首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
Every basin of higher than first order is drained by a channel network composed of two subnetworks. Their basins are separated by a drainage divide line, called the basin divider, which is the primary organizing feature of the main basin. Each basin of magnitude n contains n – 1 subnetworks of higher order, and is therefore organized by a set of n – 1 dividers. The dividers and the basin boundary are interconnected in a graph called the divider network of the basin; in graph-theoretic terms this network forms a tree and has the same magnitude and link numbers as the channel network draining the basin. While the subbasins and subnetworks of a drainage basin form a nesting hierarchy, the corresponding dividers do not; indeed, any two dividers share at most one node in common, and whether they do so is independent of whether the corresponding subbasins are nesting or disjoint. However, the dividers of nesting basins are linked by recursive relationships which permit the derivation of a set of algebraic equations; these equations relate the dividers of a basin to other basin components; for example, their combined length is equal to half the length of all first-order basin boundaries minus the length of the main basin boundary. The second part of the paper explores the dependence of the divider length on other basin parameters. The expected length, as predicted by the assumption of topological randomness, is clearly rejected by the data. An alternative approach (regression) is based on the observed magnitudes of the subbasins separated by each divider, and is reasonably successful in estimating divider length. The last section introduces the concept of the standardized basin defined by a boundary length of unity; the estimated lengths of the basin divider and the basin boundary permit an approximate reconstruction of the idealized basin shape and the location of the divider in it.  相似文献   

2.
After horton     
The divergent and yet related problems of post-Hortonian studies of drainage density and channel network geometry are viewed against the difficulties of defining first-order channels and basins. It is proposed that the junction of an unbranched perennial (or blue-line) channel with another perennial channel be taken as the starting point for definitions and that the entire contour-crenulation network tributary to that point be considered the first-order stream. It is shown that the concept of network diameter may be used to describe the networks so delimited and that it appears to provide a useful starting point for interregional comparisons. Finally, an analysis of Blyth and Rodda's (1973) data on channel lengths and discharge indicates that network diameter may be as closely related to discharge as is channel length itself.  相似文献   

3.
4.
ABSTRACT

The measurement of albedo using portable battery-powered logging equipment before and after the ploughing of drainage ditches by the Forestry Commission on a small catchment in Northern England is described. The change in the evaporation brought about by the reduction of the mean basin albedo from 15.2±0.7 per cent to 13.1 ±0.8 per cent would not in itself produce a significant change in the basin's hydrological behaviour.  相似文献   

5.
The cumulative probability distributions for stream order, stream length, contributing area, and energy dissipation per unit length of channel are derived, for an ordered drainage system, from Horton's laws of network composition. It is shown how these distributions can be related to the fractal nature of single rivers and river networks. Finally, it is shown that the structure proposed here for these probability distributions is able to fit the observed frequency distributions, and their deviations from straight lines in a log-log plot.  相似文献   

6.
van Maanen  Barend  Coco  Giovanni  Bryan  Karin R.  Friedrichs  Carl T. 《Ocean Dynamics》2013,63(11):1249-1262

Sea-level rise has a strong influence on tidal systems, and a major focus of climate change effect studies is to predict the future state of these environmental systems. Here, we used a model to simulate the morphological evolution of tidal embayments and to explore their response to a rising sea level. The model was first used to reproduce the formation of channels and intertidal flats under a stable mean water level in an idealised and initially unchannelled tidal basin. A gradual rise in sea level was imposed once a well-developed channel network had formed. Simulations were conducted with different sea-level rise rates and tidal ranges. Sea-level rise forced headward erosion of the tidal channels, driving a landward expansion of the channel network and channel development in the previously non-inundated part of the basin. Simultaneously, an increase in channel drainage width in the lower part of the basin occurred and a decrease in the overall fraction of the basin occupied by channels could be observed. Sea-level rise thus altered important characteristics of the tidal channel network. Some intertidal areas were maintained despite a rising sea level. However, the size, shape, and location of the intertidal areas changed. In addition, sea-level rise affected the exchange of sediment between the different morphological elements. A shift from exporting to importing sediment as well as a reinforcement of the existing sediment export was observed for the simulations performed here. Sediment erosion in the inlet and the offshore transport of sediment was enhanced, resulting in the expansion of the ebb-tidal delta. Our model results further emphasise that tidal embayments can exhibit contrasting responses to sea-level rise.

