首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 93 毫秒
1.
南海北部海域气溶胶光学厚度研究   总被引:2,自引:0,他引:2  
气溶胶光学厚度是大气校正所需要的重要参数.利用2006年9月7~30日中科院南海海洋研究所公开航次的多波段太阳光度计资料,得到了南海北部海域的气溶胶光学厚度.分析结果表明,南海北部海域气溶胶光学厚度在一天内的变化非常明显,最小值可达0.1(870 nm),最大值为0.9(440 nm),而日平均气溶胶光学厚度在0.2~0.6之间.结合同步观测气象数据,发现从陆地方向吹来的风,当风速达4 m/s,对气溶胶的光学厚度有非常明显的影响,而从大洋方向吹来的风,对气溶胶的光学厚度影响不明显.  相似文献   

2.
黄土高原干旱半干旱地区气溶胶光学厚度遥感分析   总被引:2,自引:0,他引:2  
利用兰州大学半干旱气候与环境观测站2006年8月-2008年10月太阳光度计(CE-318)观测资料和同期卫星MODIS(Terra和Aqua)产品资料,分析了该站气溶胶光学厚度(AOD)日变化、月变化和Angstrom波长指数(α指数)月变化特征,发现春季AOD日变幅最大,存在双峰现象,秋、冬季较小;9月AOD最小,4月和12月AOD较大;α指数在4月最小,7月最大.采用太阳光度计反演的550 nm AOD与Terra-MODIS和Aqua-MODIS AOD产品相比较,Terra-MODIS与太阳光度计AOD相关系数为0.69,大于Aqua-MODIS的0.62.并从地表反照率假设、气溶胶模型选择和云影响等方面分析了产生对比偏差的原因,进一步分析了黄土高原干旱半干旱地区AOD的分布和季节变化特征.结果表明:气溶胶光学厚度呈西低东高的分布特征;AOD高值中心与大城市有较好对应;黄土高原干旱半干旱地区AOD在春季最大,夏季有所减小,秋季最小,但冬季升高;Aqua-MODIS中深蓝算法对西北荒漠地区亮地表AOD的反演效果较好.  相似文献   

3.
北方沙尘气溶胶光学厚度和粒子谱的反演   总被引:11,自引:4,他引:11  
利用CE-318太阳光度计在内蒙古额济纳旗、东胜、锡林浩特三地观测的2002年6月喇3年5月间的太阳直接辐射数据,应用消光法反演大气气溶胶光学厚度[AOT(λ),Aerosol Optical Thickness]和粒子谱分布,并分析其变化特征。结果表明,该地区气溶胶光学厚度具有明显的时空变化:春季最大,冬季最小,AOT(λ=440nm)平均最大值为0.78,最小值为0.13。3个观测点中,额济纳旗的光学厚度最大,东胜最小。光学厚度的日变化主要有4种形式:1)早晨高傍晚低;2)早晨低傍晚高;3)早晚低中午高;4)变化平缓。这主要与沙尘天气的发生、大气层结稳定度和人类活动等因素有关。气溶胶粒子谱分布基本符合Junge谱,在粒径0.3μm、0.6μm和1.0μm处出现峰值。但是在不同天气条件下粒子谱有很大差异,在沙尘暴天气中,大粒子和巨粒子数有明显的增加,粒子数浓度要比晴天背景大气大了约一个量级。春季气溶胶粒子数浓度最大,夏秋季次之,冬季最小,但相差不超过一个量级。  相似文献   

4.
用CE-318太阳光度计资料研究银川地区气溶胶光学厚度特性   总被引:25,自引:9,他引:25  
根据CE-318数据,利用Bouguer定律计算了银川地区的大气气溶胶光学厚度,并分析其变化特征。结果表明,该地区大气气溶胶光学厚度具有明显的日变化和季节变化。日变化有4种类型:1)变化相对稳定;2)整体上呈上升的趋势;3)早晚小,中午大;4)早晨09-11时出现峰值,其他时间变化较小。季节变化则是冬、春季节大,秋季次之,夏季最小;春季大气中的主要成分是沙尘,冬季大气的主要成分是人类活动排放的颗粒物,夏季由于降水多,气溶胶数浓度较低,气溶胶光学厚度较小。  相似文献   

