首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
高频面波方法的若干新进展   总被引:12,自引:5,他引:7       下载免费PDF全文
面波多道分析方法(MASW)通过分析高频瑞雷波确定浅地表剪切波速度.在过去的20年中, 由于该方法具有非侵入性、无损、高效及价格低的特点, 越来越受到浅地表地球物理和地质工程学界的重视, 视为未来最有希望的技术之一.这篇综述论文将介绍中国地质大学(武汉)浅地表地球物理团队近年来在研究高频面波的传播理论和应用中取得的部分成果.非几何波是一种仅存在于浅地表介质, 尤其是未固结的沉积物中的独特的地震波.它的存在对快速而准确地获得表层S波速度有一定价值.我们的研究表明非几何波是一种具有频散特性的泄漏波.泄漏波的存在可能导致将其误认为瑞雷波的基阶或高阶能量, 从而造成模式误判.这种模式误判会导致错误的反演结果.我们通过求取高基阶分离后的瑞雷波格林函数证明虚震源法瑞雷波勘探的可行性.这个结果将极大地降低野外瑞雷波勘探成本.勒夫波多道分析方法(MALW)中未知参数比瑞雷波的少, 这使得勒夫波的频散曲线比瑞雷波的简单.因此, 勒夫波反演更稳定, 非唯一性更低.勒夫波数据生成的能量图像通常比瑞雷波的清晰, 并具有更高的分辨率, 从而可以更容易地拾取精确的勒夫波的相速度.利用雅克比矩阵分析波长与探测深度的关系表明对相同波长的基阶模式而言, 瑞雷波的探测深度是勒夫波的1.3~1.4倍; 而两种波的相同波长的高阶模式波的探测深度相同.我们也尝试了时间域勒夫波反演.按照勒夫波分辨率将地球模型剖分成了不同尺寸的块体, 利用反卷积消除了地震子波对勒夫波波形的影响, 通过更新每个块体的S波速度来拟合勒夫波波形, 从而获得地下S波速度模型.该方法不基于水平层状模型假设, 适用于任意二维介质模型.  相似文献   

2.
As theory dictates, for a series of horizontal layers, a pure, plane, horizontally polarized shear (SH) wave refracts and reflects only SH waves and does not undergo wave-type conversion as do incident P or Sv waves. This is one reason the shallow SH-wave refraction method is popular. SH-wave refraction method usually works well defining near-surface shear-wave velocities. Only first arrival information is used in the SH-wave refraction method. Most SH-wave data contain a strong component of Love-wave energy. Love waves are surface waves that are formed from the constructive interference of multiple reflections of SH waves in the shallow subsurface. Unlike Rayleigh waves, the dispersive nature of Love waves is independent of P-wave velocity. Love-wave phase velocities of a layered earth model are a function of frequency and three groups of earth properties: SH-wave velocity, density, and thickness of layers. In theory, a fewer parameters make the inversion of Love waves more stable and reduce the degree of nonuniqueness. Approximating SH-wave velocity using Love-wave inversion for near-surface applications may become more appealing than Rayleigh-wave inversion because it possesses the following three advantages. (1) Numerical modeling results suggest the independence of P-wave velocity makes Love-wave dispersion curves simpler than Rayleigh waves. A complication of “Mode kissing” is an undesired and frequently occurring phenomenon in Rayleigh-wave analysis that causes mode misidentification. This phenomenon is less common in dispersion images of Love-wave energy. (2) Real-world examples demonstrated that dispersion images of Love-wave energy have a higher signal-to-noise ratio and more focus than those generated from Rayleigh waves. This advantage is related to the long geophone spreads commonly used for SH-wave refraction surveys, images of Love-wave energy from longer offsets are much cleaner and sharper than for closer offsets, which makes picking phase velocities of Love waves easier and more accurate. (3) Real-world examples demonstrated that inversion of Love-wave dispersion curves is less dependent on initial models and more stable than Rayleigh waves. This is due to Love-wave’s independence of P-wave velocity, which results in fewer unknowns in the MALW method compared to inversion methods of Rayleigh waves. This characteristic not only makes Love-wave dispersion curves simpler but also reduces the degree of nonuniqueness leading to more stable inversion of Love-wave dispersion curves.  相似文献   

