首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
With deep mining of coal mines, prospecting multilayer water-filled goaf has become a new content that results from geophysical exploration in coalfields. The central loop transient electromagnetic (TEM) method is favorable for prospecting conductive layers because of the coupling relationship between its field structure and formation. However, the shielding effect of conductive overburden would not only require a longer observation time when prospecting the same depth but also weaken the anomalous response of underlying layers. Through direct time domain numerical simulation and horizontal layered earth forward modeling, this paper estimates the length of observation time required to prospect the target, and the distinguishable criterion of multilayer water-filled goaf is presented with observation error according to the effect of noise on observation data. The observed emf curves from Dazigou Coal Mine, Shanxi Province can distinguish multilayer water-filled goaf. In quantitative inversion interpretation of observed curves, using electric logging data as initial parameters restrains the equivalence caused by coal formation thin layers. The deduced three-layer and two-layer water-filled goafs are confirmed by the drilling hole. The result suggests that when observation time is long enough and with the anomalous situation of underlying layers being greater than the observation error, the use of the central loop TEM method to prospect a multilayer water-filled goaf is feasible.  相似文献   

2.
An important aspect of any non-linear inversion method is the generation of a suitable or good initial model as this controls the rate of convergence and accuracy of the result. To overcome the problem, a numerical method is presented for direct interpretation of magnetotelluric sounding data based on the frequency-normalized impedance (FNI) function. The expressions used to calculate the parameters are developed, first for a two-layer case under the assumption that deeper layers do not contribute to the early part of the FNI curve, and they are then generalized for an n -layer situation. The parameters of the first layer are computed by using successive sample values and the final estimate is obtained from the arithmetic mean of selected values by excluding unacceptable results in the logarithmic space. The top layer is then removed using a reduction equation. The repetition of the procedure on successive branches of the FNI function gives successive layer parameters, the resistivity of the substratum being obtained at the final step, when the reduction equation becomes equal to the square root of that resistivity.   The proposed method can be used as a complementary method for iterative inversion as it creates an initial guess which is close to the optimal solution. The solution produced by the direct interpretation may also be modified by the interpreter to incorporate prior geological information before being input to iterative interpretation schemes.  相似文献   

3.
The method of pseudotopography is a new mode of representing magnetotelluric and magnetovariational data based on a 3-D generalization of geoelectric pseudosections widely used at the stage of qualitative interpretation. The paper considers a synthetic model whose layers, imitating the sedimentary cover, crust, and upper mantle, contain a poorly conductive and a few highly conductive prisms differing in strike. The pseudotopography of apparent resistivities demonstrates the static superposition effect: the effects of near-surface chaotic heterogeneities (geoelectric noise) together with the near-surface and crustal prisms are superimposed on the effect of the mantle prism, distorting the information on the deep structure of the Earth. However, the pseudotopographies of the Wiese-Parkinson matrix, horizontal magnetic tensor, phase tensor, and phases of the impedance tensor are free from the superposition effect: arising at definite frequencies, geoelectric noise and the effects of the shallower prisms decay with decreasing frequency, making the effects of deeper prisms recognizable. Thus, it is clearly demonstrated that magnetovariational and phase estimates, being independent of static distortion, can provide reliable information on the deep structure of the Earth and significantly enhance the effectiveness of magnetotellurics.  相似文献   

4.
Two-layer type curves of apparent frequency effect for the Wenner configuration are presented. The formulation is based on the normal definition of frequency effect in terms of resistivities measured at different frequencies plus the definition of apparent resistivity over two horizontal layers as a function of first and second layer resistivities. The use of these type curves in the interpretation of multilayer apparent frequency-effect curves is described and some field examples are given.  相似文献   

