Nb) are also akin to OIB values. Highly fractionated REE patterns (La/YbN=24.7–9.2) with no Eu anomaly are the main features of the alkali basalts and are comparable to alkaline volcanism in continental rift zones. On the basis of Al2O3/TiO2, Nb/Y, Zr/Y Zr/Nb ratios, the geochemical differences among four sub-groups can be explained by variable degrees of partial melting of compositionally similar mantle source. Th/Nb, Th/Y, Nb/Y ratios and the primitive mantle-normalized trace element diagram suggests significant amount of crustal involvement for most of the alkali olivine basalts erupted along the CAFZ. Rupture of the continental lithosphere by strike-slip-related transtensional deformation might have caused decompressional partial melting of the asthenospheric mantle and generating alkali olivine basalts in this region. © 2001 Éditions scientifiques et médicales Elsevier SAS.  相似文献   

5.
Examination of mineral deposits in the Central Anatolian Crystalline Complex provides broad new insights regarding their genesis. Collision and postcollision-related magmatic processes during closure of the northern branch of the Neotethyan Ocean, caused by northward subduction of the oceanic crust beneath the Sakarya Microcontinent in the Late Cretaceous-Eocene, led to the formation of several types of mineral deposits. These include: (1) skarn-type deposits (Pb-Zn, Fe, and Fe-W skarns); (2) vein-type deposits (molybdenum, fluo-rite, stibnite-cinnabar, and stibnite-cinnabar-scheelite vein deposits); (3) sedimentary diatomite, kaolinite, salt, and uranium deposits; and (4) volcanogenic perlite, pumice, and sulfur deposits. Considering their regional distribution and relationship to the geologic evolution of the region, the skarn and vein deposits constitute an important part of the metallogeny of the Central Anatolian Crystalline Complex.  相似文献   

6.
Extensive magmatic activity developed at the northwestern part of the Anatolian block and produced basaltic lavas that are situated along and between the two segments of the North Anatolian Fault zone. This region is a composite tectonic unit formed by collision of continental fragments after consumption of Neotethyan ocean floor during the late Cretaceous. Northwestern Anatolian basalts and evolved lavas exhibit both tholeiitic and calc-alkaline characteristics. Mafic lavas are moderately enriched in LILE (except depleted part of Yuvacık and İznik samples) and depleted in HFSE (but not Zr, Hf) relative to primitive mantle values, suggesting derivation from a MORB-like mantle source that is unexpected in this subduction environment. Sr and Nd isotopes are close to the mantle array and vary beyond analytical error (87Sr/86Sr 0.70404–0.70546, 143Nd/144Nd 0.51270–0.51289). These geochemical features may result from two possible processes: (1) melting of a MORB-like mantle source that was modified by subduction-released fluids and melts or (2) modification of mafic liquids derived from a dominantly MORB-like source by crustal or lithospheric mantle material. Geochemical characteristics of the lavas (e.g., Ba/Rb, Rb/Sr, Ba/Zr, 87Sr/86Sr, Sr/P) vary systematically along the fault zone from east to west, consistent with a decrease in the degree of melting from east to west or a change in the nature of the source composition itself. Thus, the difference in incompatible elements and Sr–Nd isotopic ratios seems to result from small-scale mantle heterogeneity in a post-collisional tectonic environment.  相似文献   

7.
In this study, we investigate the geochronological, geochemical and isotopic characteristics of two travertine sites surrounded by Quaternary eruption centres in central Anatolia with ample palaeo-eruption records. High-resolution carbonate precipitation records, revealed by U-Th dating, are clustered around 5–35, 60–100 and 120–170 ka and are well correlated with the dataset on eruptions as well as the position of fractures related to the volcanic centres. Syn-eruptive carbonate precipitation seems to occur due to the circulation of CO2-rich fluids along the extensional fracture systems aligned tangentially to the related volcanic conduit and, therefore, the study of this system could be an alternative technique for the reconstruction of palaeo-eruptions. δ18O values of the studied travertines are within the range of meteogene fluids. Oxygen isotope compositions at around 130 ka match well with Glacial Termination II that is also recorded by climate proxies in various cave and benthic deposits throughout the world. It is likely that the studied carbonates were precipitated under similar fluid circulation conditions which are represented by a high rate of dilatation followed by a meteoric water influx into the extensional fractures.  相似文献   

