首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 277 毫秒
1.
A one and a half layer inviscid hydraulic model was introduced to study the dynamics of the flow that brings the bottom cold water southward into the Korea Strait. Two different channel geometries were considered; a rectangular channel and a channel with a sloping western wall, which represents the continental slope near the Korean coast. The lower layer water in the rectangular channel separates from the eastern wall when the depth of the channel,H o, becomes shallower than a critical value donwstream. Hydraulic control of the flow is possible after the flow separation, if the channel becomes shallow enough. Before hydraulic control, the width of the flow decreases asH o decreases, but the effect of the slope of the western wall is negligible. After the control, however, the width increases asH o decreases or the slope becomes weaker. If the slope becomes weak enough or the channel becomes deep enough, which is determined by upstream conditions, the lower layer is observed only over the sloping western wall. This simple model shows that the continental slope between the East Sea (Japan Sea) and the Korea Strait makes the southward flowing North Korean Cold Water bank against the Korean coast in the Korea Strait. The model also shows that the sloping bottom near the Korean coast makes the bottom cold water of the Korea Strait appear only over the continental slope away from the trough of the strait.  相似文献   

2.
This study examined seasonal and annual occurrences of warm oceanic tintinnid species in southern Korea coastal waters. The indicative species of tintinnids was monitored using three approaches: monitoring from cruises traveling from the warm pool in the western North Pacific to the Korea Strait; biweekly or monthly monitoring in the Korea Strait; and daily monitoring in the nearshore water. Annual pulses of warm oceanic indicator species were regularly observed in the Korea Strait. In September 2008 recorded a maximum species number of warm water indicators, a representative species for warm oceanic waters, Climacocylis scalaroides was simultaneously detected in the nearshore water as well as the Korea Strait. The result indicates that the greater warm water extension into Korean coastal areas was in September 2008. Sharp declines in species diversity were observed in the transitional area between neritic and Kuroshio zone in East China Sea (ECS). Epiplocyloides reticulata, reported previously as a Kuroshio indicator, was considered an ECS indicator species, as it was undetected in the western North Pacific central zone but was found abundantly in the ECS. Tintinnid species can be used as biological indicators to detect the inflow of warm oceanic waters into Korean coastal waters.  相似文献   

3.
In the deepest region of Korea Strait, the surface temperature is highest in August (lowest in March), while the near-bottom temperature is lowest in September (highest in May). Cross-spectral analysis of the monthly temperature data between the two layers shows high coherence at the annual frequency with phase of 154°. Why and how does such a nearly opposite phasing occur between the surface and the near-bottom temperatures there? This study aims at answering these questions using historical and recently observed data.Cold and relatively fresh subsurface water flowing southward along the east coast of Korea and, known as the North Korean Cold Water (NKCW), becomes noticeable in April near the Sokcho coast. The zonal temperature gradient there is largest around June. The width of the NKCW becomes larger from April to August. After October, the NKCW retreats back toward the coast. The southward movement of the NKCW is thus strong over a period of six to seven months and weak in winter, especially in February. The NKCW flows southward relatively quickly along the coast in April to October and arrives at the Ulleung Basin within one to two months. Because of the sill between the Ulleung Basin and Korea Strait, this water cannot continue to flow to south, but piles up for about two to three months before it moves over the sill. The convergence of the subsurface cold water in the Ulleung Basin displaces the isopycnals upward and this water then intrudes over the sill along the isopycnals. This explains why in April or May, when this water appears noticeably at the Sokcho coast, the near-bottom water in Korea Strait is warmest and in August or September when the NKCW, which is piled up enough at the southern end of the Ulleung Basin, intrudes to Korea Strait, the near-bottom temperatures there are at their lowest.The origin of the NKCW seems to be the water of salinity less han 34.1 psu and surface density of 27σθ or higher, which sinks in the northwestern East Sea in January-March. The sinking of the water results from surface cooling in winter and is intensified due to the strong negative windstress curl. The cold and relatively fresh water, formed in the northwestern East Sea, is hypothesized to flow to the Ulleung Basin along three major paths, along the east coast of Korea, through the channel north of Ulleung-do Island, and through the channel between Ulleung-do and Dok-do Islands.  相似文献   

