首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到9条相似文献,搜索用时 11 毫秒
1.
Mafic rocks of Western Dharwar Craton (WDC) belong to two greenstone cycles of Sargur Group (3.1–3.3 Ga) and Dharwar Supergroup (2.6–2.8 Ga), belonging to different depositional environments. Proterozoic mafic dyke swarms (2.4, 2.0–2.2 and 1.6 Ga) constitute the third important cycle. Mafic rocks of Sargur Group mainly constitute a komatiitic-tholeiite suite, closely associated with layered basic-ultrabasic complexes. They form linear ultramaficmafic belts, and scattered enclaves associated with orthoquartzite-carbonate-pelite-BIF suite. Since the country rocks of Peninsular Gneiss intrude these rocks and dismember them, stratigraphy of Sargur Group is largely conceptual and its tectonic environment speculative. It is believed that the Sargur tholeiites are not fractionated from komatiites, but might have been generated and evolved from a similar mantle source at shallower depths. The layered basic-ultrabasic complexes are believed to be products of fractionation from tholeiitic parent magma. The Dharwar mafic rocks are essentially a bimodal basalt-rhyolite association that is dominated by Fe-rich and normal tholeiites. Calc-alkaline basalts and andesites are nearly absent, but reference to their presence in literature pertains mainly to carbonated, spilitized and altered tholeiitic suites. Geochemical discrimination diagrams of Dharwar lavas favour island arc settings that include fore-, intra- and back-arcs. The Dharwar mafic rocks are possibly derived by partial melting of a lherzolite mantle source and involved in fractionation of olivine and pyroxene followed by plagioclase. Distinctive differences in the petrography and geochemistry of mafic rocks across regional unconformities between Sargur Group and Dharwar Supergroup provide clinching evidences in favour of distinguishing two greenstone cycles in the craton. This has also negated the earlier preliminary attempts to lump together all mafic volcanics into a single contemporaneous suite, leading to erroneous interpretations. After giving allowances for differences in depositional and tectonic settings, the chemical distinction between Sargur and Dharwar mafic suites throws light on secular variations and crustal evolution. Proterozoic mafic dyke swarms of three major periods (2.4, 2.0–2.2 and 1.6 Ga) occur around Tiptur and Hunsur. The dykes also conform to the regional metamorphic gradient, with greenschist facies in the north and granulite facies in the south, resulting from the tilt of the craton towards north, exposing progressively deeper crustal levels towards the south. The low-grade terrain in the north does not have recognizable swarms, but the Tiptur swarm consists essentially of amphibolites and Hunsur swarm mainly of basic granulites, all of them preserving cross-cutting relations with host rocks, chilled margins and relict igneous textures. There are also younger dolerite dykes scattered throughout the craton that are unaffected by this metamorphic zonation. Large-scale geochemical, geochronological and palaeomagnetic data acquisition through state-of-the-art instrumentation is urgently needed in the Dharwar craton to catch up with contemporary advancements in the classical greenstone terrains of the world.  相似文献   

2.