8.
The Yozgat Batholith lies along the northern edge of the Central Anatolian Crystalline Complex in Central Anatolia, Turkey. The batholith intruded the Paleozoic-Mesozoic metamorphics and Cretaceous ophiolitic mélange, and was nonconformably overlain by latest Maastrichtian-Paleocene and/or Eocene clastics, carbonates, and volcanics. The batholith itself may be subdivided into several mappable subunits bounded by Cretaceous ophiolitic mélange, Eocene cover, and/or faults.

Major- and trace-element as well as REE analyses of the subunits indicate that the granitoids of the Yozgat Batholith are principally metaluminous monzogranites, of subalkaline-calc-alkaline character, except for the peraluminous leucogranitoids of the Yozgat subunit. The granitoids were derived by thickening of the continental crust and related partial melting; the thickening was caused by emplacement of ophiolitic nappes during collisional events.  相似文献   

9.
Plagiogranites associated with the Sarikaraman ophiolite of the Central Anatolian Crystalline Complex, Turkey, closely resemble other plagiogranites from supra-subduction zone-type ophiolites of Neotethys. The ophiolite is remarkable in displaying a higher proportion of the plagiogranite suite (ca. 10% by volume) than is usually associated with such bodies. The Sarikaraman plagiogranites are represented by intrusive sheets and netvein trondhjemites largely developed at the top of the upper gabbros and as multiphase dykes within the sheeted dyke complex. The plagiogranite dykes are considered to feed extrusive silicified rhyolites associated with the basaltic lavas in the volcanic section of the ophiolite. Field relations suggest that the trondhjemites were probably generated from the roof section of a dynamic and evolving gabbroic magma chamber. Both the deep-seated trondhjemites and the volcanic rhyolites constitute the Sarikaraman plagiogranite suite. Geochemically there is complete overlap between the intrusive trondhjemites and extrusive rhyolites, which are characterised by (MORB-normalized) low HFS element contents with small negative Nb---Ta anomalies and variably enhanced LIL element abundances. Unlike other plagiogranites, however, the Sarikaraman suite is not characterized by consistently low K2O contents; a feature that reflects the variable mobilization of the LIL elements under lower greenschist facies conditions. The REE are uniformly enriched relative to the basic components of the complex, but have similar normalized patterns exhibiting mild light REE depletion. In terms of their origin, the initial or most primitive plagiogranite melts could have been generated by either fractional crystallization (70–85% of clinopyroxene-feldspar ± amphibole) or partial melting (5–15% batch melting) of a gabbroic ‘source material’, although only the first process can produce most of the range of the plagiogranite compositions. As a group the plagiogranites exhibit some degree of internal variation which can be generated by further fractionation largely dominated by feldspar with minor apatite and amphibole.  相似文献   

10.
11.
The Galatean volcanic province (GVP), located in northwestern Anatolia, is an ENE-WSW-oriented belt. The province as a whole corresponds to a depression filled with volcanic and sedimentary rocks. The northern margin of the GVP is truncated by the North Anatolian fault, whereas it is surrounded by a continental sedimentary pile interfingering with volcanics on the south. Field and aerial photographic studies reveal that the GVP consists of several volcanic complexes scattered throughout the province. Nine of these complexes are recognized, each covering an area of hundreds of km2 of circular or ellipsoidal form, with moderately to well-preserved morphology. They include calderas, stratovolcanoes characterized by central vent (s), and radial flows of both lava and volcaniclastics. Several continental basins are disposed between the major volcanic complexes. These basins are isolated from one another or are partly connected and may differ in age and lithology. Available radiometric and paleontologic age determinations suggest that almost all volcanic complexes as well as the sedimentary basins started to develop during early to middle Miocene and continued to late Miocene time. The faults detected in the southern part of the province are Pliocene and older, and reflect normal faulting.  相似文献   

