首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We introduce new estimators for fracture trace intensity, trace density and mean trace length that exploit the use of circles as efficient sampling tools. A fracture trace is the commonly observed surface expression of a fracture, i.e. the intersection of a fracture with an exposed surface such as a rock pavement or a mine drive wall. Trace intensity, trace density and mean trace length estimators are derived and shown to form a self-consistent set of two-dimensional fracture abundance measures. The intensity estimator n/4r uses the number, n, of intersections between fracture traces and a circular scanline of radius r. The density estimator m/2πr2 uses the number, m, of trace endpoints inside a circular window. The mean trace length estimator (n/m)πr/2 uses the ratio of the number of trace intersections on the circle to the number of endpoints in the circle.The circular sampling tools and estimators described here eliminate most sampling biases due to orientation and also correct many errors due to censoring and length bias that plague established scanline and areal measurement techniques. Performance of the estimators is demonstrated by comparison with areal samples of a synthetic fracture trace population with known intensity, density and mean trace length. The estimators are also applied successfully to a natural rock pavement with two orthogonal fracture sets, one of which is severely censored. Because the new circle-based estimators only require counts of trace–circle intersections and/or trace endpoints, they are more time-efficient than current methods for estimating geometric characteristics of fracture traces.  相似文献   

2.
The diametrical compression of a circular disc (Brazilian test) or cylinder with a small eccentric hole is a simple but important test to determine the tensile strength of rocks. This paper studies the failure mechanism of circular disc with an eccentric hole by a 3D numerical model (RFPA3D). A feature of the code RFPA3D is that it can numerically simulate the evolution of cracks in three-dimensional space, as well as the heterogeneity of the rock mass. First, numerically simulated Brazilian tests are compared with experimental results. Special attention is given to the effect of the thickness to radius ratio on the failure modes and the peak stress of specimens. The effects of the compressive strength to tensile strength ratio (C/T), the loading arc angle (2α), and the homogeneity index (m) are also studied in the numerical simulations. Secondly, the failure process of a rock disc with a central hole is studied. The effects of the ratio of the internal hole radius (r) to the radius of the rock disc (R) on the failure mode and the peak stress are investigated. Thirdly, the influence of the vertical and horizontal eccentricity of an internal hole on the initiation and propagation of cracks inside a specimen are simulated. The effect of the radius of the eccentric hole and the homogeneity index (m) are also investigated.  相似文献   

3.
Direct measurements of groundwater seepage show the importance of subaqueous discharges as sources of fresh water and of dissolved chemicals to lakes and the coastal ocean. The rate of seepage decreases rapidly offshore; an analytical solution was developed that describes the discharge as Ki(In(coth πxk/4l))/k where i is the hydraulic gradient, K is the vertical hydraulic conductivity,l is the aquifer thickness, x is the distance from the shoreline, and k2 is K divided by the horizontal hydraulic conductivity. In addition to variations due to the inhomogeneities in the aquifer, seepage into the coastal ocean involves some recirculation of the salt water. In Great South Bay, New York measured fluxes were as great as 150 I m?2 d?1. The discharge near the shore was typically 50 I m?2 d?1, decreasing to 30 1 m?2 d?1 at a distance of 100 m offshore. Secondary convection due to an unstable density structure at the sediment-water interface may also be superimposed on the seepage distribution. Fingers of salt should be capable of carrying marine water many decimenters downward against the fresh groundwater advection. As a result, care must be exercised in interpreting direct measures of seepage flux to recognize the contribution of recirculated seawater.  相似文献   

4.
The Panzhihua intrusion in southwest China is part of the Emeishan Large Igneous Province and host of a large Fe-Ti-V ore deposit.During emplacement of the main intrusion,multiple generations of mafic dykes invaded carbonate wall rocks,producing a large contact aureole.We measured the oxygen-isotope composition of the intrusions,their constituent minerals,and samples of the country rock.Magnetite and plagioclase from Panzhihua intrusion haveδ18O values that are consistent with magmatic equilibrium, and formed from magmas withδ18O values that were 1-2‰higher than expected in a mantle-derived magma.The unmetamorphosed country rock has highδ18O values,ranging from 13.2‰(sandstone) to 24.6-28.6‰(dolomite).The skarns and marbles from the aureole have lowerδ18O andδ13C values than their protolith suggesting interaction with fluids that were in exchange equilibrium with the adjacent mafic magmas and especially the numerous mafic dykes that intruded the aureole.This would explain the alteration ofδ18O of the dykes which have significantly higher values than expected for a mantle-derived magma.Depending on the exactδ18O values assumed for the magma and contaminant, the amount of assimilation required to produce the elevatedδ18O value of the Panzhihua intrusion was between 8 and 13.7 wt.%,assuming simple mixing.The exact mechanism of contamination is unclear but may involve a combination of assimilation of bulk country rock,mixing with a melt of the country rock and exchange with CO2-rich fluid derived from decarbonation of the marls and dolomites.These mechanisms,particularly the latter,were probably involved in the formation of the Fe-Ti-V ores.  相似文献   

