首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recent fully relativistic calculations of radiative rates and electron impact excitation cross-sections for Fe  xiii are used to generate emission-line ratios involving 3s23p2–3s3p3 and 3s23p2–3s23p3d transitions in the 170–225 and 235–450 Å wavelength ranges covered by the Solar Extreme-Ultraviolet Research Telescope and Spectrograph (SERTS). A comparison of these line ratios with SERTS active region observations from rocket flights in 1989 and 1995 reveals generally very good agreement between theory and experiment. Several new Fe  xiii emission features are identified, at wavelengths of 203.79, 259.94, 288.56 and 290.81 Å. However, major discrepancies between theory and observation remain for several Fe  xiii transitions, as previously found by Landi and others, which cannot be explained by blending. Errors in the adopted atomic data appear to be the most likely explanation, in particular for transitions which have 3s23p3d 1D2 as their upper level. The most useful Fe  xiii electron-density diagnostics in the SERTS spectral regions are assessed, in terms of the line pairs involved being (i) apparently free of atomic physics problems and blends, (ii) close in wavelength to reduce the effects of possible errors in the instrumental intensity calibration, and (iii) very sensitive to changes in N e over the range  108–1011 cm−3  . It is concluded that the ratios which best satisfy these conditions are 200.03/202.04 and 203.17/202.04 for the 170–225 Å wavelength region, and 348.18/320.80, 348.18/368.16, 359.64/348.18 and 359.83/368.16 for 235–450 Å.  相似文献   

2.
New R -matrix calculations of electron impact excitation rates for transitions among the 2s22p, 2s2p2 and 2p3 levels of Si  x are presented. These data are subsequently used, in conjunction with recent estimates for proton excitation rates, to derive theoretical electron density sensitive emission-line ratios involving transitions in the ∼253–356 Å wavelength range. A comparision of these with observations of a solar active region and subflare, obtained during the 1989 flight of the Solar EUV Rocket Telescope and Spectrograph ( SERTS ), reveals that the electron densities determined from most of the Si  x line ratios are consistent with one another for both solar features. In addition, the derived densities are also in good agreement with the values of N e estimated from diagnostic lines in other species formed at similar electron temperatures to Si  x , such as Fe  xii and Fe  xiii . These results provide observational support for the general accuracy of the adopted atomic data, and hence line ratio calculations, employed in the present analysis. However, we find that the Si  x 256.32-Å line is blended with the He  ii transition at the same wavelength, while the feature at 292.25 Å is not due to Si  x , but currently remains unidentified. The intensity of the 253.81-Å line in the SERTS active region spectrum is about a factor of 3 larger than expected from theory, but the reason for this is unclear, and requires additional observations to explain the discrepancy.  相似文献   

3.
Effective collision strengths for the 10 astrophysically important fine-structure forbidden transitions among the 4So, 2Do and 2Po levels in the 3s23p3 configuration of Cl  iii are presented. The calculation employs the multichannel R-matrix method to compute the electron-impact excitation collision strengths in a close-coupling expansion, which incorporates the lowest 23 LS target eigenstates of Cl  iii . These states are formed from the 3s23p3, 3s3p4, 3s23p23d and 3s23p24s configurations. The Maxwellian-averaged effective collision strengths are presented graphically for all 10 fine-structure transitions over a wide range of electron temperatures appropriate for astrophysical applications [log  T (K)=3.3−log  T (K)=5.9]. Comparisons are made with the earlier seven-state close-coupling calculation of Butler & Zeippen, and in general excellent agreement is found in the low-temperature region where a comparison is possible [log  T (K)=3.3−log  T (K)=4.7]. However, discrepancies of up to 30 per cent are found to occur for the forbidden transitions which involve the 4So ground state level, particularly for the lowest temperatures considered. At the higher temperatures, the present data are the only reliable results currently available.  相似文献   