3.
High-frequency surface-wave analysis methods have been effectively and widely used to determine near-surface shear (S) wave velocity. To image the dispersion energy and identify different dispersive modes of surface waves accurately is one of key steps of using surface-wave methods. We analyzed the dispersion energy characteristics of Rayleigh and Love waves in near-surface layered models based on numerical simulations. It has been found that if there is a low-velocity layer (LVL) in the half-space, the dispersion energy of Rayleigh or Love waves is discontinuous and ‘‘jumping’’ appears from the fundamental mode to higher modes on dispersive images. We introduce the guided waves generated in an LVL (LVL-guided waves, a trapped wave mode) to clarify the complexity of the dispersion energy. We confirm the LVL-guided waves by analyzing the snapshots of SH and P–SV wavefield and comparing the dispersive energy with theoretical values of phase velocities. Results demonstrate that LVL-guided waves possess energy on dispersive images, which can interfere with the normal dispersion energy of Rayleigh or Love waves. Each mode of LVL-guided waves having lack of energy at the free surface in some high frequency range causes the discontinuity of dispersive energy on dispersive images, which is because shorter wavelengths (generally with lower phase velocities and higher frequencies) of LVL-guided waves cannot penetrate to the free surface. If the S wave velocity of the LVL is higher than that of the surface layer, the energy of LVL-guided waves only contaminates higher mode energy of surface waves and there is no interlacement with the fundamental mode of surface waves, while if the S wave velocity of the LVL is lower than that of the surface layer, the energy of LVL-guided waves may interlace with the fundamental mode of surface waves. Both of the interlacements with the fundamental mode or higher mode energy may cause misidentification for the dispersion curves of surface waves.  相似文献   

4.
High-frequency (≥ 2 Hz) Multi-channel Analysis of Love Waves (MALW) provides a practical way to determine velocity of horizontally polarized shear (SH) waves for a layered earth model up to 30 m below the ground surface in many geological settings. The information used in the MALW method is phase of Love waves. Information on amplitude of Love waves is not utilized in the MALW method. In this paper we present a method that uses information on amplitude of high-frequency Love waves to estimate quality factors (Qs) of near-surface materials. Unlike Rayleigh waves, attenuation coefficients (amplitude) of Love waves are independent of quality factors for P waves and are function of quality factors of Love waves. In theory, a fewer parameters make the inversion of attenuation coefficients of Love waves more stable and reduce the degree of nonuniqueness. We discussed sensitivity of an inversion system based on a linear relationship between attenuation coefficients and dissipation factors (1/Qs). The sensitivity analysis suggested that damping and constraints to an inversion system are necessary to obtain a smooth and meaningful quality factor model when no other information is available. We used synthetic and real-world data to demonstrate feasibility of inversion of attenuation coefficients of high-frequency Love-wave data acquired with the MALW method for quality factors with a linear, damped and constrained system.  相似文献   

5.
First arrival refraction data does not normally provide any indication of the velocity inversion problem. However, under certain favourable circumstances, when the low-velocity layer (LVL) is considerably thicker than the overlying higher-velocity layer (HVL), the velocity inversion can be seen in the form of a traveltime skip. Model Studies show that in such cases the length of the HVL traveltime branch can be used to determine the thickness of the HVL and the magnitude of the traveltime skip in order to determine the thickness of the LVL. This is also applicable in the case of field data.  相似文献   

6.
Shallow SH-wave reflections are far from routine, although their study can provide insights into important properties of near-surface materials that cannot be inferred from P-wave data alone. Difficulties in separating SH-wave reflections from Love waves are generally considered the major obstacle to progress in shallow SH-wave seismic reflection. This may be the case in surveys undertaken at great depths, but it is not necessarily true for reflection data gathered at shallow and ultra-shallow depths. This paper shows that when SH-wave data possess wavelengths greater than the thickness of the superficial layer, Love waves are not greatly dispersed. In this case, misinterpretation between parts of reflection hyperbolae and waveguide arrivals is sufficiently limited. In a one-layer model earth, which well approximates typical situations of the near-surface underground, the most energetic modes (the lowermost modes) of the dispersed surface waves have a dominant frequency band that falls below the wavelet spectrum of the shallow reflections; therefore, they can be filtered out in the frequency domain. Higher modes, although their spectral content overlaps that of the reflections, exhibit small amplitudes on seismograms and leave strong reflections unaffected.We present field examples from three different sites where we were able to obtain ultra-shallow reflections (< 3 m) in unconsolidated sediments. The high level of resolution (vertical resolution up to 15 cm) suggests that SH-wave reflection imaging has the potential to complement other high-resolution techniques, such as P-wave reflection and ground-penetrating radar (GPR) imaging, allowing a better and more complete characterization of the near-surface environments.  相似文献   