  相似文献   

7.
The physical basis of the linkage between magnitude and timing of channel flow hydrographs and drainage network morphometry is reviewed. Small Hortonian and structurally Hortonian networks are analysed using numerical runoff simulation. For Hortonian networks the variability of the geometry of individual channels and subcatchments within each Strahler order has generally little effect upon the overall character of the hydrograph in channels of higher order. If the network is also structurally Hortonian, the analysis of the simultaneous formation, travel, and concentration of the hydrographs in all channels of the network can be simplified to a sequence of one representative hydrograph per channel order. This approach is used in this study. Three major runoff processes control the flow hydrograph characteristics: the overland flow process which determines the water supply to the drainage network; the channel flow process which translates the hydrograph in space and time; and the drainage network process which concentrates and magnifies the flow at the junctions of the drainage network. Functional relations for the hydrograph peak, timing, and flow velocity are presented. For a given uniform rainfall and infiltration rate, the peak of the channel flow hydrograph is shown to increase geometrically with channel order, and its magnitude is directly related to the bifurcation ratio. The travel time of the peak also increases geometrically with channel order, and it is directly related to the channel length ratio over velocity ratio. The flow velocity of the peak changes in a downstream direction as a function of the bifurcation and slope ratio. It was also found that for negligible channel storage the channel flow and drainage network processes do not contribute significantly to the observed nonlinear response of a watershed to precipitation.  相似文献   

8.
The morphological evolution of a stretch of an alpine valley located in the Eastern Italian Alps is described. This has been conditioned by a great alluvial fan that was formed as a consequence of interconnected events, deriving from large rockfalls which occurred in the late glacial period at the head of the Missiaga–Bordina valley, on the left side of the Agordo basin. The aggradation of the alluvial fan blocked the Cordevole valley south of the Agordo basin and produced a lake that is documented by lacustrine sediments. Age determination by 14C techniques on wood remnants found in these sediments fixes the life of the lake at between approximately 5880 and 5300 years BP . This represents, indirectly, the age of the main phase of the development of the fan. After the building up of the alluvial fan, an erosional phase began, leading to the formation of the present landscape. A series of illustrations depicts the sequence of the fan's development.  相似文献   

9.
Modeling the morphodynamic response of tidal embayments to sea-level rise   总被引:1,自引:1,他引:0  
Sea-level rise has a strong influence on tidal systems, and a major focus of climate change effect studies is to predict the future state of these environmental systems. Here, we used a model to simulate the morphological evolution of tidal embayments and to explore their response to a rising sea level. The model was first used to reproduce the formation of channels and intertidal flats under a stable mean water level in an idealised and initially unchannelled tidal basin. A gradual rise in sea level was imposed once a well-developed channel network had formed. Simulations were conducted with different sea-level rise rates and tidal ranges. Sea-level rise forced headward erosion of the tidal channels, driving a landward expansion of the channel network and channel development in the previously non-inundated part of the basin. Simultaneously, an increase in channel drainage width in the lower part of the basin occurred and a decrease in the overall fraction of the basin occupied by channels could be observed. Sea-level rise thus altered important characteristics of the tidal channel network. Some intertidal areas were maintained despite a rising sea level. However, the size, shape, and location of the intertidal areas changed. In addition, sea-level rise affected the exchange of sediment between the different morphological elements. A shift from exporting to importing sediment as well as a reinforcement of the existing sediment export was observed for the simulations performed here. Sediment erosion in the inlet and the offshore transport of sediment was enhanced, resulting in the expansion of the ebb-tidal delta. Our model results further emphasise that tidal embayments can exhibit contrasting responses to sea-level rise.  相似文献   