4.
Hydrographic surveys were carried out four times in the western channel of the Korea Strait in March and August 2003 and in June and November 2004. The bottom cold water, which was lower than 10°C, appeared in the channel trough except in March 2003. It flowed southwestward along the shelf of Korean coasts in August 2003 and in November 2004. The width and the maximum speed of the intrusion current were about 20 km and approximately 25 cm s-1, respectively, off Ulsan, Korea. The volume transport of the bottom cold water was estimated 0.019 Sv (Sv≡106 m3 s-1) in August 2003 and 0.026 Sv in November 2004.  相似文献   

5.
The sea surface temperature distribution across the Tsushima Strait was monitored over a one-year period on board the ferry Kampu which runs between Shimonoseki, Japan and Pusan, Korea. A cold water region is always observed just near the Korean Coast, and a sharp temperature front is always present in the western channel. A temperature maximum or a warm core is usually found just on the southeast side of the front. The position of the warm core exhibits large short period fluctuations, but no significant seasonal variation is found. Sudden temperature increases followed by sudden temperature decreases are frequently observed in the temporal variation curves at fixed positions during the warming season from April to August. Such events are related to temperature maxima found sporadically in the temperature distribution in the eastern channel during this season, and seem to be caused by warm water intrusion into the Tsushima Strait from the East China Sea.  相似文献   

6.
A review is made of circulation and currents in the southwestern East/Japan Sea (the Ulleung Basin), and the Korea/Tsushima Strait which is a unique conduit for surface inflow into the Ulleung Basin. The review particularly concentrates on describing some preliminary results from recent extensive measurements made after 1996. Mean flow patterns are different in the upstream and downstream regions of the Korea/Tsushima Strait. A high velocity core occurs in the mid-section in the upstream region, and splits into two cores hugging the coasts of Korea and Japan, the downstream region, after passing around Tsushima Island located in the middle of the strait. Four-year mean transport into the East/Japan Sea through the Korea/Tsushima Strait based on submarine cable data calibrated by direct observations is 2.4 Sv (1 Sv = 106 m3 s−1). A wide range of variability occurs for the subtidal transport variation from subinertial (2–10 days) to interannual scales. While the subinertial variability is shown to arise from the atmospheric pressure disturbances, the longer period variation has been poorly understood.Mean upper circulation of the Ulleung Basin is characterized by the northward flowing East Korean Warm Current along the east coast of Korea and its meander eastward after the separation from the coast, the Offshore Branch along the coast of Japan, and the anticyclonic Ulleung Warm Eddy that forms from a meander of the East Korean Warm Current. Continuous acoustic travel-time measurements between June 1999 and June 2001 suggest five quasi-stable upper circulation patterns that persist for about 3–5 months with transitions between successive patterns occurring in a few months or days. Disappearance of the East Korean Warm Current is triggered by merging the Dok Cold Eddy, originating from the pinching-off of the meander trough, with the coastal cold water carried Southward by the North Korean Cold Current. The Ulleung Warm Eddy persisted for about 20 months in the middle of the Ulleung Basin with changes in its position and spatial scale associated with strengthening and weakening of the transport through the Korea/Tsushima Strait. The variability of upper circulation is partly related to the transport variation through the Korea/Tsushima Strait. Movements of the coastal cold water and the instability of the polar front also appear to be important factors affecting the variability.Deep circulation in the Ulleung Basin is primarily cyclonic and commonly consists of one or more cyclonic cells, and an anticyclonic cell centered near Ulleung Island. The cyclonic circulation is conjectured to be driven by a net inflow through the Ulleung Interplain Gap, which serves as a conduit for the exchange of deep waters between the Japan Basin in the northern East Sea and the Ulleung Basin. Deep currents are characterized by a short correlation scale and the predominance of mesoscale variability with periods of 20–40 days. Seasonality of deep currents is indistinct, and the coupling of upper and deep circulation has not been clarified yet.  相似文献   