5.
We propose a model which may explain seismic sequences which are often observed in seismogenic regions, as for example in the Apenninic chain (Italy). In particular, we consider a normal fault and earthquakes taking place at different depths: a first shock in a shallower layer and a second in a deeper one. The normal fault is embedded in a viscoelastic half-space. As a consequence of the rheology, there are two different brittle layers, a shallower and a deeper one, where earthquakes can nucleate. Between these two layers, the rheological behavior is ductile. The thicknesses of the layers depend on the geothermal profile that is calculated taking into account the profile of the thermal and rheological parameters with depth. The fault plane, crossing layers with different rheological behavior, is heterogeneous in respect to the slip style: seismic in the brittle layers, aseismic in the ductile layer. Dislocations in the shallower layer are assumed to produce aseismic slip in the area of the fault belonging to the ductile layer. The stress concentrated, by the seismic and aseismic dislocations, on the fault plane section in the deeper brittle layer is evaluated. It is compared with the tectonic stress rate in order to calculate how much earlier the second earthquake would occur compared to if just the bare tectonic sstress was acting. It results that such an advance is comparable with typical recurrence times of earthquakes and so a mechanism of interaction between different seismic sources, mediated by aseismic slip, can be supposed. The strains and displacements at the Earth’s surface due to seismic and aseismic slip are calculated. They are large enough to be detected by present geodetic techniques.  相似文献   

6.
A model has been set up for the interpretation of geoelectrical sounding data for certain kinds of clay deposits containing gradually varying amounts of sand. The model assumes that in the so-called gradient layer, resistivity varies linearly with depth. Model calculations show how such a layer can be replaced by two homogeneous layers. An inversion procedure using the Marquardt algorithm has been developed for the interpretation of sounding data obtained with the Schlumberger array; it assumes a gradient layer beneath several covering layers. The procedure is demonstrated on two clay deposits. A comparison is made between the newly developed interpretation, the traditional approach using model curves, and computerized inversion for a homogeneous layer model.  相似文献   

7.
Fourier transformation of gravity and magnetic anomalies from space to the frequency domain provides aready method for source depth estimation since progressively deeper sources are indicated by the lower frequency components of an anomaly. Two examples are presented here to demonstrate the efficacy of this approach. One example pertains to the interpretation of vertical intensity magnetic anomalies over a layered ultramafic body for estimating the thickness of relatively non-magnetic layer in it and map the dispositions of the layers. The other example is the estimation of crustal thickness in the Indian region from the Bouguer anomaly map. The spectral method is shown, by these two examples, to provide a rapid and elegant tool for the source depth estimation for magnetic and gravity data.  相似文献   

8.
针对近地表物质非均质极强、各向异性明显及地形复杂等特点,系统阐述和讨论了近地表折射和反射法的国内外研究与应用进展,认为:1综合利用纵、横波的优势,开展多波多分量联合勘探对提高浅层地震勘探的精度和分辨率具有重要作用;2现在的浅层地震勘探主要是对地震剖面进行解释,容易忽略一些隐含的地质异常现象,属性提取技术是充分提取地震信息,进行全面综合解释的有效手段;3开展多层折射介质的观测系统和解释方法研究,尤其是折射层析成像研究,是提高多层折射介质成像精度的途径;4开展黏弹性、双相和各向异性介质的地震反射与折射波法研究是提高近地表地震勘探成像和物性参数提取精度的新思路.  相似文献   

9.
频谱成像技术研究进展   总被引:9,自引:9,他引:0       下载免费PDF全文
频谱成像技术是近年来发展起来的一项基于频率谱分解的储层特色解释技术,是地震属性分析中重要组成部分.频谱成像技术具有在空间横向上分辨率高的特点,是一种利用三维地震资料的多尺度信息对储层进行高分辨率成像、检测储层时间厚度变化的工具.地震数据振幅谱可以识别地层的时间厚度变化,相位谱可以检测地质体横向不连续性,在确定油藏边界、计算地层厚度方面比传统地震属性研究方法具有更大的优势.频谱成像技术的核心模块是信号的时频分析,本文回顾了频谱成像技术的基本概念和目前在频谱成像中广泛应用的时频分析方法,简单介绍了几种新的时频分析方法:广义S变换和改进的匹配追踪算法.  相似文献   