4.
A 25-state R -matrix calculation is performed to obtain photoionization cross-sections for transitions from the 1s22s22p23P ground state of the O  iii ion. Results are obtained for a range of photon energies, including those at which K-shell photoionization processes take place. We compare our results with those from previous calculations. Excellent agreement is obtained. We also consider resonances owing to transitions of a 1s electron excited into the 2p orbital and compare with a recent calculation.  相似文献   

5.
Effective collision strengths for electron-impact excitation of the N-like ion Ne  iv are calculated in the close-coupling approximation using the multichannel R-matrix method. Specific attention is given to the 10 astrophysically important fine-structure forbidden transitions among the 4So, 2Do and 2Po levels in the 2s22p3 ground-state configuration. The expansion of the total wavefunction incorporates the lowest 11 LS eigenstates of Ne  iv , consisting of eight n  = 2 terms with configurations 2s22p3, 2s2p4 and 2p5, together with three n  = 3 states of configuration 2s22p23s. We present in graphical form the effective collision strengths obtained by thermally averaging the collision strengths over a Maxwellian distribution of velocities, for all 10 fine-structure transitions, over the range of electron temperatures log T (K) = 3.6 to log T (K) = 6.1 (the range appropriate for astrophysical applications). Comparisons are made with the earlier, less sophisticated close-coupling calculation of Giles, and excellent agreement is found in the limited temperature region where a comparison is possible [log T (K) = 3.7 to log T (K) = 4.3]. At higher temperatures the present data are the only reliable results currently available.  相似文献   

6.
Recent R-matrix calculations of electron impact excitation rates in Mg-like Fe  xv are used to derive theoretical emission-line ratios involving transitions in the 243–418 Å  wavelength range. A comparison of these with a data set of solar active region, subflare and off-limb spectra, obtained during rocket flights by the Solar Extreme-Ultraviolet Research Telescope and Spectrograph (SERTS), reveals generally very good agreement between theory and observation, indicating that most of the Fe  xv emission lines may be employed with confidence as electron density diagnostics. In particular, the 312.55-Å  line of Fe  xv is not significantly blended with a Co  xvii transition in active region spectra, as suggested previously, although the latter does make a major contribution in the subflare observations. Most of the Fe  xv transitions which are blended have had the species responsible clearly identified, although there remain a few instances where this has not been possible. We briefly address the long-standing discrepancy between theory and experiment for the intensity ratio of the  3s2 1S–3s3p 3P1  intercombination line at 417.25 Å  to the  3s2 1S–3s3p 1P  resonance transition at 284.16 Å.  相似文献   

7.
We use both the civ3 and mchf codes to calculate oscillator strengths of allowed and intercombination lines in the  3s23p–3s3p2  multiplets. Valence, core–valence and some core–core correlation effects are included. The two approaches give results in excellent agreement. Core effects are particularly important for the intercombination lines, though relatively minor for allowed transitions.
We obtain a branching ratio of 1.42 with an estimated accuracy of 0.02 for the     transitions, compared with an experimental value of  1.12±0.1  . The A -values of the     intercombination lines are substantially different from those of previous calculations.  相似文献   

8.
Transition probabilities and oscillator strengths of 382 lines with astrophysical interest arising from 5d96s26p, 5d106s n l, 5d106s2, 5d106p2, 5d106p7s and 5d106p6d configurations and some levels radiative lifetimes of Pb  iii have been calculated. These values were obtained in intermediate coupling (IC) and using relativistic Hartree–Fock calculations including core-polarization effects. We use for the IC calculations the standard method of least-square fitting from experimental energy levels by means of Cowan computer code. The inclusion in these calculations of the 5d106p7s and 5d106p6d configurations has facilitated us a complete assignment of the levels of energy in the Pb  iii . Transition probabilities, oscillator strengths and radiative lifetimes obtained are generally in good agreement with the experimental data.  相似文献   