10.
11.
Dividing rivers into homogeneous reaches is key for river processes and watershed management. In contrast to downstream fluvially dominated rivers, upstream debris-flow dominated torrents have steeper channel slopes and smaller valley width/depth ratios. Investigating transition reaches between torrents and fluvially dominated rivers, not only explores the structure of the landscape, but also contributes to hazard management. This study proposed a valley morphology index combining two variables, channel slope and valley width/depth ratio, to determine transition reaches between torrents and rivers. The methodology was applied to 41 mountain streams in Taiwan using a Geographic Information System (GIS)-based topographic analysis. Plots of valley width/depth ratio versus channel slope were used to determine boundary values of the valley morphology index (Iv) separating torrents from rivers. The plots showed that about 80% of the river basins present “L-shaped” curves, which indicate sharp decreases in slope for upstream sections and dramatic increases of valley width/depth ratio for downstream sections. Results further demonstrated an average value of Iv 0.0047 across the study sites. Spatial comparison between geographic regions indicated that transition reaches in eastern rivers tend to occur lower in the drainage basin due, in part, to higher terrain. Local factors, such as tributary confluences and landslides promote the transition from torrents to fluvially dominated rivers. Satellite images verified that the approach correctly identified transition reaches, suggesting that it may provide a useful reference for river management.  相似文献   

12.
The stream gauge rating curve for a drainage basin can be transformed into a drainage basin peak discharge rating curve that is more stable than the rating curve from which it is derived. The resulting drainage basin peak discharge rating curve can be used to predict peak discharge, identify anomalous discharges caused by channel obstructions or other causes, evaluate the effect of flood retarding structures, and evaluate historical records. The drainage basin peak discharge rating curve is valid for drainage basins of any size, for any discharge up to the time of concentration, and for snowmelt.  相似文献   

13.
Inter‐basin differences in streamflow response to changes in regional hydroclimatology may reflect variations in storage characteristics that control the retention and release of water inputs. These aspects of storage could mediate a basin's sensitivity to climate change. The hypothesis that temporal trends in stream baseflow exhibit a more muted reaction to changes in precipitation and evapotranspiration for basins with greater storage was tested on the Oak Ridges Moraine (ORM) in Southern Ontario, Canada. Long‐term (>25 years) baseflow trends for 16 basins were compared to corresponding trends in precipitation amount and type and in potential evapotranspiration as well as shorter trends in groundwater levels for monitoring wells on the ORM. Inter‐basin differences in storage properties were characterized using physiographic, hydrogeologic, land use/land cover, and streamflow metrics. The latter included the slope of the basin's flow duration curve and basin dynamic storage. Most basins showed temporal increases in baseflow, consistent with limited evidence of increases and decreases in regional precipitation and snowfall: precipitation ratio, respectively, and recent increases in groundwater recharge along the crest of the ORM. Baseflow trend magnitude was uncorrelated to basin physiographic, hydrogeologic, land use/land cover, or flow duration curve characteristics. However, it was positively related to a basin's dynamic storage, particularly for basins with limited coverage of open water and wetlands. The dynamic storage approach assumes that a basin behaves as a first‐order dynamical system, and extensive open water and wetland areas in a basin may invalidate this assumption. Previous work suggested that smaller dynamic storage was linked to greater damping of temporal variations in water inputs and reduced interannual variability in streamflow regime. Storage and release of water inputs to a basin may assist in mediating baseflow response to temporal changes in regional hydroclimatology and may partly account for inter‐basin differences in that response. Such storage characteristics should be considered when forecasting the impacts of climate change on regional streamflow.  相似文献   