7.
Conventional surface wave inversion for shallow shear (S)-wave velocity relies on the generation of dispersion curves of Rayleigh waves. This constrains the method to only laterally homogeneous (or very smooth laterally heterogeneous) earth models. Waveform inversion directly fits waveforms on seismograms, hence, does not have such a limitation. Waveforms of Rayleigh waves are highly related to S-wave velocities. By inverting the waveforms of Rayleigh waves on a near-surface seismogram, shallow S-wave velocities can be estimated for earth models with strong lateral heterogeneity. We employ genetic algorithm (GA) to perform waveform inversion of Rayleigh waves for S-wave velocities. The forward problem is solved by finite-difference modeling in the time domain. The model space is updated by generating offspring models using GA. Final solutions can be found through an iterative waveform-fitting scheme. Inversions based on synthetic records show that the S-wave velocities can be recovered successfully with errors no more than 10% for several typical near-surface earth models. For layered earth models, the proposed method can generate one-dimensional S-wave velocity profiles without the knowledge of initial models. For earth models containing lateral heterogeneity in which case conventional dispersion-curve-based inversion methods are challenging, it is feasible to produce high-resolution S-wave velocity sections by GA waveform inversion with appropriate priori information. The synthetic tests indicate that the GA waveform inversion of Rayleigh waves has the great potential for shallow S-wave velocity imaging with the existence of strong lateral heterogeneity.  相似文献   

8.
Joint analysis of Rayleigh- and Love-wave dispersion is performed with the aim of evaluating how their joint use can improve retrieved vertical VS profiles. In fact, non-uniqueness of the solution and complex energy distribution among different modes represent problems which, if not properly considered, can eventually lead to ambiguous or erroneous subsurface models.Some tests performed on synthetic datasets show that for the deepest layers the improvements obtained by the joint inversion cannot be considered as fully decisive in terms of ultimate solution of non-uniqueness. Nevertheless joint analysis of dispersive properties of Rayleigh and Love waves reveals as a highly valuable tool able to clarify possible interpretation issues of the single components. Under some stratigraphical circumstances, velocity spectra of Rayleigh waves can in fact be extremely complex in terms of energy distribution among different modes and erroneous interpretations of dispersion curves can thus occur. Beneficial aspects of the joint analysis is shown in the light of possible inconsistencies of the Pareto front, since major interpretative errors can be revealed in the outcomes of the proposed inversion procedure. Two field datasets are analysed also suggesting some improvements in the field acquisition procedures aimed at the acquisition of both Rayleigh and Love waves.  相似文献   

9.
We present a detailed study of Western Bohemia Love waves generated by blasts with an intention to estimate the uppermost crust structure for a more detailed layer distribution than previous studies have used. The use of short-period (4 s and shorter) Love waves represents a new approach in the studied region. Properties of multiple filtering as a tool of frequency–time analysis are discussed. A new method of selecting the dispersion ridges is introduced. Tests of filtering are provided by analyzing signals with analytically known dispersion. The isometric algorithm for the inversion problem is applied, the problem of non-uniqueness is discussed, and tests of reliability of the inversion are presented. During the inversion, the forward problem is solved by use of the matrix method. Six records of blasts from the Western Bohemia region are analyzed to separate the fundamental modes of Love wavegroups, and shear wave velocity distributions down to a depth of 3.0 km are inferred. Modal summation is used to compute synthetic velocigrams, which are compared to measured ones. The lateral heterogeneity of the region is discussed and the presented models are compared to those of previous studies and to the geological setting of the region.  相似文献   

10.