10.
This proposed technique allows sensible and numerically stable behavior in multilayer analytic element models when layers dewater. When saturated thickness approaches zero in an unconfined or fresh/salt interface domain, the domain transitions to a very thin confined domain with a minimum saturated thickness M. M is an adjustable input parameter, so you can make the horizontal flow in dewatered domains negligibly small by making the minimum saturated thickness very small. Vertical flows can pass through a dewatered domain, whether it is near the surface or at depth. For example, recharge may pass through a shallow dewatered layer to a deeper layer that is not dewatered. This approach is examined in detail in an example multilayer model of mine dewatering.  相似文献   

11.
Analysing S-wave splitting has become a routine step in processing multicomponent data. Typically, this analysis leads to determining the principal directions of a transversely isotropic medium with a horizontal symmetry axis, which is assumed to be responsible for azimuthal anisotropy, and to the time delays between the fast and slow S-waves. These parameters are commonly estimated layer-by-layer from the top. Errors in layer stripping occurring in shallow layers might propagate to deeper layers. We propose a method for S-wave splitting analysis and compensation that consists of inverting interval values of splitting intensity to obtain a model of anisotropic parameters that vary with time and/or depth. Splitting intensity is a robust attribute with respect to structural variations and is commutative, which means that it can be summed along a ray (or throughout a sensitivity kernel volume) and can be linearly related to anisotropic perturbations at depth. Therefore, it is possible to estimate anisotropic properties within a geological formation (e.g. the reservoir) by analysing the differences of splitting intensity measured at the top and at the bottom of the layer. This allows us to avoid layer stripping, in particular, for shallow layers where anisotropic parameters are difficult to estimate due to poor coverage, and it makes S-wave splitting analysis simpler to apply. We demonstrate this method on synthetic and real data. Because the splitting intensity attribute shows usefulness in S-wave splitting analysis in transversely isotropic media, we extend the splitting intensity theory to lower symmetry classes. It enables the characterization of tilted transversely isotropic and tilted orthorhombic media, opening new opportunities for anisotropic model building.  相似文献   

12.
This study presents a soil moisture assimilation scheme, which could assimilate microwave brightness temperature directly, based on the ensemble Kalman filter and the shuffled complex evolution method (SCE-UA). It uses the soil water model of the land surface model CLM3.0 as the forecast operator, and a radiative transfer model (RTM) as the observation operator in the assimilation system. The assimilation scheme is implemented in two phases: the parameter calibration phase and the pure soil moisture assimilation phase. The vegetation optical thickness and surface roughness parameters in the RTM are calibrated by SCE-UA method and the optimal parameters are used as the final model parameters of the observation operator in the assimilation phase. The ideal experiments with synthetic data indicate that this scheme could significantly improve the simulation of soil moisture at the surface layer. Furthermore, the estimation of soil moisture in the deeper layers could also be improved to a certain extent. The real assimilation experiments with AMSR-E brightness temperature at 10.65 GHz (vertical polarization) show that the root mean square error (RMSE) of soil moisture in the top layer (0–10 cm) by assimilation is 0.03355 m3 · m−3, which is reduced by 33.6% compared with that by simulation (0.05052 m3 · m−3). The mean RMSE by assimilation for the deeper layers (10–50 cm) is also reduced by 20.9%. All these experiments demonstrate the reasonability of the assimilation scheme developed in this study.  相似文献   

13.
The slug test has been commonly used to estimate aquifer parameters. Previous studies on the slug test mainly focused on a single-layer aquifer. However, understanding the interaction between layers is particularly important when assessing aquifer parameters under certain circumstances. In this study, a new semi-analytical model on transient flow in a three-layered aquifer system with a partially penetrating well was developed for the slug test. The proposed model was solved using the Laplace transform method and the Goldstein-Weber transform method, where the semi-analytical solution for the model was obtained. The drawdowns of the proposed model were analyzed to understand the impacts of the different parameters on the drawdowns in a three-layered aquifer system. The results indicated that groundwater interactions between the layers have a significant impact on the slug test. In addition, a shorter and deeper well screen as well as a greater permeability ratio between the layers creates a greater interface flow between them, leading to a higher drawdown in the slug test. Finally, a slug test in a three-layered aquifer system was conducted in our laboratory to validate the new model, which indicated that the proposed model performed better in the interpretation of the experimental data than a previous model proposed by Hyder et al. (1994). We also proposed an empirical relationship to qualitatively identify the errors in the application of single-layer model for the analysis of response data in a three-layered aquifer system.  相似文献   