9.
Observations of ε Eri (K2 V) have been made with the Space Telescope Imaging Spectrograph on the Hubble Space Telescope . The spectra obtained show a number of emission lines which can be used to determine, or place limits on, the electron density and pressure. Values of the electron pressure are required in order to make quantitative models of the transition region and inner corona from absolute line fluxes, and to constrain semi-empirical models of the chromosphere. Using line flux ratios in Si  iii and O  iv a mean electron pressure of P e= N e T e=4.8×1015 cm−3 K is derived. This value is compatible with the lower and upper limits to P e found from flux ratios in C  iii , O  v and Fe  xii . Some inconsistencies which may be because of small uncertainties in the atomic data used are discussed.  相似文献   

10.
Effective collision strengths for electron-impact excitation of the N-like ion S  x are calculated in the close-coupling approximation using the multichannel R -matrix method. Specific attention is given to the 10 astrophysically important fine-structure forbidden transitions among the 4So, 2Do and 2Po levels in the 2s22p3 ground configuration. The total (e+ion) wavefunction is expanded in terms of the 11 lowest LS eigenstates of S  x , and each eigenstate is represented by extensive configuration-interaction wavefunctions. The collision strengths obtained are thermally averaged over a Maxwellian distribution of velocities, for all 10 fine-structure transitions, over the range of electron temperatures log  T (K)=4.6–6.7 (the range appropriate for astrophysical applications). The present effective collision strengths are the only results currently available for these fine-structure transition rates.  相似文献   

11.
The ab initio R -matrix method is used to calculate effective collision strengths for electron-impact excitation of the sulphur-like ion Cl  ii in the close-coupling approximation. All 10 astrophysically important fine-structure forbidden transitions within the 3s23p4     ,     ,     ground configuration levels are considered. The 12 lowest LS target states are included in the calculation. Effective collision strengths are obtained by averaging the electron collision strengths over a Maxwellian distribution of electron velocities. Results are presented for electron temperatures in the range  log  T (K)=3.3  to  log  T (K)=5.5  , appropriate for astrophysical applications. These are the only effective collision strength data that are currently available.  相似文献   

12.
Theoretical electron density sensitive line ratios   R 1– R 6  of Si  x soft X-ray emission lines are presented. We found that these line ratios are sensitive to electron density n e, and the ratio R 1 is insensitive to electron temperature T e. For reliable determination of the electron density of laboratory and astrophysical plasmas, atomic data, such as electron impact excitation rates, are very important. Our results reveal that the discrepancy of the line ratios from different atomic data calculated with the distorted wave (DW) approximation and the R-matrix method is up to 19 per cent at   n e= 2 × 108 cm−3  . We applied the theoretical intensity ratio R 1 to the Low Energy Transmission Grating Spectrometer (LETGS) spectrum of the solar-like star Procyon. By comparing the observed value (1.29) with the theoretical calculation, the derived electron density n e is  2.6 × 108 cm−3  , which is consistent with that derived from  (C  v < 8.3 × 108 cm−3)  . When the temperature structure of the Procyon corona is taken into account, the derived electron density increases from   n e= 2.6 × 108  to  2.8 × 108 cm−3  .  相似文献   

13.
In an effort better to calibrate the supernova rate of starburst galaxies as determined from near-infrared [Fe  ii ] features, we report on a [Fe  ii ] λ 1.644 μm line-imaging survey of a sample of 42 optically selected supernova remnants (SNRs) in M33. A wide range of [Fe  ii ] luminosities are observed within our sample (from less than 6 to 695 L). Our data suggest that the bright [Fe  ii ] SNRs are entering the radiative phase and that the density of the local interstellar medium (ISM) largely controls the amount of [Fe  ii ] emission. We derive the following relation between the [Fe  ii ] λ 1.644 μm line luminosity of radiative SNRs and the electronic density of the post-shock gas, n e: L [Fe  ii ]     (cm−3). We also find a correlation in our data between L [Fe  ii ] and the metallicity of the shock-heated gas, but the physical interpretation of this result remains inconclusive, as our data also show a correlation between the metallicity and n e. The dramatically higher level of [Fe  ii ] emission from SNRs in the central regions of starburst galaxies is most likely due to their dense environments, although metallicity effects might also be important. The typical [Fe  ii ]-emitting lifetime of a SNR in the central regions of starburst galaxies is found to be of the order of 104 yr. On the basis of these results, we provide a new empirical relation allowing the determination of the current supernova rate of starburst galaxies from their integrated near-infrared [Fe  ii ] luminosity.  相似文献   