14.
Study of two subareas of the same large basin in North Greece determined that differences in processes and form exist between the two subareas. These differences were brought on by man's interference upon one of the subareas. In area A, seminatural vegetation promotes throughflow and protects the surface from overland flow. Hence, natural erosion takes place primarily by channel deepening and infall of side slopes into the channels. In area B, clearing of the seminatural vegetation and the improper ploughing for cultivation increases the overland flow which promotes slope erosion but the augmented debris supply has checked channel erosion. These processes change the form of the drainage basins of the area.  相似文献   

15.
The importance and interaction of various hydrological pathways and identification of runoff source areas involved in solute transport are still under considerable debate in catchment hydrology. To reveal stormflow generating areas and flow paths, hydrometric behaviour of throughfall, soil water from various depths, runoff, and respective concentrations of the environmental tracers 18O, Si, K, SO4 and dissolved organic carbon were monitored for a 14‐week period in a steep headwater catchment in the Black Forest Mountains, Germany. Two stormflow hydrographs were selected and, based on 18O and Si, chemically separated into three flow components. Their sources were defined using mixing diagrams. Additional information about stormflow generating mechanisms was derived from recession analyses of the basin's complete 5‐year hydrograph record. By providing insight into storage properties and residence times of outflowing reservoirs of the basin, recession analysis proved to be a valuable tool in runoff model conceptualization. Its results agreed well with hydrometric and hydrochemical data. Supported by evaluation of 30 hillslope soil profiles a coherent concept of stormflow generation could be derived: whereas in many steeply sloped basins in the temperate region soil water from hillslopes appears to have an immediate effect on the shape of the stormflow hydrograph, its role at this basin is basically restricted to the recharge of the groundwater reservoir in the near‐channel area. Storm hydrograph peaks appear to be derived from a small direct runoff component supplemented by a fast delivery of baseflow from the groundwater reservoir in the valley bottom. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

16.
The automatic mapping of drainage networks from terrain representation has been an interesting topic in hydrological and geomorphological modeling. However, the existing methods often suffer from high sensitivity to terrain noise or lose significant stream branches and accurate channel paths. In this paper, we propose a contour-based framework in drainage network extraction. The proposed framework incorporates discrete curve evolution (DCE) to eliminate the noise influence by dynamically segmenting the contour lines (CLs) into valley bends, and to detect the valley feature points. The skeleton construction technique is then applied to distill more accurate channel paths in complex terrain. Finally, a linking step is undertaken to generate the channel network. The proposed method was tested on a series of elevation datasets, with varied resolution, region size, and local relief. The experiments verified that the proposed method can achieve highly accurate channel networks and is robust, even in regions with high-contrast relief, and/or in cases with significant terrain noise and irregularities.  相似文献   

17.
—?This paper presents the results of the application of a technique of geophysical surveying based on resonance frequency of materials, in a small basin within the Internal Zones of the Betic Cordillera (southern Spain). The frequencies determined have enabled the main features of the basin's structure to be delineated, clearly identifying its asymmetry due to variations in the position of the rigid basement in different sectors. The results show that this method does not guarantee a perfect identification of coarse sediments, unless these overlie substantial more rigid materials. On the other hand, the same method was very effective for studying very soft sediments (peat), and it was possible to establish a quantitative relationship for determining the thickness of these sediments based on their resonance frequency. This relationship was then used to map peat thickness in the basin. The results have been compared with gravity studies and mechanical drillings undertaken in the region.  相似文献   