12.
Kadir Dirik 《Geodinamica Acta》2013,26(1-3):147-158
Abstract

Central Anatolia has undergone complex Neotectonic deformation since Late Miocene-Pliocene times. Many faults and intracontinental basins in this region were either formed, or have been reactivated, during this period. The eastern part of central Anatolia is dominated by a NE-SW-trending, left lateral transcurrent structure named the Central Anatolian fault zone located between Sivas in the northeast and west of Mersin in the southwest. Around the central part, it is characterized by transtensional depressions formed by left stepping and southward bending of the fault zone. Pre-Upper Miocene basement rocks of the region consist of the central Anatolian crystalline complex and a sedimentary cover of Tertiary age. These rock units were strongly deformed by N-S con- vergence. The entire area emerged to become the site of erosion and formed a vast plateau before the Late Miocene. A NE-SW- trending extensional basin developed on this plateau in Late Miocene-Early Pliocene times. Rock units of this basin are characterized by a thick succession of pyroclastic rocks intercalated with calcalkaline-alkaline volcanics. The volcanic sequence is uncon- formably overlain by Pliocene lacustrine-fluviatile deposits interrelated with ignimbrites and tuffs. Thick, coarse grained alluvial/colluvial fan deposits of marginal facies and fine grained elastics and carbonates of central facies display characteristic synsedimentary structures with volcanic intercalations. These are the main lines of evidence for development of a new transtensional H?rka— k?zd?rmak basin in Pliocene times. Reactivation of the main segment of the Central Anatolian fault zone has triggered development of depressions around the left stepping and southward bending of the central part of this sinistral fault zone in the ignimbritic plateau during Late Pliocene-Quaternary time. These transtensional basins are named the Tuzla Gölü and Sultansazl??? pull-apart basins. The Sultansazl??? basin has a lazy S to rhomboidal shape and displays characteristic morphologic features including a steep and stepped western margin, large alluvial and colluvial fans, and a huge composite volcano (the Erciyes Da??).

The geometry of faulting and formation of pull-apart basins can be explained within the framework of tectonic escape of the wedgelike Anatolian block, bounded by sinistral East Anatolian fault zone and dextral North Anatolian transform fault zone. This escape may have been accomplished as lateral continental extrusion of the Anatolian Plate caused by final collision of the Arabian Plate with the Eurasian Plate. © 2001 Éditions scientifiques et médicales Elsevier SAS  相似文献   

13.
《Geodinamica Acta》2001,14(1-3):147-158
Central Anatolia has undergone complex Neotectonic deformation since Late Miocene–Pliocene times. Many faults and intracontinental basins in this region were either formed, or have been reactivated, during this period. The eastern part of central Anatolia is dominated by a NE–SW-trending, left lateral transcurrent structure named the Central Anatolian fault zone located between Sivas in the northeast and west of Mersin in the southwest. Around the central part, it is characterized by transtensional depressions formed by left stepping and southward bending of the fault zone.Pre-Upper Miocene basement rocks of the region consist of the central Anatolian crystalline complex and a sedimentary cover of Tertiary age. These rock units were strongly deformed by N–S convergence. The entire area emerged to become the site of erosion and formed a vast plateau before the Late Miocene. A NE–SW-trending extensional basin developed on this plateau in Late Miocene–Early Pliocene times. Rock units of this basin are characterized by a thick succession of pyroclastic rocks intercalated with calcalkaline–alkaline volcanics. The volcanic sequence is unconformably overlain by Pliocene lacustrine–fluviatile deposits intercalated with ignimbrites and tuffs. Thick, coarse grained alluvial/colluvial fan deposits of marginal facies and fine grained clastics and carbonates of central facies display characteristic synsedimentary structures with volcanic intercalations. These are the main lines of evidence for development of a new transtensional Hırka–Kızılırmak basin in Pliocene times. Reactivation of the main segment of the Central Anatolian fault zone has triggered development of depressions around the left stepping and southward bending of the central part of this sinistral fault zone in the ignimbritic plateau during Late Pliocene–Quaternary time. These transtensional basins are named the Tuzla Gölü and Sultansazlığı pull-apart basins. The Sultansazlığı basin has a lazy S to rhomboidal shape and displays characteristic morphologic features including a steep and stepped western margin, large alluvial and colluvial fans, and a huge composite volcano (the Erciyes Dağı).The geometry of faulting and formation of pull-apart basins can be explained within the framework of tectonic escape of the wedge-like Anatolian block, bounded by sinistral East Anatolian fault zone and dextral North Anatolian transform fault zone. This escape may have been accomplished as lateral continental extrusion of the Anatolian Plate caused by final collision of the Arabian Plate with the Eurasian Plate.  相似文献   