5.
We suggest a generalization of the standard Chandrasekhar model for degenerate dwarfs. We apply an equation of state for a degenerate ideal electron gas in the form of a Sommerfeld expansion in the parameter k B T(r)/m 0 c 2. The radial temperature distribution T(r) is modeled taking into account the presence of the isothermal core. The model has four dimensionless parameters, two microscopic (the relativistic parameter at the stellar center x 0 and the chemical-composition parameter ?? e = A/Z) and two macroscopic (the dimensionless temperature T 0 * = k B T c /m 0 c 2 and dimensionless radius ?? 0 = R c /R of the core, where R c and R are the radii of the core and dwarf). We found x 0, ?? e , and T 0 * for about 3000 DA white dwarfs, based on their masses, radii, and effective temperatures from the Sloan Digital Sky Survey Data Release 4; ?? 0 was treated as a free parameter. The influence of temperature effects on the macroscopic characteristics is analyzed, in particular, the minimum mass and maximum radii of the stars. Based on our computed energy-radius dependence, we suggest an interpretation of the observed radius distribution for these dwarfs.  相似文献   

6.
Zou  Haifeng  Zhang  Nan  Puppala  Anand J. 《Acta Geotechnica》2019,14(6):2007-2029

Soil thermal conductivity (k) is a key parameter for the design of energy geo-structures, and it depends on many soil properties such as saturation degree, porosity, mineralogical composition, soil type and others. Capturing these diversified influencing factors in a soil thermal conductivity model is a challenging task for engineers due to the nonlinear dependencies. In this study, a multivariate distribution approach was utilized to improve an existing soil thermal conductivity model, Cote and Konrad model, by quantitatively considering the impacts of dry density (ρd), porosity (n), saturation degree (Sr), quartz content (mq), sand content (ms) and clay content (mc) on thermal conductivity of unsaturated soils. A large database containing these seven soil parameters was compiled from the literature to support the multivariate analysis. Simplified bivariate and multivariate correlations for improving the Cote and Konrad model were derived analytically and numerically to consider different influencing factors. By incorporating these simplified correlations, the predicted k values were more concentrated around the measured values with the coefficient of determination (R2) increased from 0.83 to 0.95. It is concluded that the developed correlations with the information of different soil properties provide an efficient, rational and simple way to predict soil thermal conductivity more accurately. Moreover, the quartz content is a more important factor than the porosity that shall be considered in the establishment of thermal conductivity models for unsaturated soils with high quartz content.

  相似文献   

7.
Pseudopotential orbital radii r s , r p are used to construct an index, r σ=r s +r p , which characterizes the average potential experienced by atomic valence electrons. A plot of r A σ verses r B σ for 172 chalogenide spinels (AB2X4, X=O, S, Se, Te) leads to two well defined areas, which separate normal and inverse spinels, with only four errors (a predictive success rate of 98%). The gross sorting is achieved without recourse either to the number of d-electrons or an orbital radius r d , from which it is inferred that it is the energies and extents of the cation s and p-orbitals which primarily determine coordination number in these systems. This approach to the problem of cation distribution in spinels is contrasted with the less generally applicable, traditional, crystal field ideas. The relevance of both r σ and crystal field stabilization energies to the thermodynamics of spinel reactions is also discussed.  相似文献   