目前完全弹性介质中面波频散特征的研究已较为完善,多道面波分析技术(MASW)在近地表勘探领域也取得了较好的效果,但黏弹介质中面波的频散特征研究依然较少.本文基于解析函数零点求解技术,给出了完全弹性、常Q黏弹和Kelvin-Voigt黏弹层状介质中勒夫波频散特征方程的统一求解方法.对于每个待计算频率,首先根据传递矩阵理论得到勒夫波复频散函数及其偏导的解析递推式,然后在复相速度平面上利用矩形围道积分和牛顿恒等式将勒夫波频散特征复数方程的求根问题转化为等价的连带多项式求解问题,最后通过求解该连带多项式的零点得到多模式勒夫波频散曲线与衰减系数曲线.总结了地层速度随深度递增和夹低速层条件下勒夫波频散特征根在复相速度平面上的运动规律和差异.证明了频散曲线交叉现象在复相速度平面上表现为:随频率增加,某个模式特征根的移动轨迹跨越了另一个模式特征根所在的圆,并给出了这个圆的解析表达式.研究还表明,常Q黏弹地层中的基阶模式勒夫波衰减程度随频率近似线性增加,而Kelvin-Voigt黏弹地层中的基阶模式勒夫波衰减程度随频率近似指数增加,且所有模式总体衰减程度强于常Q黏弹地层中的情况.

  相似文献   

11.
Currently, numerical simulations of seismic channel waves for the advance detection of geological structures in coal mine roadways focus mainly on modeling twodimensional wave fields and therefore cannot accurately simulate three-dimensional (3-D) full-wave fields or seismic records in a full-space observation system. In this study, we use the first-order velocity–stress staggered-grid finite difference algorithm to simulate 3-D full-wave fields with P-wave sources in front of coal mine roadways. We determine the three components of velocity Vx, Vy, and Vz for the same node in 3-D staggered-grid finite difference models by calculating the average value of Vy, and Vz of the nodes around the same node. We ascertain the wave patterns and their propagation characteristics in both symmetrical and asymmetric coal mine roadway models. Our simulation results indicate that the Rayleigh channel wave is stronger than the Love channel wave in front of the roadway face. The reflected Rayleigh waves from the roadway face are concentrated in the coal seam, release less energy to the roof and floor, and propagate for a longer distance. There are surface waves and refraction head waves around the roadway. In the seismic records, the Rayleigh wave energy is stronger than that of the Love channel wave along coal walls of the roadway, and the interference of the head waves and surface waves with the Rayleigh channel wave is weaker than with the Love channel wave. It is thus difficult to identify the Love channel wave in the seismic records. Increasing the depth of the receivers in the coal walls can effectively weaken the interference of surface waves with the Rayleigh channel wave, but cannot weaken the interference of surface waves with the Love channel wave. Our research results also suggest that the Love channel wave, which is often used to detect geological structures in coal mine stopes, is not suitable for detecting geological structures in front of coal mine roadways. Instead, the Rayleigh channel wave can be used for the advance detection of geological structures in coal mine roadways.  相似文献   

12.
Summary This paper deals with the propagation of Love waves in a non-homogeneous isotropic layer of finite depth standing on an infinite non-isotropic layer when there a parabolic irregular zone exists at the interface of the two media.  相似文献   

13.
For the exploration of near-surface structures, seismic and geoelectric methods are often applied. Usually, these two types of method give, independently of each other, a sufficiently exact model of the geological structure. However, sometimes the inversion of the seismic or geoelectric data fails. These failures can be avoided by combining various methods in one joint inversion which feads to much better parameter estimations of the model than the independent inversions. A suitable seismic method for exploring near-surface structures is the use of dispersive surface waves: the dispersive characteristics of Rayleigh and Love surface waves depend strongly on the structural and petrophysical (seismic velocities) features of the near-surface Underground. Geoelectric exploration of the structure Underground may be carried out with the well-known methods of DC resistivity sounding, such as the Schlumberger, the radial-dipole and the two-electrode arrays. The joint inversion algorithm is tested by means of synthetic data. It is demonstrated that the geoelectric joint inversion of Schlumberger, radial-dipole and two-electrode sounding data yields more reliable results than the single inversion of a single set of these data. The same holds for the seismic joint inversion of Love and Rayleigh group slowness data. The best inversion result is achieved by performing a joint inversion of both geoelectric and surface-wave data. The effect of noise on the accuracy of the solution for both Gaussian and non-Gaussian (sparsely distributed large) errors is analysed. After a comparison between least-square (LSQ) and least absolute deviation (LAD) inversion results, the LAD joint inversion is found to be an accurate and robust method.  相似文献   

