首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Groundwater resources in the North China Plain (NCP) are undergoing tremendous changes in response to the operation of groundwater exploitation reduction (GWER) project. To identify groundwater evolution in this complex context, hierarchical cluster analysis (HCA) and principal component analysis (PCA) were combined to interpret an integrated dataset of stable isotopes and chemical data from four sampling campaigns in a pilot area of groundwater control. We proposed a novel HCA approach integrating stable isotopes and chemical signals, which successfully partitioned the groundwater samples into the unconfined and the confined water samples. Stable isotopic evidence showed that the lateral inflow and the surface water may contribute more to groundwater recharge in this region than local modern precipitation. The unconfined water’s main hydrochemical types were Na type with mixed anions, and Na–Cl–SO4 type, while the confined water was mainly Na–Cl and Na–SO4 types. Geochemical processes mainly involved the dissolution/precipitation of halite, gypsum, Glauber's salt, feldspar, calcite and dolomite, as well as the cation exchange. PCA results showed that water–rock interaction (i.e., salinity-based and alkalinity-based processes) predominated the hydrochemical evolution, along with local nitrate contamination resulting from fertilizers and domestic sewage. The GWER project regulated the natural evolution of unconfined water chemistry, and significantly reduced the unconfined water’s salinity (mainly Na+, Mg2+, SO42?). This may be attributed to upward leakage from low-salinity confined water at some parts of the aquifer. Additionally, insignificant changes in the confined water’s salinity reflected that the impact of GWER on the confined aquifer was negligible. This study facilitates the groundwater classification effectively in the areas lack of geological data, and enhances the knowledge of groundwater chemical evolution in such a region where groundwater restoration is in progress, with important implications for groundwater sustainable management in similar basins worldwide.  相似文献   

2.
 An early indication of groundwater contamination occurs when pollutant concentrations start to fluctuate and exceed background values of ambient fresh groundwater. An analysis of a characteristic situation of this type uses data from Israel's coastal phreatic granular aquifer. The pollutant is generally seawater, and the contamination process involves replacement of freshwater by encroaching sea- or other saltwater, a process augmented by human activity. The contamination process involves three stages: (1) groundwater composition remains relatively stable with small salinity content; (2) small salinity changes are perceptible with reversible fluctuations; and (3) salinity concentration increases at a sharply higher rate. The second stage is a useful early-indicator signal of contamination. Early-indicator signals of groundwater pollutant concentrations involve "minor" fluctuations in water chemistry at the advent of the contamination process. The intensity and magnitude of such a salinization/pollution process at any given location depends upon lithologic matrix, aquifer heterogeneity, and resultant flow domain characteristics, as well as contaminant properties. If such "signs" are detected at a sufficiently early stage, appropriate management steps may be taken to rectify further seawater and/or saltwater encroachment. Received: 23 July 1996 · Accepted: 25 June 1997  相似文献   

3.
Drilling information, historical water table levels, groundwater salinity records of the existing water wells in Wadi Al Bih area, United Arab Emirates, were stored in a geodatabase and used to characterize the geological and hydrogeological settings of this area. A 2D earth resistivity imaging survey was conducted for the first time in the Northern UAE to determine the potential of the Quaternary aquifer and its groundwater quality in the areas where there are no monitoring wells. The results of the chemical analyses of the collected groundwater samples together with the inversion results of the resistivity data were used to draw a total salinity map and determine the spatial variations in groundwater quality. The inversion results of the 2D earth resistivity imaging data indicated that the Quaternary aquifer in the study area is in a good connection with the underlying carbonate aquifer. It also indicated that the carbonate aquifer is of major regional and vertical extension and it contains the fresh water in this area. The data stored in the developed database were used to produce different types of geopotential maps.  相似文献   

4.
A FEFLOW three-dimensional (3D) groundwater model is developed to enhance the understanding of groundwater processes in the complex alluvial stratigraphy of Maules Creek Catchment (New South Wales, Australia). The aquifer vertical heterogeneity is replicated by indexing 204 lithological logs into units of high or low hydraulic conductivity, and by developing a 3D geological conceptual model with a vertical resolution based on the average lithological unit thickness for the region. The model mesh is populated with the indexed geology using nearest neighbour gridding. The calibrated model is successful in simulating the observed flow dynamics and in quantifying the important water-budget components. This indicates that the lateral groundwater flow from the mountainous region is the main inflow component of the system. Under natural conditions, the Namoi River acts as a sink of water, but groundwater abstraction increasingly removes a large amount of water each year causing dewatering of the system. The pumping condition affects the river–aquifer interaction by reversing the flow, from gaining to losing river conditions during the simulation period. The procedure is relevant for the development of groundwater models of heterogeneous systems in order to improve the understanding of the interplay between aquifer architecture and groundwater processes.  相似文献   