14.
A numerical method is presented for direct interpretation of resistivity sounding measurements. The early part of the resistivity transform curve derived from field observations by standard methods is approximated by a two-layer curve. The resistivity of the first layer is determined from the arithmetic mean of the successive computations which are carried on each of three successive discrete values of the resistivity transform curve. Using this mean value of the resistivity, the thickness of the first layer is computed from the sample values in pairs of the resistivity transform curve. After these determinations, the top layer is removed by Pekeris's reduction equation. The parameters of the second layer are obtained from the discrete values of the reduced transform curve (which corresponds to the second part of the resistivity transform curve) by the same procedure as described for the first layer. The same computational scheme is repeated until the parameters of all intermediate layers are obtained. The resistivity of the substratum is determined from the reduction equation.  相似文献   

15.
In many areas of the world, the presence of shallow high velocity, highly heterogeneous layers complicate seismic imaging of deeper reflectors. Of particular economic interest are areas where potentially hydrocarbon-bearing strata are obscured by layers of basalt. Basalt layers are highly reflective and heterogeneous. Using reflection seismic, top basalt is typified by a high-amplitude, coherent reflector with poor resolution of reflectors below the basalt, and even bottom basalt. Here, we present a new approach to the imaging problem using the pattern recognition abilities of a back-propagation Artificial Neural Network (ANN). ANNs are computational systems that attempt to mimic natural biological neural networks. They have the ability to recognize patterns and develop their own generalizations about a given data set. Back-propagation neural networks are trained on data sets for which the solution is known and tested on the data that are not previously presented to the ANN in order to validate the network result. We show that Artificial Neural Networks, due to their pattern recognition capabilities, can invert the medium statistics based on the seismic character. We produce statistically defined models involving a basalt analogous layer, and calculate full wavefield finite difference synthetic seismograms. We vary basalt layer thickness and source frequency to generate a synthetic model that produces seismic that is similar to real sub-basalt seismic, i.e. high amplitude top basalt reflector and the absence of base basalt and sub-basalt events. Using synthetic shot gathers, generated in a synthetic representation of the sub-basalt case, we can invert the velocity medium standard deviation by using an ANN. By inverting the velocity medium standard deviation, we successfully identified the transition from basalt to sub-basalt on the synthetic shot gathers. We also show that ANNs are capable of identifying the basalt to sub-basalt transition in the presence of incoherent noise. This is important for any future applications of this technique to the real-world seismic data, as this data is never completely noise-free. There is always a certain level of residual (noise remaining after initial noise filtering) environmental/ambient noise present on the recorded seismics, hence, neural network training with noise-free synthetic seismic is less than optimal.  相似文献   

16.
There are two types of masked layers in seismic refraction work: the velocity reversal (low-velocity layer) and the hidden layer (insufficient velocity contrast or layer thickness). On the basis of an analytical formulation of the general case of a masked layer under an overburden of plane and parallel multiple refractors the two limiting cases are discussed: the solution resulting from an uncritical interpretation of the measured time-distance curve and the blind zone solution. Between these two limiting cases there is a variety of possible masked layer solutions. These no-blind zone solutions—as well as the blind zone solution itself—are formulated separately for the velocity inversion and the hidden layer case. For the evaluation of some no-blind zone solution a diagram is presented which can be used for any case of multiple refractors in the overburden of the masked layer. However, it is only for the three- and the four-layer case that a blind zone interpretation by use of diagrams is advisable. Such diagrams are presented together with the basic sets of formulae which contain as parameters only ratios of velocities and layer thicknesses. As the velocity of the masked layer is usually unknown the diagrams are principally constructed to show the dependence on the masked layer velocity. This is useful for estimation of the largest possible error.  相似文献   