14.
We report the first infrared proper motion measurements of the HerbigHaro objects in OMC-1 using a 4-yr time baseline. The [Fe  ii ]-emitting bullets are moving of the order of 0.08 arcsec per year, or at about 170 km s1. The direction of motion is similar to that inferred from their morphology. The proper motions of H2-emitting wakes behind the [Fe  ii ] bullets, and of newly found H2 bullets, are also measured. H2 bullets have smaller proper motion than [Fe  ii ] bullets, while H2 wakes with leading [Fe  ii ] bullets appear to move at similar speeds to their associated bullets. A few instances of variability in the emission can be attributed to dense, stationary clumps in the ambient cloud being overrun, setting up a reverse-oriented bullet. Differential motion between [Fe  ii ] bullets and their trailing H2 wakes is not observed, suggesting that these are not separating, and also that they have reached a steady-state configuration over at least 100 yr. The most distant bullets have, on average, larger proper motions, but are not consistent with free expansion. Nevertheless, an impulsive, or short-lived (<<1000 yr), duration for their origin seems likely.  相似文献   

15.
An inspection of a GHRS/ HST spectrum of the symbiotic star RR Telescopii reveals the presence of the [Al  ii ] 3s21S – 3s3p 3P2 line at a vacuum wavelength of 2661.06±0.08 Å, 8.89±0.08 Å away from the Al  ii ] 3s21S – 3s3p 3P1 intercombination transition at 2669.95 Å, in good agreement with the theoretical prediction of Δ λ =8.80 Å. We also find that the Al  ii ] line profile is asymmetric, showing a strong low-density component with a weak high-density wing, redshifted by 30 km s−1, in agreement with the findings of Schild & Schmid, which were based on optical observations. Our measurement of the emission-line ratio R I (2661.06 Å)/ I (2669.95 Å)=0.027±0.003 implies log  N e=5.8±0.2, in good agreement with the densities found from other ions, such as Si  iii . These results provide strong evidence that we have detected the [Al  ii ] line, the first time (to our knowledge) that this feature has been reliably identified in an astrophysical or laboratory spectrum.  相似文献   

16.
Electron temperatures derived from the He  i recombination line ratios, designated T e(He  i ), are presented for 48 planetary nebulae (PNe). We study the effect that temperature fluctuations inside nebulae have on the T e(He  i ) value. We show that a comparison between T e(He  i ) and the electron temperature derived from the Balmer jump of the H  i recombination spectrum, designated T e(H  i ), provides an opportunity to discriminate between the paradigms of a chemically homogeneous plasma with temperature and density variations, and a two-abundance nebular model with hydrogen-deficient material embedded in diffuse gas of a 'normal' chemical composition (i.e. ∼solar), as the possible causes of the dichotomy between the abundances that are deduced from collisionally excited lines and those deduced from recombination lines. We find that T e(He  i ) values are significantly lower than T e(H  i ) values, with an average difference of  〈 T e(H  i ) − T e(He  i )〉= 4000 K  . The result is consistent with the expectation of the two-abundance nebular model but is opposite to the prediction of the scenarios of temperature fluctuations and/or density inhomogeneities. From the observed difference between T e(He  i ) and T e(H  i ), we estimate that the filling factor of hydrogen-deficient components has a typical value of 10−4. In spite of its small mass, the existence of hydrogen-deficient inclusions may potentially have a profound effect in enhancing the intensities of He  i recombination lines and thereby lead to apparently overestimated helium abundances for PNe.  相似文献   