5.
北京晴天紫外波段气溶胶光学厚度反演与分析   总被引:4,自引:1,他引:4  
利用太阳一大气紫外光谱辐射计(SAUVS),测量到达北京地表的太阳直接和散射紫外光谱辐射,给出反演大气气溶胶光学厚度的一种方法。结果表明:在紫外波段,大气气溶胶的光学厚度随波长的增加而单调减小,用指数函数可以很好地拟合反演结果。统计得到了3个水平能见度状况下拟合函数的系数值,与全球气溶胶监测网络(AERONET)北京站的资料对比,表明反演结果基本合理。  相似文献   

6.
南京气溶胶光学特性地基观测研究   总被引:1,自引:1,他引:1  
王静  牛生杰  许丹 《气象科学》2017,37(2):248-255
利用2013年南京地区CE318太阳光度计地基观测反演资料,分析了气溶胶光学特性的变化特征,并根据图解法对该地区气溶胶类型分布特征进行研究。结果表明:南京地区气溶胶光学厚度(AOD)月平均的最大值出现在1月(0.97±0.49),最小值出现在7月(0.53±0.37),全年均值为0.71±0.42。除了3月受沙尘事件影响外,ngstr9m波长指数(α)在全年其余月份值均高于0.8,最大值出现在8月和12月(1.24±0.17);AOD季节平均值在冬季(0.85±0.47)和春季(0.72±0.45)略高于夏季(0.63±0.40)和秋季(0.62±0.36)。α季节平均值特征表现为冬季(1.18±0.16)夏季(1.15±0.32)秋季(1.05±0.33)春季(0.86±0.21);AOD的日变化呈现早晚高,白天比较稳定的特征,冬季呈现出单峰变化特征,峰值出现在13∶00(1.05±0.64);工业型和城市型复合污染导致细粒子污染占比较高,全年AOD和α频率分布呈现明显的单峰分布特征,峰值中心分别位于0.53和1.2,对应最大频率分别为21%和16%;根据α和δα函数图解法得到南京地区AOD高值区(0.7)主要集中在细模态粒子增长部分(1.0α1.4,δα0,η~70%),粒径范围在0.10~0.15μm之间。  相似文献   

7.
为了解粤港澳地区气溶胶光学厚度分布和时序变化规律, 深入认识大气气溶胶的光学特性及其气候效应, 利用2010—2019年的MODIS C61 AOD 3 km逐日产品, 分析了粤港澳地区的AOD空间分布及年、季、月变化特征。(1) MODIS AOD与AERONET CE318 AOD最优拟合系数为0.96, 与SolarSIM-D2 AOD拟合系数为0.62, 与PM < sub > 2.5 < /sub > 、PM < sub > 10 < /sub > 的最优拟合系数为0.58、0.56。(2)空间上表现为珠三角AOD值高, 粤西次之, 粤北及粤东北较低。(3)年变化特征整体上呈明显的下降趋势, 2010—2014年AOD波动上升, 至2014年达到峰值, 2015年后AOD显著减小, 于2016年达到最低值。(4)季节上表现为春季 > 夏季 > 秋季 > 冬季。(5)月变化特征表现为3月最大(AOD值: 0.73), 4月次之, 5—8月AOD维持在高值且波动平稳, 9—12月显著下降。研究显示, 粤港澳地区颗粒物污染防治应以佛山、广州等珠江三角洲城市及粤西为主, 重点控制春夏季高污染企业生产强度及颗粒物排放。   相似文献   

8.
台湾地区大气气溶胶光学特性的测量与分析   总被引:3,自引:0,他引:3       下载免费PDF全文
1995年10~12月在台湾阿里山和台南地区采用MS-120型太阳光度计测量了大气气溶胶的消光系数、?ngstr?m浑浊度系数和波长指数。分析了消光系数与气象条件的关系。  相似文献   

9.
敦煌地区大气气溶胶光学厚度的季节变化   总被引:5,自引:10,他引:5  
李韧  季国良 《高原气象》2003,22(1):84-87
讨论了利用太阳直接辐射资料反演大气气溶胶光学厚度的一种方法,并且用1981-1983年敦煌地区太阳直接辐射资料计算了该地区大气气溶胶光学厚度的季节变化特征,结果表明:敦煌地区大气气溶胶光学厚度冬季稳定,变化小,春季不稳定,变化幅度大,夏季次之;秋季较小。  相似文献   