17.
The conventional tomographic inversion consists in minimizing residuals between measured and modelled traveltimes. The process tends to be unstable and some additional constraints are required to stabilize it. The stochastic formulation generalizes the technique and sets it on firmer theoretical bases. The Stochastic Inversion by Ray Continuation (Sirc ) is a probabilistic approach, which takes a priori geological information into account and uses probability distributions to characterize data correlations and errors. It makes it possible to tie uncertainties to the results. The estimated parameters are interval velocities and B -spline coefficients used to represent smoothed interfaces. Ray tracing is done by a continuation technique between source and receivers. The ray coordinates are computed from one path to the next by solving a linear system derived from Fermat's principle. The main advantages are fast computations, accurate traveltimes and derivatives. The seismic traces are gathered in CMPs. For a particular CMP, several reflecting elements are characterized by their time gradient measured on the stacked section, and related to a mean emergence direction. The program capabilities are tested on a synthetic example as well as on a field example. The strategy consists in inverting the parameters for one layer, then for the next one down. An inversion step is divided in two parts. First the parameters for the layer concerned are inverted, while the parameters for the upper layers remain fixed. Then all the parameters are reinverted. The velocity-depth section computed by the program together with the corresponding errors can be used directly for the interpretation, as an initial model for depth migration or for the complete inversion program under development.  相似文献   

18.
刘洋  王典  刘财  刘殿秘  张鹏 《地球物理学报》2014,57(4):1177-1187
不连续地质体(如断层)的自动检测一直以来都是叠后地震数据解释中的关键问题之一,尤其在三维情况中尤为重要.然而,大多数边缘检测和相干算法都对随机噪声很敏感,随机噪声衰减是叠后地震数据解释的另一个主要问题.针对构造保护去噪和断层检测问题,本文基于非平稳相似性系数完善一种构造导向滤波方法并且提出一种自动断层检测方法,形成了一套匹配的处理技术.该构造导向滤波既能够有效地衰减随机噪声又可以很好地保护地震资料中的断层等信息不被破坏,增强地震剖面中弯曲、倾斜同相轴的连续性.根据地震数据局部倾角走向,利用相邻道构建当前地震道的预测,通过预测道的叠加得到参考道,计算预测道与参考道之间的非平稳相似性系数可以设计出数据驱动的加权中值滤波.另一方面,预测道与原始道之间的非平稳相似性系数能够用于带有断层指示性的相干分析.这两种方法都基于构造预测和非平稳相似性系数,但是使用不同的调节参数和处理方案.理论模型和实际数据的处理结果证明了本文提出构造导向滤波和断层检测方法的有效性.  相似文献   

19.
This paper develops an automatic method for interpretation of magnetic data using derivatives of the analytic signal. A linear equation is derived to provide source location parameters of a 2D magnetic body without a priori information about the nature of the source. Then using the source location parameters, the nature of the source can be ascertained. The method has been tested using theoretical simulations with random noise for two 2D magnetic models placed at different depths with respect to the observation height. In both cases, the method gave a good estimate for the location and shape of the sources. Good results were obtained on two field data sets.  相似文献   

20.
Despite the use of CDP and digital methods the Zechstein base is still the deepest horizon in the vast salt-dome basin of Central Europe for which continuous information can be obtained by reflection seismics. Thus in North-western Germany, in addition to reflection seismics, the refraction seismic method has been increasingly used for a reliable survey of deeper horizons. The first part of the paper deals with the investigation of the various possibilities and limitations of refraction seismics with regard to the investigation of Pre-Zechstein layers in a basin with a tectonically very complicated overburden. The recording techniques specially developed for continuous profiling of the desired refraction seismic arrivals and the data processing methods are described. The main problems of interpretation are then discussed, in particular with regard to depth representation. The advantages and disadvantages of the various methods, e.g. Gardner's, Hales' and Wyrobek's, and of the wave-front method, are compared. On account of the tectonically complicated overburden Thornburgh's wave-front method proved to be the most useful. In a further section the various possibilities for velocity determinations are mentioned, e.g. Wyrobek's determination of the overburden velocity, for which the wave-front method automatically furnishes the necessary corrections to a deep datum. Finally, some examples are given for the results obtained, including some incidental information on the deeper crust.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号