首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper uses Biot's poroelasticity approach to examine the consolidation behaviour of a rigid foundation with a frictionless base in contact with a poroelastic halfspace. The mathematical development of the mixed boundary value problem involves a set of dual integral equations in the Laplace transform domain which cannot be conveniently solved by employing conventional procedures. In this paper, a numerical solution is developed using a scheme where the contact normal stress is approximated by a discretized equivalent. The influence of limiting drainage boundary conditions at the entire surface of the halfspace on the degree of consolidation of the rigid circular foundation is investigated. The results obtained in this study are compared with the corresponding results given in the literature. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

2.
艾智勇  张逸帆 《岩土力学》2016,37(5):1243-1248
运用对偶积分方程来求解层状横观各向同性地基与墙下条形基础的共同作用问题。从直角坐标平面应变问题控制方程出发,通过傅里叶(Fourier)变换和层间连续性条件,可以得到层状横观各向同性地基的传递矩阵解。基于该传递矩阵解,并利用条形基础与地基接触的混合边值条件,推导出一组关于基础挠度和地基反力的对偶积分方程。考虑墙下条形基础受到竖向集中荷载的情况,利用弹性薄板理论先求解出条形基础挠度;随后应用雅可比(Jacobi)正交多项式和级数展开的方法,将对偶积分方程转化为线性代数方程组进行求解。编制了相应的计算程序,其计算结果与有限元软件ABAQUS的结果基本吻合,从而验证了所提理论的正确性。算例分析表明,板土相对刚度与地基成层性对地基反力、地表沉降和沿z轴竖向正应力有很大的影响。  相似文献   

3.
In this paper, forced rocking vibration of a rigid circular disc placed in a transversely isotropic full‐space, where the axis of material symmetry of the full‐space is normal to the surface of the plate, is analytically investigated. Because of using the Fourier series and Hankel integral transforms, the mixed boundary‐value problem is transformed into two separate pairs of integral equations called dual integral equations. The dual integral equations involved in this paper are reduced to Fredholm integral equations of the second kind. With the aid of contour integration, the governing integral equation is numerically evaluated in the general dynamic case. The reduced static case of the dual integral equations is solved analytically and the vertical displacement, the contact pressure and the static impedance/compliance function are explicitly determined, and it is shown that the pressure in between the plate and the full‐space and the compliance function reduced for isotropic half‐space are identical to the previously published solutions. The dynamic contact pressure in between the disc and the space and also the related impedance function are numerically evaluated in general dynamic case and illustrated. It is shown that the singularity exists in the contact pressure at the edge of the disc is the same as the static case. To show the effect of material anisotropy, the numerical evaluations are given for some different transversely isotropic materials and compared. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

4.
An analytical solution is presented in this paper to study the time‐dependent settlement behaviour of a rigid foundation resting on a transversely isotropic saturated soil layer. The governing equations for a transversely isotropic saturated soil, within Biot's poroelasticity framework, are solved by means of Laplace and Hankel transforms. The problem is subsequently formulated in the Laplace transform domain in terms of a set of dual integral equations that are further reduced to a Fredholm integral equation of the second kind and solved numerically. The developed analytical solution is validated via comparison with the existing analytical solution for an isotropic saturated soil case, and adopted as a benchmark to examine the sensitivities of the mesh refinement and the locations of truncation boundaries in the finite element simulations using ABAQUS. Particular attention is paid to the influences of the degree of soil anisotropy, boundary drainage condition, and the soil layer thickness on the consolidation settlement and contact stress of the rigid foundation. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