14.
利用有限单元法及解析法建立和求解了土中Love波特征方程以及位移计算公式.计算结果表明,这一计算方法比纯解析法优越,可以用来分析均质和非均质上中Love波弥散性.本文利用这一方法详细讨论了Love波在上软下硬地基及软夹层地基中的传播特性和弥散特性.上软下硬地基Love波具有弥散性,土层的剪切波及厚度对Love波弥散曲线影响较大,而质量密度的相对变化对Love彼弥散曲线影响较小.软夹层地基中低频时Love波以第一模态波为主,现场所测为第一模态波波速;高频时存在多个高模态波,土中传播的波为这几个高模态波的叠加波,现场所测波速随两传感器的位置不同而有波动.  相似文献   

15.
Scattering attenuation in short wavelengths has long been interesting to geophysicists. Ultrasonic coda waves, observed as the tail portion of ultrasonic wavetrains in laboratory ultrasonic measurements, are important for such studies where ultrasonic waves interact with small-scale random heterogeneities on a scale of micrometers, but often ignored as noises because of the contamination of boundary reflections from the side ends of a sample core. Numerical simulations with accurate absorbing boundary can provide insight into the effect of boundary reflections on coda waves in laboratory experiments. The simulation of wave propagation in digital and heterogeneous porous cores really challenges numerical techniques by digital image of poroelastic properties, numerical dispersion at high frequency and strong heterogeneity, and accurate absorbing boundary schemes at grazing incidence. To overcome these difficulties, we present a staggered-grid high-order finite-difference (FD) method of Biot’s poroelastic equations, with an arbitrary even-order (2L) accuracy to simulate ultrasonic wave propagation in digital porous cores with strong heterogeneity. An unsplit convolutional perfectly matched layer (CPML) absorbing boundary, which improves conventional PML methods at grazing incidence with less memory and better computational efficiency, is employed in the simulation to investigate the influence of boundary reflections on ultrasonic coda waves. Numerical experiments with saturated poroelastic media demonstrate that the 2L FD scheme with the CPML for ultrasonic wave propagation significantly improves stability conditions at strong heterogeneity and absorbing performance at grazing incidence. The boundary reflections from the artificial boundary surrounding the digital core decay fast with the increase of CPML thicknesses, almost disappearing at the CPML thickness of 15 grids. Comparisons of the resulting ultrasonic coda Q sc values between the numerical and experimental ultrasonic S waveforms for a cylindrical rock sample demonstrate that the boundary reflection may contribute around one-third of the ultrasonic coda attenuation observed in laboratory experiments.  相似文献   

16.
利用有限单元法及解析法建立和求解了土中Love波特征方程以及位移计算公式.计算结果表明,这一计算方法比纯解析法优越,可以用来分析均质和非均质上中Love波弥散性.本文利用这一方法详细讨论了Love波在上软下硬地基及软夹层地基中的传播特性和弥散特性.上软下硬地基Love波具有弥散性,土层的剪切波及厚度对Love波弥散曲线影响较大,而质量密度的相对变化对Love彼弥散曲线影响较小.软夹层地基中低频时Love波以第一模态波为主,现场所测为第一模态波波速;高频时存在多个高模态波,土中传播的波为这几个高模态波的叠加波,现场所测波速随两传感器的位置不同而有波动.  相似文献   

17.
Seismic and geoelectric methods are often used in the exploration of near-surface structures. Generally, these two methods give, independently of one other, a sufficiently exact model of the geological structure. However, sometimes the inversion of the seismic or geoelectric data fails. These failures can be avoided by combining various methods in one joint inversion which leads to much better parameter estimations of the near-surface underground than the independent inversions. In the companion paper (Part I: basic ideas), it was demonstrated theoretically that a joint inversion, using dispersive Rayleigh and Love waves in combination with the well-known methods of DC resistivity sounding, such as Schlumberger, radial dipole-dipole and pole-pole arrays, provides a better parameter estimation. Two applications are shown: a five layer structure in Borsod County, Hungary, and a three-layer structure in Thüringen, Germany. Layer thicknesses, wave velocities and resistivities are determined. Of course, the field data sets obtained from the ‘real world’ are not as complete and as good as the synthetic data sets in the theoretical Part I. In both applications, relative model distances, in percentages, serve as quality control factors for the different inversions; the lower the relative distance, the better the inversion result. In the Borsod field case, Love wave group slowness data and Schlumberger, radial dipole-dipole and pole-pole (i.e two-electrode) data sets are processed. The independent inversion performed using the Love wave data leads to a relative model distance of 155%. An independent Schlumberger inversion results in 41%, a joint geoelectric inversion of all data sets in 15%, a joint inversion of Love wave data and all geoelectric data sets in 15% and the robust joint inversion of Love wave data and the three geoelectric data sets in 10%. In the Thüringen field case, only Rayleigh wave group slowness data and Schlumberger data were available. The independent inversion using Rayleigh wave data results in a relative model distance of 19%. The independent inversion performed using Schlumberger data leads to 34%, the joint and robust joint inversion of Rayleigh wave and Schlumberger data gave results of 18% and 20%, respectively.  相似文献   