14.
The Neogene Yamadağ volcanics occupy a vast area between Sivas and Malatya in eastern Anatolia, Turkey. These volcanic rocks are characterized by pyroclastics comprising agglomerates, tuffs and some small outcrops of basaltic–andesitic–dacitic rocks, overlain upward by basaltic and dacitic rocks, and finally by basaltic lava flows in the Arapkir area, northern Malatya Province. The basaltic lava flows in the Arapkir area yield a 40Ar/39Ar age of 15.8 ± 0.2 Ma, whereas the dacitic lava flows give 40Ar/39Ar ages ranging from 17.6 through 14.7 ± 0.1 to 12.2 ± 0.2 Ma, corresponding to the Middle Miocene. These volcanic rocks have subalkaline basaltic, basaltic andesitic; alkaline basaltic trachyandesitic and dacitic chemical compositions. Some special textures, such as spongy-cellular, sieve and embayed textures; oscillatory zoning and glass inclusions in plagioclase phenocrysts; ghost amphiboles and fresh biotite flakes are attributable to disequilibrium crystallization related to magma mixing between coeval magmas. The main solidification processes consist of fractional crystallization and magma mixing which were operative during the soldification of these volcanic rocks. The dacitic rocks are enriched in LILE, LREE and Th, U type HFSE relative to the basaltic rocks. The basaltic rocks also show some marked differences in terms of trace-element and REE geochemistry; namely, the alkaline basaltic trachyandesites have pronounced higher HFSE, MREE and HREE contents relative to the subalkaline basalts. Trace and REE geochemical data reveal the existence of three distinct magma sources – one subalkaline basaltic trachyandesitic, one alkaline basaltic and one dacitic – in the genesis of the Yamadağ volcanics in the Arapkir region. The subalkaline basaltic and alkaline basaltic trachyandesitic magmas were derived from an E-MORB type enriched mantle source with a relatively high- and low-degree partial melting, respectively. The magmatic melt of dacitic rocks seem to be derived from an OIB-type enriched lithospheric mantle with a low proportion of partial melting. The enriched lithospheric mantle source reflect the metasomatism induced by earlier subduction-derived fluids. All these coeval magmas were generated in a post-collisional extensional geodynamic setting in Eastern Anatolia, Turkey.  相似文献   

15.
Volcanic rocks of the Afyon province (eastern part of western Anatolia) make up a multistage potassic and ultrapotassic alkaline series dated from 14 to 12 Ma. The early-stage Si-oversaturated volcanic rocks around the Afyon city and further southward are trachyandesitic volcanic activity (14.23 ± 0.09 Ma). Late-stage Si-undersaturated volcanism in the southernmost part of the Afyon volcanic province took place in three episodes inferred from their stratigraphic relationships and ages. Melilite–leucitites (11.50 ± 0.03 Ma), spotted trachyandesites, tephryphonolites and lamproites (11.91 ± 0.13 Ma) formed in the first episode; trachyandesites in the second episode and finally phonotephrites, phonolite, basaltic trachyandesites and nosean-bearing trachyandesites during the last episode. The parameter Q [normative q-(ne + lc + kls + ol)] of western Anatolia volcanism clearly decreased southward with time becoming zero in the time interval 10–15 Ma. The magmatism experienced a sudden change in the extent of Si saturation after 14 Ma, during late-stage volcanic activity of Afyon volcanic province at around 12 Ma, though there was some coexistence of Si-oversaturated and Si-undersaturated magmas during the whole life of Afyon volcanic province.  相似文献   