7.
The northward intruding eddy along the East coast of Korea   总被引:5,自引:0,他引:5  
The current structures and their seasonal variations in the East Korean Warm Current (EKWC) region, which plays a significant role in the northward transport of warm and saline waters, were described by combining the sea surface temperature (SST) data of consecutive satellite inferred (IR) images and hydrographic data. The SST patterns in winter-spring clearly showed that the small meander of thermal front originating from the Tsushima/Korea Strait formed close to the Korean coast and grew an isolated warm eddy with horizontal dimension of order 100 km. Such warm eddy began to intrude slowly northward from spring to summer. At that time, interactions with neighboring synoptic warm eddy [Ks] around the Ulleung Basin were found to have strongly influence the movement of the intruding eddy and its structural change. In autumn, after the northward movement stopped at the north of eddy [Ks], the relative stable northward current along the Korean coast were formed. The evidence from observational results does not support a persistent branching of the EKWC from the Tsushima/Korea Strait, but a seasonal episodic supply of warm and saline waters due to the northward intruding eddy process described above.  相似文献   

8.
We compiled and analyzed past time-series data to evaluate changes in oceanographic conditions and marine ecosystems near the Ieodo ocean research station (IORS) in the East China Sea (N 31°15??C33°45??, E 124°15??C127°45??) in relation to longterm changes in climate and global warming. The environment data we used was a depth-specific time-series of temperature and salinity for the water columns at 175 fixed stations along 22 oceanographic lines in Korean waters, based on bimonthly measurements since 1961 taken by the National Fisheries Research & Development Institute. As an indicator for the ecosystem status of the waters off Ieodo, we analyzed species composition in biomass of fishes caught by Korean fishing vessels in the waters near the IORS (1984?C2010) and summarized the data in relation to the environmental changes using canonical correspondence analysis (CCA). To detect step changes in the time-series of environmental factors, we applied a sequential t-test analysis of regime shift. Correspondence analysis detected a major shift in fish assemblage structure between 1990 and 1993: the dominant species was filefish during 1981?C1992, but chub mackerel during 1992?C2007. This shift in fish assemblage structure seemed to be related to the well-established 1989 regime shift in the North Pacific, which was confirmed again with respect to temperature in the Yellow Sea and the Korea Strait (but not in the waters off the IORS). In overall from 1984 to 2010, salinity was more important than water temperature in CCA, implying that the fluctuation of the Tsushima warm current is a most important force driving the long-term changes in fish assemblage structure in the waters off the IORS. Further multidisciplinary researches are required to identify oceanographic and biological processes that link climate-driven physical changes to fish recruitment and habitat range fluctuations.  相似文献   

9.
The connectivity between the interannual salinity variations in the Tsushima and Cheju Straits has been investigated on the basis of historical hydrographic data. Salinity in the Cheju Strait correlates positively with that in the western channel of the Tsushima Strait, but does not show a significant correlation with that in the eastern channel. Empirical orthogonal function (EOF) and singular value decomposition (SVD) analyses of temperature and salinity in the Cheju Strait revealed that salinity in the strait is associated with the cold bottom water in summer. Drastic freshening in the Cheju Strait occurs in a period when the Cheju Current intensifies. The results allow us to hypothesize that the mechanism of interannual salinity variations in the Cheju Strait and western channel of the Tsushima Strait is as follows. The intrusion of cold bottom water into the Cheju Strait in summer intensifies the Cheju Current by increasing the baroclinicity. Since colder bottom water develops a stronger eastward surface current, the larger volume of the Changjiang diluted water is drawn into the strait, which results in a lower salinity condition in the Cheju Strait. As the water in the Cheju Strait flows into the western channel of the Tsushima Strait, salinity in the western channel varies synchronously. This hypothesis is supported by SVD analysis of temperature in the Cheju Strait and salinity in the Tsushima Strait. The salinity condition in the East China Sea is suggested to be another important influence on salinity in the western channel of the Tsushima Strait.  相似文献   

10.
To clarify the time change in water exchanges between Ise Bay and the adjacent ocean, repeated hydrographic observations were conducted along the longitudinal section in Ise Bay. The results show that the mixing condition at the bay mouth (Irago Strait) changed fortnightly in summer. During the spring tides, the strait water below the pycnocline was well-mixed and nearly homogeneous. By contrast, it was weakly stratified during the neap tide. There is a strong negative correlation between the tidal range and the density difference between the upper and lower layers at the strait. In summer, the intrusion depth of oceanic water into the bay and consequent hydrographic conditions inside the bay changed frequently according to the tidal strength. During the spring tides a prominent bottom front was created at the bay mouth, indicating that the strait water, which is a mixture of oceanic and bay waters, intruded through the middle layer. On the other hand, during the neaps, cold and saline oceanic water intruded through the bottom layer into the bay. The intrusion depth is significantly correlated with the tidal range. It is considered that the wellmixed strait water, which has a density equivalent to the middle layer inside the bay, is lighter than the bottom bay water and thus intrudes through the middle layer during the spring tides, while insufficient mixing makes the bottom water at the strait heavier than the bay water, leading to the bottom intrusion during the neap tides.  相似文献   