18.
Rayleigh's principle and the concept of the local wave number have been utilised for the approximate determination of the dispersion of Love waves propagating in a laterally heterogeneous layer lying over a homogeneous half-space. The shear wave velocity and the rigidity in the surface layer have been assumed to decrease with the increase of the lateral distance from the origin. The range of validity of the dispersion equation obtained by this method has been examined critically. It was found that: (a) for existence of Love waves the minimum value of shear wave velocity in the layer must be less than that in the matter below, and (b) the phase velocity of Love waves decreases with the increase of the lateral distance from the origin.  相似文献   

19.
Surface wave data were initially collected from events of magnitude Ms ≥ 5.0 and shallow or moderate focal depth occurred between 1980 and 2002: 713 of them generated Rayleigh waves and 660 Love waves, which were recorded by 13 broadband digital stations in Eurasia and India. Up to 1,525 source-station Rayleigh waveforms and 1,464 Love wave trains have been processed by frequency-time analysis to obtain group velocities. After inverting the path-averaged group times by means of a damped least-squares approach, we have retrieved location-dependent group velocities on a 2° × 2°-sized grid and constructed Rayleigh- and Love-wave group velocity maps at periods 10.4–105.0 s. Resolution and covariance matrices and the rms group velocity misfit have been computed in order to check the quality of the results. Afterwards, depth-dependent SV- and SH-wave velocity models of the crust and upper mantle are obtained by inversion of local Rayleigh- and Love-wave group velocities using a differential damped least-squares method. The results provide: (a) Rayleigh- and Love-wave group velocities at various periods; (b) SV- and SH-wave differential velocity maps at different depths; (c) sharp images of the subducted lithosphere by velocity cross sections along prefixed profiles; (d) regionalized dispersion curves and velocity-depth models related to the main geological formations. The lithospheric root presents a depth that can be substantiated at ~140 km (Qiangtang Block) and exceptionally at ~180 km in some places (Lhasa Block), and which exhibits laterally varying fast velocity very close to that of some shields that even reaches ~4.8 km/s under the northern Lhasa Block and the Qiangtang Block. Slow-velocity anomalies of 7–10% or more beneath southern Tibet and the eastern edge of the Plateau support the idea of a mechanically weak middle-to-lower crust and the existence of crustal flow in Tibet.  相似文献   

20.
地震槽波的数学-物理模拟初探   总被引:2,自引:0,他引:2       下载免费PDF全文

针对地震槽波在低速层的传播特性,开展了煤层内地震槽波勘探的数值模拟和物理模拟研究的初探工作.在数值模拟研究方面,采用交错网格有限差分法对煤层中的地震槽波进行三分量全波场模拟.基于波场快照和人工合成地震记录研究了不同模型中的波场特征和各种波型的传播规律.在物理模拟方面,通过选用不同配比的环氧树脂和硅橡胶类材料构建地震槽波物理模型,利用透射法和反射法观测系统获得了清晰的地震槽波记录以研究槽波的地震学特征.研究表明,在煤层内槽波的地震波场中,Love型槽波的能量小于Rayleigh型槽波的SV分量,大于Rayleigh型槽波的SH分量.相对于Love型槽波和Rayleigh型槽波的SH分量,Rayleigh型槽波的SV分量在围岩中的泄露能量较强.在煤层界面附近的围岩中,地震波仍以槽波形式传播,随着距离的增加能量逐渐衰减.随着煤层变薄,煤层槽波主频向高频方向移动,频散现象增强,传播速度增大.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号