16.
The Cappadocian Volcanic Province (CVP) comprises predominantly of a thick succession of volcanogenic rocks and interbedded siliciclastic sediments of Middle Miocene to Recent age in Central Anatolia, Turkey. The conditions of basin development in the eastern part of the CVP have been elucidated by using sedimentological and geomorphological approaches. The prevailing tectonic regime, its extent and causes are also discussed. Sedimentological analysis supported by geomorphological observations revealed a major NE-trending probably normal, border fault and its several synthetics. This tectonic element constitutes the SE margin of the basin and divided the CVP from the Tauride range during Middle Miocene to Pliocene. The basin fill in the study area comprises gravelly alluvial fans near the border fault, while fluvial clastics and lacustrine carbonates dominate towards the centre. Some pyroclastic rocks and lava flows are also made part of the fill. The southeastern basin margin is characterized morphologically by a number of uplifted basement blocks, probably associated with synthetic faults, and some deeply incised canyons in the footwall. These canyons were subsequently filled with a Mid-Pliocene ignimbrite sheet, and represent the sediment supply conduits to the basin. The cessation of filling in the basin was determined by strike-slip faults that uplifted and detached the basin about 2.6 Ma. This date also marks the onset of the neotectonic period in the region. The overall extensional tectonic regime inferred for the eastern CVP appears coeval with events recognised in the southern basins, i.e. Adana and Mut Basins and the eastern Mediterranean. Some physical connections between these basins also have been demonstrated. It is suggested that the CVP and the southern basins were all created during a phase of extension resulting from continued northward subduction of the African plate beneath the Eurasia during the Late Cenozoic.  相似文献   

17.
Alkaline lavas were erupted as phonolites and trachytes around Karaburhan (Sivrihisar–Eskisehir, NW Anatolia) within the Izmir–Ankara–Erzincan suture zone. These volcanic rocks were emplaced as domes, close and parallel to the ophiolite thrust line. According to 40Ar/39Ar geochronological analyses of sanidine crystals from the phonolites, the age of the alkaline volcanics is 25 Ma (Late Oligocene–Early Miocene).The flow-textured phonolites are porphyritic and consist mainly of sanidine, clinopyroxene, and feldspathoid crystals. The clinopyroxenes show compositional zoning, with aegirine (Na0.82–0.96Fe+30.68–0.83) rims and aegirine–augite cores (containing calcium, magnesium, and Fe+2). Some aegirine–augites are replaced with sodium-, calcium-, and magnesium-rich amphibole (hastingsite). Feldspathoid (hauyne) crystals enriched with elemental Na and Ca have been almost completely altered to zeolite and carbonate minerals. The fine-grained trachytes with a trachytic texture consist of feldspar (oligoclase and sanidine) phenocrystals and clinopyroxene microphenocrystals within a groundmass made up largely of alkali feldspar microlites.Although there are some differences in their element patterns, the phonolites and trachytes exhibit enrichment in LILEs (Sr, K, Rb, Ba, Th) and LREEs (La, Ce, Pr, Nd) and negative anomalies in Nb and Ta. These geochemical characteristics indicate a lithospheric mantle enriched by fluids extracted from the subduction component. In addition, the high 87Sr/86Sr (0.706358–0.708052) and low 143Nd/144Nd (0.512546–0.512646) isotope concentrations of the alkaline lavas reflect a mantle source that has undergone metasomatism by subduction-derived fluids. Petrogenetic modeling indicates that the alkaline lavas generated from the subduction-modified lithospheric mantle have undergone assimilation, fractional crystallization, and crustal contamination, acquiring high Pb, Ba, Rb, and Sr contents and Pb isotopic compositions during their ascent through the thickened crust in an extensional setting.  相似文献   