5.
吴大志  张振营 《岩土力学》2015,36(12):3393-3399
考虑到地基在竖直方向上的非均匀性,结合扭转振动的特点,建立了简谐扭转动荷载作用时剪切模量随深度增大的广义Gibson饱和地基的动力方程,通过积分变换求解了动力方程。考虑到半空间地基表面处应力自由、埋置圆板所在平面为混合边界和无穷深度处为波的辐射边界等条件,得到了广义Gibson饱和地基中刚性圆板扭转振动时的对偶积分方程,通过合适的变换转化成了一个第2类Fredholm积分方程,求解了相应的动力响应问题。对比静扭距作用时的荷载-位移关系,给出了动力柔度系数和扭转角位移幅值的表达式,并把所研究的问题进行退化且与前人成果进行了对比。数值研究表明:当基础的埋置深度小于5倍基础半径时,广义Gibson饱和地基中埋置基础的扭转振动存在明显的边界层现象,且埋置深度越小,边界层现象越明显。  相似文献   

6.
This paper presents an analytical method for modeling the dynamic response of a rigid strip footing subjected to vertical-only loads. The footing is assumed to rest on the surface of a viscoelastic half-space; therefore, effects of hysteretic soil damping on the impedance of the foundation and the generated ground vibrations are considered in the solution. To solve the mixed boundary value problem, we use the Fourier transform to cast a pair of dual integral equations providing contact stresses, which are solved by means of Jacobi orthogonal polynomials. The resulting soil and footing displacements and stresses are obtained by means of the Fourier inverse transform. The solution provides more realistic estimates of footing impedance, compared to existing solutions for elastic soil, as well as of the attenuation of ground vibrations with distance of the footing. The latter is important for the estimation of machine vibration effects on nearby structures and installations.  相似文献   

7.
The dynamic response of a rigid strip footing lying on saturated soil is greatly affected by the pore pressure induced by a rocking moment. To consider the complex behavior of the soil under the rocking load, an analytical solution for a rigid strip foundation on saturated soil under a rocking moment is developed under the framework of Biot’s coupling theory. The boundary-value problem for the governing coupling equations for saturated soil is solved using a Fourier transform to yield a pair of dual integral equations. These dual integral equations are transformed into a set of linear equations using an infinite series of orthogonal Jacobi polynomials to yield the compliance functions. In addition, a parametric study has been carried out to examine the influence of: (1) the dimensionless frequency, (2) the dynamic permeability and (3) the Poisson’s ratio on saturated soil under a rocking rigid strip footing.  相似文献   

8.
The present paper examines the axisymmetric problem related to the loading of a rigid circular anchor plate which is embedded in bonded contact with an isotropic elastic half-space. A Hankel transform development of the governing equations is used to reduce the associated mixed boundary value problem to a set of coupled Fredholm integral equations of the second kind. These equatons are solved in a numerical fashion to generate results of engineering interest. In particular, the results indicate the influence of the depth of embedment on the axial stiffness of the rigid anchor plate.  相似文献   

9.
根据Biot动力控制方程,运用Fourier积分变换技术,并按照混合边值条件和连续条件建立了上覆单相弹性层饱和地基上刚性条形基础竖向振动的对偶积分方程,并将其退化到完全饱和地基的情形。通过引进正交多项式将对偶积分方程化为线性代数方程组,从而得到了上覆单相弹性层的饱和地基上刚性条形基础的竖向振动规律。通过算例分析得到,单相弹性层的厚度对动力柔度系数有着较大的影响,在单相弹性层厚度较小时(小于条形基础半宽的0.1),动力柔度系数曲线与完全饱和的基本重合;完全饱和地基上刚性基础的竖向振动是上覆弹性层厚度Hn=0的特例。  相似文献   

10.
The present paper examines the elastostatic problem pertaining to the axisymmetric loading of a rigid circular foundation resting on the surface of a non-homogeneous elastic half-space. The non-homogeneity corresponds to a depth variation in the linear elastic shear modulus according to the exponential form G(z)=G1+G2ez. The equations of elasticity governing this type of non-homogeneity are solved by employing a Hankel transform technique. The mixed boundary value problem associated with the indentation of the half-space by the rigid circular foundation is reduced to a Fredholm integral equation which is solved via a numerical technique. The numerical results presented in the paper illustrate the influence of the near-surface elastic non-homogeneity on the settlement of the foundation.  相似文献   

