共查询到3条相似文献,搜索用时 15 毫秒
1.
The development of a theoretical model fora decaying convective boundary layeris considered. The model relies on thedynamical energy spectrumequation in which the buoyancy andinertial transfer terms are retained,and a closure assumptionmade for both. The parameterization for thebuoyancy term is given providing a factorizationbetween the energy source termand its temporal decay. Regarding the inertialtransfer term a hypothesis ofsuperposition is used to describe theconvective energy source and time variationof velocity correlation separately.The solution of the budget equation for theturbulent kinetic energy spectrum is possible,given the three-dimensional initial energyspectrum. This is doneutilizing a version of the Kristensen et al.(see Boundary-Layer Meteorol.
47, 149–193)model valid for non-isotropic turbulence. During thedecay the locus of the spectralpeak remains at about the sameposition as the heat flux decreases.Comparison of the theoretical modelis performed against large-eddy simulationdata for a decaying convectiveboundary layer. 相似文献
2.
A meandering plume model that explicitly incorporatesinternal fluctuations has been developed and used to model the evolutionof concentration fluctuations in point-source plumes in grid turbulenceobtained from a detailed water-channel simulation. This fluctuating plumemodel includes three physical parameters: the mean plume spread in fixedcoordinates, which represents the outer plume length scale; the meaninstantaneous plume spread in coordinates attached to the instantaneousplume centroid, which represents the inner plume length scale; and, theconcentration fluctuation intensity in the meandering reference frame,which represents the in-plume fluctuation scale. These parameters arespecified in terms of a set of coupled dynamical equations that modeltheir development with downstream distance from the source. Explicitexpressions for the concentration moments of arbitrary integral orderand the concentration probability density function have been obtainedfrom the fluctuating plume model. Detailed comparisons of model predictionsagainst water-channel measurements for the first four concentrationmoments and the concentration probability distributions generally showvery good overall quantitative agreement. Exact quantitative conditions,expressed in terms of the physical parameters of the fluctuating plumemodel, have been derived for the emergence of off-centreline peaks inthe concentration variance profile. These quantitative conditions havebeen illustrated in terms of a diagram of states of the dispersing plume,and the qualitatively different regimes of plume concentration variancebehaviour on this state diagram have been identified and characterized. 相似文献
3.
Cyrille Flamant Marc Georgelin Laurent Menut Jacques Pelon Philippe Bougeault 《Boundary-Layer Meteorology》2001,99(1):85-103
A cold-air outbreak over the Mediterranean, associated with a Tramontane event, has been simulated with the atmospheric non-hydrostatic model Meso-NH using a horizontal resolution of 2 km. Results are compared with in situ aircraft, airborne lidar and satellite measurements. On average, the mean and turbulent parameters simulated in the surface layer and mixed layer compared well with in situ measurements. The model was able to reproduce accurately the Foehn effect in the wake of Cape Creus, as well as the occurence of rolls in the coastal region in connection with cloud streets observed with AVHRR. Over the sea, the threshold value of turbulent kinetic energy defining the height of the atmospheric boundary-layer top in the model (defined as 25% of the maximum turbulent kinetic energy in the profile) enables the simulated atmospheric boundary-layer height to match the one retrieved from lidar measurements. Nevertheless, the model did not handle very well the abrupt gradients of all meteorological parameters observed at the top of the atmospheric boundary-layer. Reasons for this are investigated. 相似文献