We present a first overview of the synplutonic mafic dykes (mafic injections) from the 2.56–2.52 Ga calcalkaline to potassic plutons in the Eastern Dharwar Craton (EDC). The host plutons comprise voluminous intrusive facies (dark grey clinopyroxene-amphibole rich monzodiorite and quartz monzonite, pinkish grey porphyritic monzogranite and grey granodiorite) located in the central part of individual pluton, whilst subordinate anatectic facies (light grey and pink granite) confined to the periphery. The enclaves found in the plutons include highly angular screens of xenoliths of the basement, rounded to pillowed mafic magmatic enclaves (MME) and most spectacular synplutonic mafic dykes. The similar textures of MME and adjoining synplutonic mafic dykes together with their spatial association and occasional transition of MME to dismembered synplutonic mafic dykes imply a genetic link between them. The synplutonic dykes occur in varying dimension ranging from a few centimeter width upto 200 meters width and are generally dismembered or disrupted and rarely continuous. Necking of dyke along its length and back veining of more leucocratic variant of the host is common feature. They show lobate as well as sharp contacts with chilled margins suggesting their injection during different stages of crystallization of host plutons in magma chamber. Local interaction, mixing and mingling processes are documented in all the studied crustal corridors in the EDC. The observed mixing, mingling, partial hybridization, MME and emplacement of synplutonic mafic dykes can be explained by four stage processes: (1) Mafic magma injected during very early stage of crystallization of host felsic magma, mixing of mafic and felsic host magma results in hybridization with occasional MME; (2) Mafic magma introduced slightly later, the viscosities of two magmas may be different and permit only mingling where by each component retain their identity; (3) When mafic magma injected into crystallizing granitic host magma with significant crystal content, the mafic magma is channeled into early fractures and form dismembered synplutonic mafic dykes and (4) Mafic injections enter into largely crystallized (>80% crystals) granitic host results in continuous dykes with sharp contacts. The origin of mafic magmas may be related to development of fractures to mantle depth during crystallization of host magmas which results in the decompression melting of mantle source. The resultant hot mafic melts with low viscosity rise rapidly into the crystallizing host magma chamber where they interact depending upon the crystallinity and viscosity of the host. These hot mafic injections locally cause reversal of crystallization of the felsic host and induce melting and resultant melts in turn penetrate the crystallizing mafic body as back veining. Field chronology indicates injection of mafic magmas is synchronous with emplacement of anatectic melts and slightly predates the 2.5 Ga metamorphic event which affected the whole Archaean crust. The injection of mafic magmas into the crystallizing host plutons forms the terminal Archaean magmatic event and spatially associated with reworking and cratonization of Archaean crust in the EDC.  相似文献   

3.
Broad-band and long period magnetotelluric measurements made at 63 locations along ~500 km long Chikmagalur-Kavali profile,that cut across the Dharwar craton(DC)and Eastern Ghat Mobile Belt(EGMB)in south India,is modelled to examine the lithosphere architecture of the cratonic domain and define tectonic boundaries.The 2-D resistivity model shows moderately conductive features that intersperse a highly resistive background of crystalline rocks and spatially connect to the exposed schist belts or granitic intrusions in the DC.These features are therefore interpreted as images of fossil pathways of the volcanic emplacements associated with the greenstone belt and granite suite formation exposed in the region.A near vertical conductive feature in the upper mantle under the Chitradurga Shear Zone represents the Archean suture between the western and eastern blocks of DC.Although thick(~200 km)cratonic(highly resistive)lithosphere is preserved,significant part of the cratonic lithosphere below the western DC is modified due to plume-continental lithosphere interactions during the Cretaceous—Tertiary period.A west-verging moderately conductive feature imaged beneath EGMB lithosphere is interpreted as the remnant of the Proterozoic collision process between the Indian land mass and East Antarctica.Thin(~120 km)lithosphere is seen below the EGMB,which form the exterior margin of the India shield subsequent to its separation from East Antarctica through rifting and opening of the Indian Ocean in the Cretaceous.  相似文献   

4.