11.
Elastic lateral dynamic impedance functions are defined as the ratio of the lateral dynamic force/moment to the corresponding lateral displacement/rotation at the top ending of a foundation at very small strains. Elastic lateral dynamic impedance functions have a defining influence on the natural frequencies of offshore wind turbines supported on cylindrical shell type foundations, such as suction caissons, bucket foundations, and monopiles. This paper considers the coupled horizontal and rocking vibration of a cylindrical shell type foundation embedded in a fully saturated poroelastic seabed in contact with a seawater half‐space. The formulation of the coupled seawater–shell–seabed vibration problem is simplified by treating the shell as a rigid one. The rigid shell vibration problem is approached by the integral equation method using ring‐load Green's functions for a layered seawater‐seabed half‐space. By considering the boundary conditions at the shell–soil interface, the shell vibration problem is reduced to Fredholm integral equations. Through an analysis of the corresponding Cauchy singular equations, the intrinsic singular characteristics of the problem are rendered explicit. With the singularities incorporated into the solution representation, an effective numerical method involving Gauss–Chebyshev method is developed for the governing Fredholm equations. Selected numerical results for the dynamic contact load distributions, displacements of the shell, and lateral dynamic impedance functions are examined for different shell length–radius ratio, poroelastic materials, and frequencies of excitation. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

12.
This paper examines the interaction between a rigid circular foundation resting in smooth contact with an isotropic elastic halfspace and a concentrated surface load which acts at a finite distance from the foundation. Owing to the action of the external load the rigid foundation experiences an extra settlement and a tilt. The expressions for the extra settlement and the tilt are evaluated in exact closed form. It is also shown that these deformations due to the external load satisfy Betti's reciprocal theorem. The auxiliary solution required for the application of the reciprocal theorem is derived from the analysis of the problem of a rigid circular foundation resting in smooth contact with an elastic medium and subjected to an eccentric load. The, results developed for the interaction between the rigid circular foundation and the external concentrated load are utilized to generate, among others, solutions for the settlement and tilt induced at a rigid foundation due to its interaction with uniformly or non-uniformly distributed loads with circular and square plan shapes.  相似文献   

13.
马晓华  蔡袁强  徐长节 《岩土力学》2010,31(7):2164-2172
基于Biot动力方程,研究了饱和均质弹性半空间上弹性条形基础的摇摆振动问题。通过Fourier积分变换求解了饱和土的动力控制方程,然后结合基础底部为混合边界的条件得到了弹性条形基础的摇摆振动对偶积分方程,利用正交多项式将对偶积分方程转化为求解一组线性代数方程组,同时利用复合Simpson法则,得到了动力柔度系数的表达式,通过算例得出了不同参数时地基动力柔度系数随无量纲频率的关系曲线。  相似文献   

14.
This paper examines the problem of the interaction between a loaded rigid circular foundation located at the surface of an isotropic elastic halfspace and an inclined concentrated anchor load which is located at a finite depth along the axis of symmetry. Such inclined loads can be induced by, for example, anchor regions supporting earth retaining structures. The loaded rigid circular foundation resting in smooth contact with the elastic soil mass experiences a displacement and a tilt due to the action of the inclined anchor load. The magnitude of the rotational settlement is evaluated in exact closed form.  相似文献   

15.
层状地基中单桩负摩擦问题积分方程解法   总被引:9,自引:1,他引:8  
高绍武  王建华  毛娜 《岩土力学》2005,26(9):1456-1460
利用Biot固结理论和积分方程方法研究了表面有堆载的层状地基中单桩负摩擦问题。根据层状饱和土的圆形载荷基本解得出了单桩在圆形均布载荷作用下在时间域内的第二类Fredholm积分方程组。运用Laplace变换对上述积分方程组进行简化。再结合传递和刚度矩阵传递到各个层中去,对变换域内的积分方程采用Schapery 逆变换方法得到时域内单桩的近似积分方程。求解积分方程组并进行相应的数值逆变换,就可得出层状地基中的单桩在表面圆形均布载荷作用下的位移、轴力、孔压和桩侧摩阻力随时间的变化情况。计算结果表明,桩侧剪力和孔压分层明显。  相似文献   