11.
Recent studies in the western North Pacific reported a declining standing stock biomass of anchovy (Engraulis japonicus) in the Yellow Sea and a climate-driven southward shift of anchovy catch in Korean waters. We investigated the effects of a warming ocean on the latitudinal shift of anchovy catch by developing and applying individual-based models (IBMs) based on a regional ocean circulation model and an IPCC climate change scenario. Despite the greater uncertainty, our two IBMs projected that, by the 2030s, the strengthened Tsushima warm current in the Korea Strait and the East Sea, driven by global warming, and the subsequent confinement of the relatively cold water masses within the Yellow Sea will decrease larval anchovy biomass in the Yellow Sea, but will increase it in the Korea Strait and the East Sea. The decreasing trend of anchovy biomass in the Yellow Sea was reproduced by our models, but further validation and enhancement of the models is required together with extended ichthyoplankton surveys to understand and reliably project range shifts of anchovy and the impacts such range shifts will have on the marine ecosystems and fisheries in the region.  相似文献   

12.
Sedimentological and micropaleontological characteristics of core sediments from the outer shelf of the Korea Strait, which connects the northern East China Sea and the East Sea (Sea of Japan), were investigated to elucidate the paleoceanographic environment, especially the timing of the Kuroshio inflow, since the last glacial maximum. The core sediments, containing continuous records of the last 15,000 years, are characterized by a relatively high mud content (more than 50%, on average) and well-developed tide-influenced sedimentary structures. Their mineralogy suggests that the material originated from the paleo-Nakdong River system, which extended across the shelf of the Korea Strait during low sea-level periods. Planktonic foraminifers reveal a series of well-defined changes in paleoceanographic conditions during the late Pleistocene–Holocene. Down-core variations in the abundance of four foraminiferal assemblages, i.e., cold, coastal, tropical–subtropical, and Kuroshio water groups comprising characteristic planktonic species, suggest the occurrence of a distinct paleoenvironmental change in the surface water at 7,000 years b.p., i.e., from 15,000 to 7,000 years b.p., the area was influenced by coastal waters whereas since ca. 7,000 years b.p., it has been under the influence of open-sea water related to the Kuroshio Current flow, associated with both higher temperature and higher salinity. In particular, Pulleniatina obliquiloculata increased markedly in abundance at this time, documenting the inflow of the Kuroshio into the study area. These data indicate that the coastal water stage terminated at ca. 7,000 years b.p. when the warm Kuroshio and its major branch, the Tsushima Current, began to flow into the East Sea, as is the case today. The intrusion of the Tsushima Current through the Korea Strait after ca. 7,000 years b.p. resulted in abrupt changes in sedimentation rates and a dramatic increase in abundance of the Kuroshio indicator species, P. obliquiloculata.  相似文献   

13.
台湾海峡南部的海洋锋   总被引:16,自引:7,他引:16  
李立  郭小钢  吴日升 《台湾海峡》2000,19(2):147-156
通过近期水文观测,结合卫星遥感和历史水文资料,对台湾海峡南部海域的海洋锋现象进行了整体分析。结果表明,由于多种水系在此交汇,台湾海峡南部冬、夏季匀有明显锋面发育。受季风气候影响,锋面发育有显著的季节差异。夏季影响本海区的水系主要有韩江冲淡水、上升流、南海水、和黑潮水等。它们的交汇形成了韩江冲淡水羽状锋、台湾浅滩上升流锋、黑潮锋、以及陆架/陆坡锋等的三维锋结构。韩江冲淡水和上升汉对夏季海崃南部浅海峰  相似文献   