Evidence of mafic and ultramafic magmatism exists in many parts of the Dharwar craton which is divided into two blocks, the West Dharwar Craton (WDC) and the East Dharwar Craton (EDC). The mafic-ultramafic rocks occur in supracrustal/greenstone belts and in numerous enclaves and slivers in the WDC. The oldest recorded maficultramafic rocks, which are mainly komatiitic in nature, are preserved in the Sargur Group which is more than 3.3–3.4 Ga old, the youngest being manifested by 63–76 Ma old mafic dyke magmatism, possibly related to Deccan volcanism. In the Sargur Group, ultramafics rocks greatly dominate over mafic lithological units. Both extrusive and intrusive varieties, the latter in the form of differentiated layered complexes, occur. Mafic volcanics exists in all the greenstone belts of the eastern block and in the Bababudan and Western Ghats belts of the western block. In addition to the Sargur Group where stratigraphic sequences are unclear, mafic magmatism is recorded in three different formations of the Bababudan Group and two sub-divisions of the Shimoga and Chitradurga Groups where basaltic flows are conspicuous. In the well studied greenstone belts of Kolar and Hutti in the EDC, three to four different Formations of mafic volcanic rocks have been mapped. Isotopic dating has indicated that while mafic magmatism in the greenstone belts of the EDC covers only a short time span of between 2.65 to 2.75 Ga, those in the Dharwar Supergroup of the WDC cover a much longer time span from 3.35 to 2.5 Ga. Mafic dyke magmatism has taken place repeatedly from 2.45 Ga to about 1.0 Ga, but, the peak of emplacement was between 1.8 and 1.4 Ga when the densely developed swarms on the western and south western portions of the Cuddapah Basin and in the central part of Karnataka, were intruded. Emplacement of potassic ultramafic magma in the form of kimberlite-lamproite which is confined to the EDC, is a later magmatic event that took place between 1.4 Ga and 0.8 Ga. From a mineralization perspective, mafic magmatism of the supracrustal groups of the WDC and the greenstone belts of the EDC are the most important. V-Ti-magnetite bands constitute the most common deposit type recorded in the mafic-ultramafic complexes of the Sargur Group with commercially exploitable chromite deposits occurring in a number of belts. PGE mineralization of possible commercial value has so far been recorded in a single mafic-ultramafic complex, while copper-nickel mineralization occurs at certain localities in the Sargur and Chitradurga Groups. Gold mineralization hosted by mafic (occasionally ultramafic) rocks has been noted in many of the old workings located in supracrustal groups of rocks in the WDC and in the greenstone belts of EDC. Economically exploitable mineralization, however, occurs mainly in the greenstone belts of the Kolar, Ramagiri-Penkacherla and Hutti-Maski and along the eastern margin of the Chitradurga belt, where it is associated with a major N-S striking thrust zone separating the WDC from the EDC. Gold deposits of the eastern greenstone belts are comparable to those of the younger greenstone belts of Canada, Zimbabwe and Australia where the mineralization is associated with quartz carbonate veins often in iron-rich metabasic rocks. The gold was emplaced as hydrothermal fluids, derived from early komatiitic and tholeiitic magmas, and injected into suitable dilatent structures. The other common type of mineralization associated with the ultramafic rocks of the Sargur Group and supracrustal belts, particularly of the WDC, are asbestos and soapstone, related to autometamorphism/metasomatism. Ruby/sapphire deposits occur in places at the contacts of ultramafic rocks with the Peninsular Gneiss, and are related to contact metamorphism and metasomatism. Mineable magnesite deposits related to low-temperature hydrothermal/lateritic alteration exist in the zone of weathering, particularly in the more olivine-rich rocks. Recent spurt in diamond exploration is offering promise of discovering economically workable diamondiferous kimberlite/lamproite intrusions in the EDC.  相似文献   

5.