18.
Rocks metamorphosed in two or more different facies are not necessarily polymetamorphic and are termed plurifacial rocks. The following age sequence of metamorphic facies of alpine age is reported: (1) glaucophane-schist facies; (2) albite-epidote-amphibolite facies; (S) almandine-amphibolite facies. There was a transition from kinematic to static conditions. The alpine metamorphism described seems to have proceeded under a pile of overthrust sheets. The change in metamorphic facies was in part due to a considerable rise of the temperature.
Zusammenfassung In mehreren verschiedenen Fazies metamorphosierte Gesteine brauchen nicht polymetamorph zu sein, und werden als plurifazielle Gesteine bezeichnet. Folgende zeitliche Abfolge metamorpher Fazies alpinen Alters wird beschrieben: 1. Glaukophanschieferfazies, 2. Albit-Epidot-Amphibolitfazies, 3. Almandin-Amphibolitfazies. Es gab einen Übergang von kinematischen zu statischen Bedingungen. Die beschriebene alpine Metamorphose scheint unter einer Deckenlast vor sich gegangen zu sein. Der zeitliche Fazieswechsel wurde z. T. von einer beträchtlichen Temperatursteigerung bedingt.

Résumé Les roches montrant plus d'un seul faciès métamorphique ne sont pas nécessairement polymétamorphiques et sont dénommées plurifacielles. Quant au métamorphisme alpin, l'ordre suivant de succession chronologique des faciès fut constaté: (1) le faciès à glaucophane, (2) le faciès amphibolite à albite-epidote, (3) le faciès amphibolite à almandin. Des conditions de métamorphisme cinématiques ont été suivies par des conditions statiques. Il paraît que le métamorphisme alpin décrit s'est effectué dans un géosynclinal de nappes. Le changement de faciès métamorphique dans le temps était partiellement dû à une augmentation considérable de la température.

. , .
  相似文献   

19.
Natural Hazards - Earthquake disasters pose significant risks and remain a serious threat for millions of people causing a devastating loss of lives and damage to the infrastructure resulting in...  相似文献   

20.
The Anfeg batholith (or composite laccolith) occupies a large surface (2000 km2) at the northern tip of the Laouni terrane, just south of Tamanrasset in Hoggar. It is granodioritic to granitic in composition and comprises abundant enclaves that are either mafic microgranular enclaves (MME) or gneissic xenoliths. It intruded an Eburnian (≈2 Ga) high-grade basement belonging to the LATEA metacraton at approximately 608 Ma (recalculated from the U–Pb dating of [Tectonics 5 (1986) 955]) and cooled at approximately 4 kbar, with a temperature of about 750 °C. This emplacement occurred mainly along subhorizontal thrust planes related to Pan-African subvertical mega-shear zones close to the attachment zone of a strike-slip partitioned transpression system. Although affected by some LILE mobility, the Anfeg batholith can be ascribed to a high-K calc-alkaline suite but characterized by low heavy REE contents and high LREE/HREE ratios. The MME belong to the Anfeg magmatic trend while some xenoliths belong to Neoproterozoic island arc rocks.The Anfeg batholith defines a Nd–Sr isotopic initial ratios trend (Nd/(87Sr/86Sr)i from −2.8/0.7068 to −11.8/0.7111) pointing to a mixing between a depleted mantle and an old Rb-depleted granulitic lower crust. Both sources have been identified within LATEA and elsewhere in the Tuareg shield (Nd/87Sr/86Sr)i of +6.2/0.7028 for the depleted mantle, −22/0.708 for the old lower crust.The model proposed relates the above geochemical features to a lithospheric delamination along the subvertical mega-shear zones that dissected the rigid LATEA former passive margin without major crustal thickening (metacratonization) during the general northward tectonic escape of the Tuareg terranes, a consequence of the collision with the West African craton. This delamination allowed the uprise of the asthenosphere. In turn, this induced the melting of the asthenosphere by adiabatic pressure release and of the old felsic and mafic lower crust due to the high heat flow. A gradient in the mantle/crust ratio within the source of the Pan-African magmatism is observed in LATEA from the northeast (Egéré-Aleksod terrane) where rare plutons are rooted within the Archaean/Eburnian basement to the southwest (Laouni terrane) where abundant batholiths, including Anfeg, have a mixed signature. Some mantle melts with only slight crustal contamination (Laouni troctolitic layered intrusions) are even present. This suggests that the southern boundary of LATEA microcontinent is not far south of the Tuareg shield.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号