16.
A simplified analytical method is presented for the vertical dynamic analysis of a rigid, massive, cylindrical foundation embedded in a poroelastic soil layer. The foundation is subjected to a time‐harmonic vertical loading and is perfectly bonded to the surrounding soil in the vertical direction. The soil underlying the foundation base is represented by a single‐layered poroelastic soil based on rigid bedrock while the soil at the side of the foundation is modeled as an independent poroelastic layer composed of a series of infinitesimally thin layers. The behavior of the soil is governed by Biot's poroelastodynamic theory and its governing equations are solved by the use of Hankel integral transform. The contact surface between the foundation base and the soil is smooth and fully permeable. The dynamic interaction problem is solved following standard numerical procedures. The accuracy of the present solution is verified by comparisons with the well‐known solutions obtained from other approaches for both the elastodynamic interaction problem and poroelastodynamic interaction problem. Numerical results for the vertical dynamic impedance and response factor of the foundation are presented to demonstrate the influence of nondimensional frequency of excitation, soil layer thickness, poroelastic material parameters, depth ratio and mass ratio on the dynamic response of a rigid foundation embedded in a poroelastic soil layer. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

17.
王云岗  林宏剑 《岩土力学》2007,28(Z1):259-262
竖向圆形荷载作用下弹性半空间问题的位移和应力解是桩基分析的基础。利用Hankel积分变换,首先导出了弹性地基半空间位移与应力的积分形式的通解。通过适当地引入边界条件和界面位移和应力的连续条件,求得了内部作用竖向圆形荷载时弹性地基半空间位移与应力的积分形式解。在此基础上,给出了不同深度处荷载作用投影范围内竖向位移和竖向正应力的平均值。数值结果验证了解析解的正确性。  相似文献   

18.
A transversely isotropic linear elastic half‐space, z?0, with the isotropy axis parallel to the z‐axis is considered. The purpose of the paper is to determine displacements and stresses fields in the interior of the half‐space when a rigid circular disk of radius a completely bonded to the surface of the half‐space is rotated through a constant angle θ0. The region of the surface lying out with the circle r?a, is free from stresses. This problem is a type of Reissner–Sagoci mixed boundary value problems. Using cylindrical co‐ordinate system and applying Hankel integral transform in the radial direction, the problem may be changed to a system of dual integral equations. The solution of the dual integral equations is obtained by an approach analogous to Sneddon's (J. Appl. Phys. 1947; 18 :130–132), so that the circumferential displacement and stress fields inside the medium are obtained analytically. The same problem has already been approached by Hanson and Puja (J. Appl. Mech. 1997; 64 :692–694) by the use of integrating the point force potential functions. It is analytically proved that the present solution, although of a quite different form, is equivalent to that given by Hanson and Puja. To illustrate the solution, a few plots are provided. The displacements and the stresses in a soil deposit due to a rotationally symmetric force or boundary displacement may be obtained using the results of this paper. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

19.
A mathematical treatment is presented for the forced vertical vibration of a padded annular footing on a layered viscoelastic half‐space. On assuming a depth‐independent stress distribution for the interfacial buffer, the set of triple integral equations stemming from the problem is reduced to a Fredholm integral equation of the second kind. The solution method, which is tailored to capture the stress concentrations beneath footing edges, is highlighted. To cater to small‐scale geophysical applications, the model is used to investigate the near‐field effects of ground‐loading system interaction in dynamic geotechnical and pavement testing. Numerical results indicate that the uniform‐pressure assumption for the contact load between the composite disc and the ground which is customary in dynamic plate load testing may lead to significant errors in the diagnosis of subsurface soil and pavement conditions. Beyond its direct application to non‐intrusive site characterization, the proposed solution can be used in the seismic analysis of a variety of structures involving annular foundation geometries. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号