10.
介绍MODIS卫星遥感气溶胶的方法,利用北京大学地面多波段太阳光度计的观测进行了对比,二者的相关性比较好.给出了描述北京地区气溶胶光学厚度分布的几幅图片.卫星遥感对于更好地研究空气污染提供了一种新手段,卫星遥感的气溶胶光学厚度弥补了地面观测空间覆盖不足的缺陷.卫星遥感的气溶胶资料不仅对全球和区域气候研究而且对城市污染分析提供了丰富的资料.  相似文献   

11.
This study compares the aerosol optical depth (AOD) Level 2 Collection 5 products from the Terra and Aqua Moderate Resolution Imaging Spectroradiometers (MODIS) with ground-based measurements from a Microtops II sun photometer over Sanya (18.23°N, 109.52°E), a tropical coastal site in China, from July 2005 to June 2006. The results indicate that the Terra and Aqua MODIS AOD retrievals at 550 nm have good correlations with the measurements from the Microtops II sun photometer. The correlation coefficients for the linear regression fits (R²) are 0.83 for Terra and 0.78 for Aqua, and the regressed intercepts are near zero (0.005 for Terra, 0.009 for Aqua). However, the Terra and Aqua MODIS are found to consistently underestimate AOD with respect to the Microtops II sun photometer, with slope values of 0.805 (Terra) and 0.767 (Aqua). The comparison of the monthly mean AOD indicates that for each month, the Terra and Aqua MODIS retrievals are matched with corresponding Microtops measurements but are systematically less than those of the Microtops. This validation study indicates that the Terra and Aqua MODIS AOD retrievals can adequately characterize the AOD distributions over the tropical coastal region of China, but further efforts to eliminate systematic errors are needed.  相似文献   

12.
沙尘气溶胶光学厚度的全球分布及分析   总被引:5,自引:1,他引:5  
利用全球气溶胶数据GADS(Global Aerosol Data Set)计算了冬夏两季4种类型(积聚型、核型、粗粒型和传输型)沙尘气溶胶0.55μm光学厚度的全球分布。通过分析得出,气溶胶的消光系数和垂直厚度对光学厚度的影响很大。全球沙尘气溶胶分布具有明显的季节和地理差异,4个沙尘暴多发区,分别位于北非、中亚地区、澳大利亚西部和北美西部。中亚地区冬季沙尘气溶胶强度和范围比夏季大,北美和澳大利亚地区则相反,冬季光学厚度最大值位于北非的中部地区,而夏季其最大值位于非洲北部靠近大西洋的地区。沙尘气溶胶对<8μm的辐射吸收作用很弱,散射能力较强;对于>8μm的辐射吸收能力很强,吸收带位主要于8~11μm范围内。  相似文献   

13.
大气气溶胶光学厚度遥感研究概况   总被引:1,自引:0,他引:1  
宋薇  张镭 《干旱气象》2007,23(3):76-81
大气气溶胶是影响气候变化的重要因子之一,利用遥感手段不仅可以获得气溶胶的分布信息,也可以得到相关的气溶胶光学特性参数。本文阐述了国内外气溶胶遥感的发展动态,介绍了气溶胶遥感的基本情况及气溶胶光学厚度反演的几种方法,提出了存在的问题并对今后的研究进行了展望。  相似文献   

14.
西北地区MODIS气溶胶产品的对比应用分析   总被引:3,自引:0,他引:3  
胡蝶  张镭  沙莎  王宏斌 《干旱气象》2013,(4):677-683
利用气溶胶自动监测网(AERONET)的太阳光度计(CE-318)资料,对2003-2010年西北干旱半干旱区MODIS暗像元算法和深蓝算法2种气溶胶光学厚度(AOD)产品进行对比验证,在此基础上进一步研究了该区域AOD的空间分布特征及变化趋势。结果表明,MODIS暗像元算法AOD产品在半干旱区原生植被覆盖地表精度优于深蓝算法,而西北干旱区荒漠地表深蓝算法产品精度较高。Aqua—MODIS深蓝算法AOD产品能够较好地给出我国西北荒漠亮地表地区AOD的分布及季节变化情况,AOD高值区多分布在沙尘源区,且春季AOD最大。2003~2010年,塔里木盆地、准噶尔盆地和柴达木盆地年均AOD分别在0.5、0.4和0.3附近波动;沙尘区各区域年均AOD大多呈现增加趋势。其中,塔里木盆地AOD增加趋势较大,而内蒙古西部和准噶尔盆地呈现微弱减少趋势。  相似文献   