Gold mineralization at Hutti is confined to a series of nine parallel, N–S to NNW–SSE trending, steeply dipping shear zones. The host rocks are amphibolites and meta-rhyolites metamorphosed at peak conditions of 660±40°C and 4±1 kbar. They are weakly foliated (S1) and contain barren quartz extension veins. The auriferous shear zones (reefs) are typically characterized by four alteration assemblages and laminated quartz veins, which, in places, occupy the entire reef width of 2–10 m, and contain the bulk of gold mineralization. A <1.5 m wide distal chlorite-sericite (+biotite, calcite, plagioclase) alteration zone can be distinguished from a 3–5 m wide proximal biotite-plagioclase (+quartz, muscovite, calcite) alteration zone. Gold is both spatially and temporally associated with disseminated arsenopyrite and pyrite mineralization. An inner chlorite-K-feldspar (+quartz, calcite, scheelite, tourmaline, sphene, epidote, sericite) alteration halo, which rims the laminated quartz veins, is characterized by a pyrrhotite, chalcopyrite, sphalerite, ilmenite, rutile, and gold paragenesis. The distal chlorite-sericite and proximal biotite-plagioclase alteration assemblages are developed in microlithons of the S2–S3 crenulation cleavage and are replaced along S3 by the inner chlorite-K-feldspar alteration, indicating a two-stage evolution for gold mineralization. Ductile D2 shearing, alteration, and gold mineralization formed the reefs during retrograde evolution and fluid infiltration under upper greenschist to lower amphibolite facies conditions (560±60°C, 2±1 kbar). The reefs were reactivated in the D3 dextral strike-slip to oblique-slip environment by fault-valve behavior at lower greenschist facies conditions (ca. 300–350°C), which formed the auriferous laminated quartz veins. Later D4 crosscutting veins and D5 faults overprint the gold mineralization. The alteration mineralogy and the structural control of the deposit clearly points to an orogenic style of gold mineralization, which took place either during isobaric cooling or at different levels of the Archean crust. From overlaps in the tectono-metamorphic history, it is concluded that gold mineralization occurred during two tectonic events, affecting the eastern Dharwar craton in south India between ca. 2550 – 2530 Ma: (1) The assemblage of various terranes of the eastern block, and (2) a tectono-magmatic event, which caused late- to posttectonic plutonism and a thermal perturbation. It differs, however, from the pre-peak metamorphic gold mineralization at Kolar and the single-stage mineralization at Ramagiri. Notably, greenschist facies gold mineralization occurred at Hutti 35–90 million years later than in the western Dharwar craton. Editorial handling: G. Beaudoin  相似文献   

6.
The Hira-Buddini gold deposit is located along the steeply dipping ENE trending sheared contact of felsic and mafic rocks of strike length of about 600 m with mylonitic foliation parallel to the S1 schistosity in amphibolites. Second-generation open folds with axial planes (S2) marked by fractures that are often filled by later calcite veins are observed in surface and underground exposures. Garnetiferous amphibolites occur in patches on the footwall side of the shear in the western part of the deposit. This rock shows garnet porphyroblasts, coarse second-generation hornblende and large grains of biotite that grow over an early S1 fabric which is made up of early hornblende, plagioclase, ilmenite and retrograde first-generation chlorite. Second-generation hornblende and biotite grains make high angles to S1 schistosity and are sub-parallel to S2. Late hydrothermal alteration is marked by an albite-epidote-chlorite-zoisite assemblage. Geothermometric estimates based on garnet-biotite, and garnet-hornblende pairs, as well as Ti in biotite, show that temperatures during D2 deformation that led to the growth of the porphyroblasts were \(530{\pm }20^{\circ }\hbox {C}\). The fabric and mineralogy of the rock indicate that porphyroblastic growth of garnet, hornblende and biotite was preceded and succeeded by stages of hydrothermal alteration. Primary gold mineralization is inferred to be associated with the early stage of hydrothermal ingress.  相似文献   

7.
The Archaean-Proterozoic Dharwar craton has many recorded occurrences of diamondiferous kimberlites. Reports of kimberlite emplacement in parts of the tectonically complex eastern Dharwar craton and a significant density contrast between kimberlites and the host peninsular gneisses motivated us to conduct gravity studies in the Narayanpet-Irladinne area of the eastern Dharwar craton. This region is contiguous with the Maddur-Narayanpet kimberlite that lies to its north, while the river Krishna lies to its south. From observed association of reported kimberlites in the Maddur-Narayanpet field with subsurface topography of the assumed three-layer earth section obtained by Bouguer gravity modelling, we developed a subsurface criterion for occurrence of kimberlites in the present study area. Using this criterion, five potential zones for kimberlite localization were identified in the Narayanpet-Irladinne region, eastern Dharwar craton.  相似文献   

8.