8.
The two most abundant network-modifying cations in magmatic liquids are Ca2+ and Mg2+. To evaluate the influence of melt structure on exchange of Ca2+ and Mg2+ with other geochemically important divalent cations (m-cations) between coexisting minerals and melts, high-temperature (1470-1650 °C), ambient-pressure (0.1 MPa) forsterite/melt partitioning experiments were carried out in the system Mg2SiO4-CaMgSi2O6-SiO2 with ?1 wt% m-cations (Mn2+, Co2+, and Ni2+) substituting for Ca2+ and Mg2+. The bulk melt NBO/Si-range (NBO/Si: nonbridging oxygen per silicon) of melt in equilibrium with forsterite was between 1.89 and 2.74. In this NBO/Si-range, the NBO/Si(Ca) (fraction of nonbridging oxygens, NBO, that form bonds with Ca2+, Ca2+-NBO) is linearly related to NBO/Si, whereas fraction of Mg2+-NBO bonds is essentially independent of NBO/Si. For individual m-cations, rate of change of KD(m−Mg) with NBO/Si(Ca) for the exchange equilibrium, mmelt + Mgolivine ? molivine + Mgmelt, is linear. KD(m−Mg) decreases as an exponential function of increasing ionic potential, Z/r2 (Z: formal electrical charge, r: ionic radius—here calculated with oxygen in sixfold coordination around the divalent cations) of the m-cation. The enthalpy change of the exchange equilibrium, ΔH, decreases linearly with increasing Z/r2H = 261(9)-81(3)·Z/r2−2)]. From existing information on (Ca,Mg)O-SiO2 melt structure at ambient pressure, these relationships are understood by considering the exchange of divalent cations that form bonds with nonbridging oxygen in individual Qn-species in the melts. The negative ∂KD(m−Mg)/∂(Z/r2) and ∂(ΔH)/∂(Z/r2) is because increasing Z/r2 is because the cations forming bonds with nonbridging oxygen in increasingly depolymerized Qn-species where steric hindrance is decreasingly important. In other words, principles of ionic size/site mismatch commonly observed for trace and minor elements in crystals, also govern their solubility behavior in silicate melts.  相似文献   

9.
Leaky aquifers provide protected drinking water since the aquifer is overlain by an aquitard, and this study develops a method to estimate hydraulic properties of the latter deposit. Steady pumping, supply well shutdowns, and slug tests generate data in adjacent monitoring well clusters that characterize the aquitard. An existing steady model estimates a site-averaged value of the aquitard permeability k if its thickness is known, and this site-averaged estimate may be compared with local k estimates from conventional and extended slug tests. A shutdown attenuation model estimates a local value of the consolidation coefficient C V, which combines with the local k value to specify the compressibility α of the aquitard. The method is illustrated for the Fowl Meadow Aquifer, a stratified drift deposit used as a drinking water supply in eastern Massachusetts (USA), with an overlying silt aquitard of 10 m thickness. Steady data and theory suggest a site-averaged k of 2.3?×?10–17?m2 for the aquitard, while the shutdown attenuation model generates local C V values that vary from 10–5 to 10–3?m2/s. The slug tests yield a local k variation (10–17–10–13?m2) that brackets the site-averaged value, and an α range of 10–9–10–7?Pa–1.  相似文献   

10.
We have made a detailed study of the effect of cross-sectional shape on the hydraulic conductance of rock pores. We consider laminar flow through a single tube with an irregular cross-section; constriction effects, and interconnectedness of pores, will be studied in a future work. We employ three approximate methods: the hydraulic radius approximation, which attempts to correlate the conductivity with the perimeter/area ratio, the Aissen approximation, which utilises a mean value of the conductance of the largest (smallest) circles that can be inscribed (circumscribed) inside (outside) the pore, and the Saint-Venant approximation, which is based on the polar moment of inertia of the shape. The Boundary Element Method is used to provide nominally “exact” estimates of the conductivity, but at the expense of large amounts of computational time. All four methods have been tested on pore shapes from SEM (Scanning Electron Microscope) images of thin-sections of Berea and Massilon sandstone. Surprisingly, the hydraulic radius approximation is the most accurate of the three approximate methods, giving, on average, less than 1% error. Finally, we combine these methods with previous results on the effect of stress on pore deformation, to study the stress-dependence of pore conductivity.  相似文献   

11.
A new constitutive model to describe the shear behavior of rock joints under constant normal stiffness (CNS) and constant normal load (CNL) conditions is proposed. The model was developed using an empirical approach based on the results of a total of 362 direct shear tests on tensile fractured rock joints and replicas of tensile joints and on a new quantitative roughness parameter. This parameter, the active roughness coefficient C r, is derived from the features of the effective roughness mobilized at the contact areas during shearing. The model involves a shear strength criterion and the relations between stresses and displacements in the normal and shear directions, where the effects of the boundary conditions and joint properties are considered by the shape indices C d and C f. The model can be used to predict the shear behavior under CNS as well as CNL conditions. The shear behavior obtained from the experimental results is generally in good agreement with that estimated by the proposed model, and the effects of joint roughness, initial normal stress, and normal stiffness are reasonably reflected in the model.  相似文献   