15.
小洋山岛位于上海东南面距海岸线约30km处,四面环海,研究其上空的大气气溶胶光学特性对了解我国东部沿海地区及其近海海域的环境和气候影响等都具有重要的意义。对于近岸海岛的气溶胶光学厚度(AOD)观测,至今国内尚未见这方面的实测资料与分析。本次实验利用2006~2007年连续观测得到的AOD值,分析了AOD的季节变化及其与地面风向、湿度和能见度等气象要素的关系,并给出了气溶胶消光谱。分析发现:小洋山地区AOD具有春季最大,冬季次之,秋季较小的特点,而且在低能见度情况下,气溶胶以大粒子为主;盛行西风时,AOD值增大且大粒子比重增加;AOD与湿度有较好的正相关关系。  相似文献   

16.
首先对1980年前后能见度资料非均一性进行了处理, 得到中国地区1960~2005年能见度时间序列, 并由此估算得到气溶胶光学厚度时间序列。对比已有观测及研究结果, 本文获得的气溶胶光学厚度时间序列能够较好地反映出中国地区气溶胶光学厚度长期变化特征。中国地区气溶胶光学厚度呈现逐年增加的趋势, 但1985年后增加趋势减缓, 这种变化在大城市区域表现得更为明显。中国地区气溶胶光学厚度空间分布上呈现东南部高、 西北部低的特征, 东南部地区气溶胶光学厚度普遍大于0.4, 最大值出现在四川盆地, 气溶胶光学厚度超过0.8。  相似文献   

17.
利用激光雷达观测资料研究兰州气溶胶光学厚度   总被引:1,自引:0,他引:1  
利用兰州大学半干旱气候与环境观测站(SACOL)2006—2011年晴空无云时激光雷达(CE-370—2)资料,结合2006年12月至2007年5月多波段太阳光度计(CE-318)资料,对比验证了激光雷达资料的反演结果,并分析了兰州地区气溶胶光学厚度的分布特征。结果表明:激光雷达反演得到的光学厚度与光度计观测得到的光学厚度,两者具有较好的相关性,相关系数为0.86。兰州地区气溶胶光学厚度3—5月和11-12月较大,主要原因是3—5月是当地沙尘频发期,11—12月是居民集中采暖期,沙尘排放和燃煤排放显著增加了大气气溶胶光学厚度。气溶胶光学厚度6~10月偏小,湿沉降清除是主要的影响因素。光学厚度季节分布为春季0.42,冬季0.36,秋季0.30,夏季0.21。光学厚度频数分布于0.0~0.3的最多,占总数的一半,且存在季节差异。兰州上空夏季干净,春季浑浊,冬季次浑浊。  相似文献   

18.
邓玉娇  胡猛  林楚勇  曹静 《气象》2016,42(1):61-66
利用国产极轨气象卫星FY3A的MERSI AOD产品分析2010—2013年广东省气溶胶光学厚度的分布规律。结果表明:MERSI AOD产品与地面太阳光度计实测数据的相关系数为0.72,其平均绝对值误差为0.12,均方根误差为0.15,数据精度可满足研究需要;从AOD的空间分布看,珠三角西翼东翼山区五市,其中佛山市、东莞市、中山市为广东省AOD均值最高的地区,梅州市、河源市为广东省AOD均值最低的地区;从AOD的时间分布看,2010—2013年间,AOD呈现先升高后降低的趋势,2011年为拐点,与此同时,AOD还表现出明显的季节变化特征,春季为AOD高值期,夏季、秋季次之,冬季最低。  相似文献   

19.
1999-2003年我国气溶胶光学厚度的变化特征   总被引:7,自引:2,他引:7  
利用我国70站1999-2003年1月、4月、7月、10月月平均水汽压和能见度资料,反演得到各站大气气溶胶光学厚度(AOD,aerosol optical depth),分析了气溶胶光学厚度的变化特征。结果表明:中国多年平均大气气溶胶光学厚度的分布是以四川盆地为中心向四周减少,长江中下游和广东沿海为两个次大值中心,而东北和西北大部分地区以及云南等地AOD较小;各季节AOD的空间分布都有所不同;近5aAOD有弱增加趋势;月平均气溶胶光学厚度与能见度有较好的负相关关系。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号