17.
Radiative lifetimes of nine odd levels in Hf III (5d6p z3P0,1, z1D2, z3D1,2,3, z3F2,3,4) and of two odd levels in Hf I (5d6s26p z3D2,3) have been determined using Time-Resolved Laser-Induced Fluorescence. The investigated levels in Hf I were excited in a single-step process from the ground term (5d26s2 a3F), whereas in Hf III we started from either the ground term 5d2 a3F or the low-lying 5d6s a3D term. For all of the investigated levels, the lifetimes have been measured for the first time. A multiconfiguration relativistic Hartree–Fock method, including core-polarization effects, has been used to compute radiative lifetimes of 15 Hf III levels, including those measured in this work. Transition probabilities for 55 transitions in Hf III are also given.  相似文献   

18.
X-ray and extreme-ultraviolet emission from the coronae of Capella   总被引:1,自引:0,他引:1  
The primary objective of this work is the analysis and interpretation of coronal observations of Capella obtained in 1999 September with the High Energy Transmission Grating Spectrometer on the Chandra X-ray Observatory and the Extreme Ultraviolet Explorer ( EUVE ). He-like lines of O (O  vii ) are used to derive a density of 1.7×1010 cm−3 for the coronae of the binary, consistent with the upper limits derived from Fe  xxi , Ne  ix and Mg  xi line ratios. Previous estimates of the electron density based on Fe  xxi should be considered as upper limits. We construct emission measure distributions and compare the theoretical and observed spectra to conclude that the coronal material has a temperature distribution that peaks around 4–6 MK , implying that the coronae of Capella were significantly cooler than in the previous years. In addition, we present an extended line list with over 100 features in the 5–24 Å wavelength range, and find that the X-ray spectrum is very similar to that of a solar flare observed with SMM . The observed to theoretical Fe  xvii 15.012-Å line intensity reveals that opacity has no significant effect on the line flux. We derive an upper limit to the optical depth, which we combine with the electron density to derive an upper limit of 3000 km for the size of the Fe  xvii emitting region. In the same context, we use the Si  iv transition region lines of Capella from HST /Goddard High-Resolution Spectrometer observations to show that opacity can be significant at T =105 K , and derive a path-length of ≈75 km for the transition region. Both the coronal and transition region observations are consistent with very small emitting regions, which could be explained by small loops over the stellar surfaces.  相似文献   

19.
Radiative lifetimes of 17 excited levels in Zr  i , in the energy interval 29 000–40 974 cm−1, have been investigated using the time-resolved laser-induced fluorescence method. The levels belong to the 4d25s5p, 4d35p and 4d5s25p electronic configurations and were excited in a single-step process from either the ground term, 4d25s2 a 3F, or from the low-lying 4d25s2 a 3P and a 5F terms. For three levels, we confirm previous measurements while for 14 of the levels the lifetimes have been measured for the first time. The experimental results are compared to theoretical calculations performed with a multiconfiguration relativistic Hartree–Fock method including core-polarization effects. Theoretical transition probabilities of astrophysical interest, scaled by the experimental lifetimes, for the depopulating channels of the investigated levels are also presented.  相似文献   

20.
Theoretical line intensity ratios involving Fe  xii transitions in the 186–201 Å wavelength range are compared with observational data for five solar active regions, obtained by the RES-C spectroheliograph on the CORONAS-I mission. Generally good agreement is found between theory and observation, hence resolving discrepancies previously found in the comparison of calculations with active region and subflare spectra from the Solar EUV Rocket Telescope and Spectrograph ( SERTS ). However, the Fe  xii 190.06- and 201.12-Å lines are blended with Fe  x 190.04 Å and Fe  xiii 201.13 Å, respectively. In addition, a weak feature at ∼197 Å, tentatively identified as Fe  xii 196.87 Å, does not appear to be due to this ion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号