12.
In sandstone, there is a trend between porosity (?) and permeability (k). It is a linear relationship having the form log (k)?=?a?+?(b ?). The slope, intercept, and degree of scatter of the log(k)???? trends vary from formation to another. These variations are attributed to differences in initial grain size and sorting, diagenetic history, cementation, clay content, pore geometry, and compaction history. In the literature, permeability and porosity modeling by using lab experiments was carried out by using unconsolidated sandstone, sand packs, or synthetic particles. Such models cannot be applied to predict flow properties of consolidated natural sandstone. Furthermore in these models, sand grain size, shape, and sorting factors were considered as the main factors that affect porosity and permeability. Hardly, any attention was paid to the confining pressure and the fraction of cementing material that bind the grain to form a coherent rock. If these two crucial aspects are not taken into consideration during the model development, the model cannot be applied to natural consolidated sandstone. The main objective of the present paper is to develop a new model for porosity versus permeability taking into account important factors such as sand grain size and sorting, compaction pressure, and concentration of cementing material that bind the sand grains. The effect for clay swelling or migration was however discarded, as the sand grains were washed prior to consolidation. The sand used in producing the sandstone cores was medium- to fine-sized well-sorted sand grains. The grain’s sphericity was measured to be in the range of (0.8–0.9) with little angularity. The fabricated cores have an average compressive strength of 5,700 psi, which is comparable with Bera sandstone strength. Also, the produced cores were stable in the fluid media as they were subjected to 300 °C to allow cementing material to be crystallized. The aspect of the present work was to analyze the dependence of both the permeability as well as the porosity on the variables of the present study that consist of grain size, cementation fraction, and the confining pressure. Using the experimental data, a linear relationship, in terms of each variable, was developed here that can eventually help researchers to fabricate cores with desired properties. The second step was to generate more general models to be used as references for scholars for further work in this research field. Nonlinear regression analysis was carried out on all the three variables of the present study to obtain two nonlinear correlations: one describes the behavior of permeability and the other describes porosity. In the third step, an advanced correlation that describes permeability versus porosity in a quantitative manner was developed by using nonlinear regression analysis. Permeability was studied accordingly as a function of all the three variables of the present study as well as porosity. This step represents the main objective of this paper.  相似文献   

13.
A precise estimate of the variation of the position of a celestial body in the case of small variations of the elements of its orbit is obtained using an Euclidean (mean-square) norm for the deviation in the position. A relatively simple expression for the mean-square deviation of the radius vector dr in terms of the deviations of the elements is derived. These are taken to be first-order small quantitites, with second-order quantities neglected. This relation is applied to estimate the norm ||dr|| in two problems. In the first one, small and constant differences between six orbital elements (including the mean anomaly) are considered for two orbits. In the second one, a zero-mass point moves under the gravitation of a central body and a small perturbing acceleration F. The vector F is taken to be constant in a co-moving coordinate system with axes directed along the radius vector, the transversal, and the binormal vector. In this latter problem, dr is the difference between the position vectors in the osculating and mean orbit. The norm ||dr||2 is the weighted sum of the squares of the components of F, neglecting higher-order small quantities. The coefficients of the quadratic form depend only on the semi-major axis and the eccentricity of the mean orbit. The results are applied to the motion of a small asteroid under the action of a low-thrust engine imparting a small force.  相似文献   