18.
What controls the architecture of drainage networks is a fundamental question in geomorphology. Recent work has elucidated the mechanisms of drainage network development in steadily uplifting landscapes, but the controls on drainage‐network morphology in transient landscapes are relatively unknown. In this paper we exploit natural experiments in drainage network development in incised Plio‐Quaternary alluvial fan surfaces in order to understand and quantify drainage network development in highly transient landscapes, i.e. initially unincised low‐relief surfaces that experience a pulse of rapid base‐level drop followed by relative base‐level stasis. Parallel drainage networks formed on incised alluvial‐fan surfaces tend to have a drainage spacing that is approximately proportional to the magnitude of the base‐level drop. Numerical experiments suggest that this observed relationship between the magnitude of base‐level drop and mean drainage spacing is the result of feedbacks among the depth of valley incision, mass wasting and nonlinear increases in the rate of colluvial sediment transport with slope gradient on steep valley side slopes that lead to increasingly wide valleys in cases of larger base‐level drop. We identify a threshold magnitude of base‐level drop above which side slopes lengthen sufficiently to promote increases in contributing area and fluvial incision rates that lead to branching and encourage drainage networks to transition from systems of first‐order valleys to systems of higher‐order, branching valleys. The headward growth of these branching tributaries prevents the development of adjacent, ephemeral drainages and promotes a higher mean valley spacing relative to cases in which tributaries do not form. Model results offer additional insights into the response of initially unincised landscapes to rapid base‐level drop and provide a preliminary basis for understanding how varying amounts of base‐level change influence valley network morphology. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

19.
Hui-Ping  Zhang  Shao-Feng  Liu  Nong  Yang  Yue-Qiao  Zhang  Guo-Wei  Zhang 《Island Arc》2006,15(2):239-250
Abstract   The Minshan Mountain and adjacent region are the major continental escarpments along the eastern Tibetan Plateau. The Minjiang drainage basin is located within the plateau margin adjacent to the Sichuan Basin. Based on the analysis of the digital elevation model (DEM) acquired by the Shuttle Radar Topography Mission (SRTM), we know that the Minjiang drainage basin has distinct geomorphic characteristics. The regular increasing of local topographic relief from north to south is a result of the Quaternary sediment deposition within the plateau and the holistic uplift of the eastern margin of the Tibetan Plateau versus the Sichuan Basin. Results from DEM-determined Minjiang drainage sub-basins and channel profiles show that the tributaries on the opposite sides are asymmetric. Lower perimeter and area of drainage sub-basins, total channel length and bifurcation ratio within eastern flank along the Minjiang mainstream are the result of the Quaternary differential uplift of the Minshan Mountain region. Shorter stream lengths and lower bifurcation ratio might be the indications of the undergrowth and newborn features of these eastern streams, which are also representative for the eastern uplift of the Minshan Mountain.  相似文献   

20.
Comparison of the responses of three drainage basins burned by the Dome fire of 1996 in New Mexico is used to identify the hillslope, channel and fire characteristics that indicate a susceptibility specifically to wildfire‐related debris flow. Summer thunderstorms generated three distinct erosive responses from each of three basins. The Capulin Canyon basin showed widespread erosive sheetwash and rilling from hillslopes, and severe flooding occurred in the channel; the North Tributary basin exhibited extensive erosion of the mineral soil to a depth of 5 cm and downslope movement of up to boulder‐sized material, and at least one debris flow occurred in the channel; negligible surface runoff was observed in the South Tributary basin. The negligible surface runoff observed in the South Tributary basin is attributed to the limited extent and severity of the fire in that basin. The factors that best distinguish between debris‐flow producing and flood‐producing drainages are drainage basin morphology and lithology. A rugged drainage basin morphology, an average 12 per cent channel gradient, and steep, rough hillslopes coupled with colluvium and soil weathered from volcaniclastic and volcanic rocks promoted the generation of debris flows. A less rugged basin morphology, an average gradient of 5 per cent, and long, smooth slopes mantled with pumice promoted flooding. Flood and debris‐flow responses were produced without the presence of water‐repellent soils. The continuity and severity of the burn mosaic, the condition of the riparian vegetation, the condition of the fibrous root mat, accumulations of dry ravel and colluvial material in the channel and on hillslopes, and past debris‐flow activity, appeared to have little bearing on the distinctive responses of the basins. Published in 2000 by John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号