14.
Cruise observations with CTD (conductivity-temperature-depth) profiler were carried out in the southern Taiwan Strait in the summer of 2005. Using the cruise data, two-dimensional maps of salinity and temperature distributions at depths of 5, 10, 15, 20, and 30 m were generated. The maps show a low salinity tongue sandwiched by low temperature and high salinity waters on the shallow water side and high temperature and high salinity waters on the deep water side. The further analysis indicates that the low salinity water has a nature of river-diluted water. A possible source of the diluted water is the Zhujiang (Pearl) Estuary. Meanwhile, the summer monsoon is judged as a possible driving force for this northeastward jet-like current. The coastal upwelling and the South China Sea Warm Current confine the low salinity water to flow along the central line of the strait. Previous investigations and a numerical model are used to verify that the upstream of the low salinity current is the Zhujiang Estuary. Thus, the low salinity tongue is produced by four major elements:Zhujinag Estuary diluted water, monsoon wind driving, coastal upwelling and South China Sea Warm Current modifications.  相似文献   

15.
Complex physical, chemical and biological interactions off the Korean coast created several striking patterns in the phytoplankton blooms, which became conspicuous during the measurements of ocean color from space. This study concentrated on analyzing the spatial and temporal aspects of phytoplankton chlorophyll variability in these areas using an integrated dataset from a Sea-viewing Wide Field-of-view Sensor (SeaWiFS), Advanced Very High Resolution (AVHRR) sensor, and Conductivity Temperature Depth (CTD) sensor. The results showed that chlorophyll concentrations were elevated in coastal and open ocean regions, with strong summer and fall blooms, which appeared to spread out in most of the enclosed bays and neighboring waters due to certain oceanographic processes. The chlorophyll concentration was observed to range between 3 and 54 mg m-3 inside Jin-hae Bay and adjacent coastal bays and 0.5 and 8 mg m-3 in the southeast sea offshore waters, this gradual decrease towards oceanic waters suggested physical transports of phytoplankton blooms from the shallow shelves to slope waters through the influence of the Tsushima Warm Current (TWC) along the Tsushima Strait. Horizontal distribution of potential temperature (θ) and salinity (S) of water off the southeastern coast exhibited cold and low saline surface water (θ<19°C; S<32.4) and warm and high saline subsurface water (θ>12°C; S>34.4) at 75dBar, corroborating TWC intrusion along the Tsushima Strait. An eastward branch of this current was called the East Korean Warm Current (EKWC), tracked with the help of CTD data and satellite-derived sea surface temperature, which often influenced the dynamics of mesoscale anticyclonic eddy fields off the Korean east coast during the summer season. The process of such mesoscale anticyclonic eddy features might have produced interior upwelling that could have shoaled and steepened the nutricline, enhancing phytoplankton population by advection or diffusion of nutrients in the vicinity of Ulleungdo in the East Sea.  相似文献   

16.
台湾岛附近海洋对0908号台风“莫拉克”的响应特征   总被引:1,自引:1,他引:0  
在模拟2009年登陆我国东部沿海的台风"莫拉克"的基础上,利用AVHRR/AMSR和SODA再分析数据和模拟结果,初步评估了GRAPES-ECOM海-气耦合模式(上海台风研究所基于GRAPES-TCM区域台风模式和ECOM海洋模式开发而成)模拟台风期间海洋响应的能力,并分析了台风期间台湾岛周围海域的海温、上升流、中尺度冷涡等的变化特点。分析结果表明,GRAPES-ECOM耦合模式较好地模拟了表层海温对台风的响应,与深水海洋响应比较,揭示了近海对台风响应的一些新特征:(1)在台湾以东海域,台风活动改变了黑潮海域海水的垂直运动,诱导黑潮南部沿岸上升流,而北部先于台风存在的上升流减弱,导致不同水深海温的最大降温位置都出现在路径左侧,与深海偏向路径右侧不同;(2)位于台湾岛东北面的彭佳屿冷涡因其形成与大陆架和黑潮有关,当台风在台湾以东洋面活动时,冷涡位于台风右前方,黑潮表层海水辐合流向大陆架,冷涡中心温度上升,强度减弱,当台风转折北上,冷涡位于台风东南侧,表层海水辐散,加强底层冷水上涌,从而增强了该冷涡的强度;(3)台风不仅加深了台湾海峡的混合层深度,还使得海水的垂直热力结构改变,并使整层海温趋于一致。  相似文献   

17.
北白令海夏季冷水团的分布及其年际变化研究   总被引:7,自引:3,他引:4       下载免费PDF全文
利用1982-2008年间的高分辨率CTD数据,对夏季位于北白令海陆架底层的冷水团性质及其多年变化进行了研究.结果表明,依据该区域水体在温盐性质上的差异可以分为4类:陆架冷水团(BSW_C),白令海陆坡流水(BSCW),混合变性水(MW),陆架表层暖水(BSW_S).以-1℃,2℃和4℃温度等值线指示水团边界,清楚地将...  相似文献   