Geochemical data are presented for a suite of mafic volcanic rocks from the Geita area in the Sukumaland greenstone belt (SGB) of northwestern Tanzania with the aim of constraining their petrogenesis, tectonic setting and to assess a possible genetic link with mafic volcanic rocks from the Rwamagaza area also from the SGB previously reported by [Manya, S., Maboko, M.A.H., 2003. Dating basaltic volcanism in the Neoarchaean Sukumaland greenstone belt of the Tanzania Craton using the Sm–Nd method: implications for the geological evolution of the Tanzania Craton. Precambrian Research 121, 35–45] and [Manya, S., 2004. Geochemistry and petrogenesis of volcanic rocks of the Neoarchaean Sukumaland greenstone belt, northwestern Tanzania. Journal of African Earth Sciences 40, 269–279]. Mafic volcanic rocks from the two locations in the SGB show similar geochemical and Nd-isotopic compositions. Trace element and Nd-isotope compositions are consistent with their generation from a depleted MORB mantle (DMM) source which had been metasomatised by a subduction component in a late Archaean back arc setting at 2823 Ma.These findings are at variance with the previously proposed lithostratigraphical framework in the SGB which postulated an inner arcuate belt dominated by lower Nyanzian mafic volcanic rocks and an outer belt dominated by upper Nyanzian chemical sedimentary rocks, rare felsic flows and shales. The presence of mafic volcanic rocks flanking the outer belt which are of similar composition and age as those of the inner belt suggests that mafic volcanics in the SGB form discontinuous patches of rock distributed throughout the belt and separated by intervening granites. Furthermore, they corroborate previous evidence that both the rocks of the inner and outer belt formed more or less coevally and the subdivision of the volcano-sedimentary package of the SGB (and other greenstone belts of the Tanzania Craton) into a lower mafic volcanic dominated unit and an upper felsic volcanic and BIF dominated unit is not stratigraphically valid.  相似文献   

9.
Gold mineralization at Jonnagiri, Dharwar Craton, southern India, is hosted in laminated quartz veins within sheared granodiorite that occur with other rock units, typical of Archean greenstone–granite ensembles. The proximal alteration assemblage comprises of muscovite, plagioclase, and chlorite with minor biotite (and carbonate), which is distinctive of low- to mid-greenschist facies. The laminated quartz veins that constitute the inner alteration zone, contain muscovite, chlorite, albite and calcite. Using various calibrations, chlorite compositions in the inner and proximal zones yielded comparable temperature ranges of 263 to 323 °C and 268 to 324 °C, respectively. Gold occurs in the laminated quartz veins both as free-milling native metal and enclosed within sulfides. Fluid inclusion microthermometry and Raman spectroscopy in quartz veins within the sheared granodiorite in the proximal zone and laminated auriferous quartz veins in inner zone reveal the existence of a metamorphogenic aqueous–gaseous (H2O–CO2–CH4 + salt) fluid that underwent phase separation and gave rise to gaseous (CO2–CH4), low saline (~ 5 wt.% NaCl equiv.) aqueous fluids. Quartz veins within the mylonitized granodiorites and the laminated veins show broad similarity in fluid compositions and P–T regime. Although the estimated P–T range (1.39 to 2.57 kbar at 263 to 323 °C) compare well with the published P–T values of other orogenic gold deposits in general, considerable pressure fluctuation characterize gold mineralization at Jonnagiri. Factors such as fluid phase separation and fluid–rock interaction, along with a decrease in f(O2), were collectively responsible for gold precipitation, from an initial low-saline metamorphogenic fluid. Comparison of the Jonnagiri ore fluid with other lode gold deposits in the Dharwar Craton and major granitoid-hosted gold deposits in Australia and Canada confirms that fluids of low saline aqueous–carbonic composition with metamorphic parentage played the most dominant role in the formation of the Archean lode gold systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号