14.
This paper investigates the effect of model scale and particle size distribution on the simulated macroscopic mechanical properties, unconfined compressive strength (UCS), Young’s modulus and Poisson’s ratio, using the three-dimensional particle flow code (PFC3D). Four different maximum to minimum particle size (d max/d min) ratios, all having a continuous uniform size distribution, were considered and seven model (specimen) diameter to median particle size ratios (L/d) were studied for each d max/d min ratio. The results indicate that the coefficients of variation (COVs) of the simulated macroscopic mechanical properties using PFC3D decrease significantly as L/d increases. The results also indicate that the simulated mechanical properties using PFC3D show much lower COVs than those in PFC2D at all model scales. The average simulated UCS and Young’s modulus using the default PFC3D procedure keep increasing with larger L/d, although the rate of increase decreases with larger L/d. This is mainly caused by the decrease of model porosity with larger L/d associated with the default PFC3D method and the better balanced contact force chains at larger L/d. After the effect of model porosity is eliminated, the results on the net model scale effect indicate that the average simulated UCS still increases with larger L/d but the rate is much smaller, the average simulated Young’s modulus decreases with larger L/d instead, and the average simulated Poisson’s ratio versus L/d relationship remains about the same. Particle size distribution also affects the simulated macroscopic mechanical properties, larger d max/d min leading to greater average simulated UCS and Young’s modulus and smaller average simulated Poisson’s ratio, and the changing rates become smaller at larger d max/d min. This study shows that it is important to properly consider the effect of model scale and particle size distribution in PFC3D simulations.  相似文献   

15.
A review of coupled groundwater and heat transfer theory is followed by an introduction to geothermal measurement techniques. Thereafter, temperature-depth profiles (geotherms) and heat discharge at springs to infer hydraulic parameters and processes are discussed. Several studies included in this review state that minimum permeabilities of approximately 5?×?10?17?<?k min <10?15?m2 are required to observe advective heat transfer and resultant geotherm perturbations. Permeabilities below k min tend to cause heat-conduction-dominated systems, precluding inversion of temperature fields for groundwater flow patterns and constraint of permeabilities other than being <k min. Values of k min depend on the flow-domain aspect-ratio, faults and other heterogeneities, anisotropy of hydraulic and thermal parameters, heat-flow rates, and the water-table shape. However, the k min range is narrow and located toward the lower third of geologic materials, which exhibit permeabilities of 10?21?<?k?<?10?7?m2. Therefore, a wide range of permeabilities can be investigated by analyzing subsurface temperatures or heat discharge at springs. Furthermore, temperature is easy and economical to measure and because thermal material properties vary far less than hydraulic properties, temperature measurements tend to provide better-constrained groundwater flow and permeability estimates. Aside from hydrogeologic insights, constraint of advective/conductive heat transfer can also provide information on magmatic intrusions, metamorphism, ore deposits, climate variability, and geothermal energy.  相似文献   

16.
Zhou  Jian  Luo  Ling-Hui  Yu  Liang-Gui  Nangulama  Horris 《Acta Geotechnica》2020,15(12):3357-3370

The hydraulic conductivity k, one of the most important engineering properties of soft clay, plays a great role during the whole life cycle of underwater tunnel. Therefore, it is necessary to systematically study the responses of k to the dynamic load under the background of the great development of geotechnical engineering in the world. In this study, a series of seepage tests after cyclic loading were conducted on reconstituted kaolin clay using a modified hollow cylinder apparatus. The influence of cyclic load on the permeability characteristics of soft clay was illustrated in two aspects. The cumulative axial deformation of clay induced by cyclic loading resulted in the smaller hydraulic conductivity of the specimens, and also, the dynamic load reconstructed the microstructure of clay and made the number of large pores getting decreased and the small pores increased. There was a positive correlation between the deformation of soil and the change of hydraulic conductivity, but the reconstruction effect was irregular with the frequency of dynamic load. The measured k values got affected at the beginning, this phenomenon appropriately explains the positive correlation between the number of cycles of dynamic load and the change of hydraulic conductivity.

  相似文献   

17.
In 1967, the US Geological Survey (USGS) published the results of 141 pumping tests carried out throughout the Pakistani Punjab to establish representative hydraulic parameters of its large aquifer. Many authors have since concluded that the USGS had over-estimated the horizontal hydraulic conductivity (k r) by 25–100 %, leaving vertical anisotropy and aquifer depth unresolved. No test wells have ever been drilled below 450 m to reach the base of the aquifer, although petroleum explorations mention depths between 1,500 and 4,500 m. After comparison and re-evaluation of all related papers, this study concludes that the USGS interpretation was correct, that its hydraulic values still stand without change, and that the USGS’s applied distance drawdown interpretation is valid to prevent influence of partial penetration on the results. This study also uniquely resolved vertical anisotropy and aquifer thickness by using early- and late-time drawdowns separately and proper scaling of the coordinates, which has often been omitted. With appropriate scaling, all interpretations match the data. The representative hydraulic aquifer values are: k r?=?65 m/d, vertical anisotropy k r/k z?=?25 and aquifer depth 500–1,500 m. The conclusion is that these values can be used, at least as first estimates, for groundwater studies in the Pakistani Punjab.  相似文献   