18.
The purpose of this paper is twofold: to describe the water quality model of Three-Dimensional Hydrodynamic-Eutrophication Model (HEM-3D) and to present an application of HEM-3D to a coastal system in Korea. HEM-3D, listed as a tool for the development of Total Maximum Daily Load by US Environmental Protection Agency, is a general-purpose modeling package for simulation of the flow field, transport, and eutrophication processes throughout the water column and of diagenetic processes in the benthic sediment. This paper describes the water quality model of HEM-3D with emphasis on its unique features. Excessive loadings of organic wastes have significantly deteriorated water quality conditions of Korean coastal waters. This paper presents an application of HEM-3D to Kwang-Yang Bay, a coastal system in Korea, which is one of the first water quality modeling efforts for Korean coastal waters accompanied by a relatively comprehensive field program. The current status of data availability for water quality modeling in Korea is discussed.  相似文献   

19.
西格陵兰位于北极—北大西洋地区,其海洋环境演变受西格陵兰洋流中冷、暖水团的显著影响。本文运用主成分分析方法对西格陵兰Disko湾DA06-139G孔沉积物中主要硅藻属种进行研究,试图揭示5000a BP以来西格陵兰洋流中冷、暖水团强度变化对研究区海洋环境的影响。5000—3800a BP期间,东格陵兰寒流携带的极地冷水团强度较弱,而北大西洋暖水团势力较强,Disko湾地区海洋环境较为温暖。3800—2000a BP期间,西格陵兰洋流中极地冷水团势力呈现阶段性增强,此时Disko湾地区气候缓慢转冷,海冰覆盖面积逐渐增加。2000a BP以后,特别是650a BP之后,样品在主成分轴一上的得分显著增高,表明Disko湾气候明显变冷,来自东格陵兰寒流的极地冷水团强度显著增强。Disko湾中晚全新世以来的硅藻记录及样品在主成分轴一上的得分所指示的极地冷水团的强度变化与格陵兰冰芯温度及海冰变化等具有较好的一致性,说明研究区海流特征与大气温度、海冰等环境要素密切相关。  相似文献   

20.
Sinking particles collected from year-long time-series sediment traps at 1674, 4180, 5687 and 8688 m depths, the underlying bottom sediment at 9200 m depth, and suspended particles from surface and subsurface waters in the northwestern North Pacific off Japan were analyzed for long-chain alkenones and alkyl alkenoates (A&A) which are derived mainly from Gephyrocapsacean algae, especially Emiliania huxleyi and Gephyrocapsa oceanica. Alkenone temperature records in sediment trap samples at 1674 m were almost similar to observed sea surface temperatures (SST) with a time delay of one half to one full month. However, alkenone temperatures in trap samples were about slightly lower than measured SST in late spring to early fall. The lowering might be caused by formation of the seasonal thermocline. Nevertheless, these temperature drops observed in trap samples were smaller than those actually observed in a subsurface layer off central Japan. Vertical profiles of A&A concentrations and alkenone temperatures in suspended particles collected from the subsurface waters in early fall indicated that these compounds were produced mostly in a surface mixed layer above the depth of the chlorophyll maximum even in warm seasons. These results suggested that alkenone temperatures strongly reflected SST rather than the temperatures of thermocline waters in these study areas even in such a warm season. Pronounced maxima in A&A fluxes found in sediment trap samples at 1674 m in late spring to summer showed that A&A productions were highest during the periods of spring bloom, according to a time delay between alkenone temperatures and observed SST. Seasonal patterns of alkenone records in trap samples at 4180 and 5687 m could also preserve SST signals well, suggesting that A&A in deep sea waters were mainly derived from primary products in the surface layer. A&A fluxes tended to decrease with water depth, and the ratios of A&A to particulate organic carbon (POC) rapidly decreased in underlying bottom sediment. This clearly indicates that A&A were decomposed and diluted by other refractory organic materials in either the water column or the sediment–water interface. However, A&A compositions were consistently uniform between the trap samples and the underlying bottom sediments, so that A&A could not qualitatively alter during early diagenetic processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号