18.
A simple and inexpensive sampler to measure bedload sediment transport in shallow subtidal or intertidal areas is described. The cylindrical sub-sediment trap with an aspect ratio of 20 (height: diameter) is an improvement over conventional bedload samplers which are difficult to use in shallow areas or fail to collect the biological material associated with bedload. Traps deployed on a low-energy intertidal sandflat for six months provided daily estimates of bedload transport (quartz grains: 0.001–40 kg m?1 d?1), passive infaunal transport (e.g., the bivalveMya arenaria, max: 800 ind m?1 d?1), and organic detrital flux (e.g., macrophyte fragments, max: 400 g dry wt m?1 d?1). Bedload rates estimated with traps were compared to predictions from a numerical bedload model to evaluate the trap’s collection and retention efficiency. A significant linear regression between observed (trap) and predicted (model) rates (r2=0.65, p<0.001, n=97) indicated that the traps were useful for the measurement of high- and low-frequency variability in bedload transport. Potential applications of the traps in benthic oceanography include recruitment and recolonization studies.  相似文献   

19.
Lakes worldwide are commonly oversaturated with CO2, however the source of this CO2 oversaturation is not well understood. To examine the magnitude of the C flux to the atmosphere and determine if an excess of respiration (R) over gross primary production (GPP) is sufficient to account for this C flux, metabolic parameters and stable isotopes of dissolved O2 and C were measured in 23 Québec lakes. All of the lakes sampled were oversaturated with CO2 over the sampling period, on average 221 ± 25%. However, little evidence was found to conclude that this CO2 oversaturation was the result of an excess of pelagic R over GPP. In lakes Croche and à l’Ours, where CO2 flux, R and GPP were measured weekly, the annual difference between pelagic GPP and R, or net primary production (NPP), was not sufficient to account for the size of the CO2 flux to the atmosphere. In Lac Croche average annual NPP was 14.4 mg C m−2 d−1 while the average annual flux of CO2 to the atmosphere was 34 mg C m−2 d−1. In Lac à l’Ours average annual NPP was −9.1 mg C m−2 d−1 while the average annual flux of CO2 to the atmosphere was 55 mg C m−2 d−1. In all of the lakes sampled, O2 saturation averaged 104.0 ± 1.7% during the ice-free season and the isotopic composition of dissolved O218ODO) was 22.9 ± 0.3‰, lower than atmospheric values and indicative of net autotrophy. Carbon evasion was not a function of R, nor did the isotopic signature of dissolved CO2 in the lakes present evidence of excess R over GPP. External inputs of C must therefore subsidize the lake to explain the continued CO2 oversaturation. The isotopic composition of dissolved inorganic C (δ13CDIC) indicates that the CO2 oversaturation cannot be attributed to in situ aerobic respiration. δ13CDIC reveals a source of excess C enriched in 13C, which may be accounted for by anaerobic sediment respiration or groundwater inputs followed by kinetic isotope fractionation during degassing under open system conditions.  相似文献   

20.
In the underground waste isolation projects such as the ANDRA'one in the site of Bure, the transport properties of the surrounding rock mass is of fundamental importance. To measure very low permeability, we use the modified version of the pulse test proposed by Hsieh et al. [Hsieh, P.A., Tracy, J.V., Neuzil, C.E., Bredehoeft, J.D., Silliman, S.E., 1981. A transient laboratory method for determining the hydraulic properties of ‘tight’ rocks — I. Theory. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. Vol. 18, pp. 245-252] which enables the intrinsic permeability, k, and the specific storage coefficient, Ss, of rocks such as mudstone to be characterized. In this paper, the special effort performed on the laboratory apparatus design, to ensure a good sensitivity of the rock response with respect to both parameters, k and Ss, is presented. In addition, two parameters identification procedures are proposed: the graphical method given by Hsieh et al. [Hsieh, P.A., Tracy, J.V., Neuzil, C.E., Bredehoeft, J.D., Silliman, S.E., 1981. A transient laboratory method for determining the hydraulic properties of ‘tight’ rocks — I. Theory. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. Vol. 18, pp. 245-252] and a parameter identification based on the solution of an inverse problem. The efficiency of the apparatus design and the parameters identification procedures is then demonstrated though some pulse tests performed on the Meuse/Haute-Marne mudstone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号