5.
The use of isotope tracers as a tool for assessing aquifer responses to intensive exploitation is demonstrated and used to attain a better understanding of the sustainability of intensively exploited aquifers in the North China Plain. Eleven well sites were selected that have long-term (years 1985–2014) analysis data of isotopic tracers. The stable isotopes δ18O and δ2H and hydrochemistry were used to understand the hydrodynamic responses of the aquifer system, including unconfined and confined aquifers, to groundwater abstraction. The time series data of 14C activity were also used to assess groundwater age, thereby contributing to an understanding of groundwater sustainability and aquifer depletion. Enrichment of the heavy oxygen isotope (18O) and elevated concentrations of chloride, sulfate, and nitrate were found in groundwater abstracted from the unconfined aquifer, which suggests that intensive exploitation might induce the potential for aquifer contamination. The time series data of 14C activity showed an increase of groundwater age with exploitation of the confined parts of the aquifer system, which indicates that a larger fraction of old water has been exploited over time, and that the groundwater from the deep aquifer has been mined. The current water demand exceeds the sustainable production capabilities of the aquifer system in the North China Plain. Some measures must be taken to ensure major cuts in groundwater withdrawals from the aquifers after a long period of depletion.  相似文献   

6.
The Gravity Recovery and Climate Experiment (GRACE) satellite mission is aimed at assessment of groundwater storage under different terrestrial conditions. The main objective of the presented study is to highlight the significance of aquifer complexity to improve the performance of GRACE in monitoring groundwater. Vidarbha region of Maharashtra, central India, was selected as the study area for analysis, since the region comprises a simple aquifer system in the western region and a complex aquifer system in the eastern region. Groundwater-level-trend analyses of the different aquifer systems and spatial and temporal variation of the terrestrial water storage anomaly were studied to understand the groundwater scenario. GRACE and its field application involve selecting four pixels from the GRACE output with different aquifer systems, where each GRACE pixel encompasses 50–90 monitoring wells. Groundwater storage anomalies (GWSA) are derived for each pixel for the period 2002 to 2015 using the Release 05 (RL05) monthly GRACE gravity models and the Global Land Data Assimilation System (GLDAS) land-surface models (GWSAGRACE) as well as the actual field data (GWSAActual). Correlation analysis between GWSAGRACE and GWSAActual was performed using linear regression. The Pearson and Spearman methods show that the performance of GRACE is good in the region with simple aquifers; however, performance is poorer in the region with multiple aquifer systems. The study highlights the importance of incorporating the sensitivity of GRACE in estimation of groundwater storage in complex aquifer systems in future studies.  相似文献   

7.
Environmental problems of groundwater contamination in the Gaza Strip are summarized in this paper. The Gaza Strip is a very narrow and highly populated area along the coast of the Mediterranean Sea (360 km2). Human activities greatly threaten the groundwater resources in the area, while the unconfined nature of some parts of the coastal main aquifer favors groundwater contamination. Recent investigations show contamination of the aquifer with organic substances from detergents, agrochemicals, sewage (cesspools), and waste degradation. These effects enhance each other because there is no recycling industry, sewage system, or any type of environmental protection management at present. Inorganic contamination results from overpumping, which increases the salinity of the groundwater. Seawater intrusion also increases the salinity of the groundwater that are used for drinking and agricultural purposes. Consequently, at present about 80 percent of the groundwater in the Gaza Strip is unfit for both human and animal consumption. Solutions are very urgently needed for these problems in order to prevent the spread of dangerous diseases.  相似文献   

8.
Source of salinity in the groundwater of Lenjanat Plain,Isfahan, Iran   总被引:1,自引:1,他引:0  
The present study aimed at identifying the salinity source in the groundwater of Lenjanat Plain. To do so, non-isotopic geochemical methods were employed: groundwater samples were collected seasonally from 33 wells widespread in the area, and physicochemical parameters as well as major and minor elements were measured in the 132 samples. The data collected from the field and laboratory measurements were interpreted through statistical and hydrogeochemical graphs, mass ratios and saturation indexes obtained from modeling. The results revealed that hydrogeochemical properties of the study aquifer were controlled by rock/water interactions including ion exchange, dissolution of evaporation deposits (halite and gypsum) and precipitation/dissolution of carbonates. Based on the values of Cl/Br ratio in Lenjanat groundwater (329–4,492), dissolution of evaporation deposits in aquifer was the main cause for groundwater salinity. Considering the Lenjanat groundwater geochemical properties, the data confirm the reported Cl/Br ratios for groundwater affected by the dissolution of evaporation deposits (Cl/Br > 300) and overlaps with the range of Cl/Br ratios for domestic sewage effluent groundwater. Selecting the best chemical components and their ratios in non-isotopic geochemical methods provides an accurate distinction between sources of groundwater salinity.  相似文献   

9.
The Janah alluvial aquifer is located in southern Iran with an arid climate. The type of groundwater in this aquifer is dominantly of sodium chloride and total dissolved solid of groundwater samples range from 1.63 to 335 g/L which confirms that groundwater quality has been severely degraded by salinization. Hydrogeochemical and isotopic investigations were conducted to identify the source of salinity. Total dissolved solids and major ion concentrations were measured at 51 selected sampling sites including springs, wells and surface waters. In addition stable isotopic composition (oxygen-18 and deuterium) was measured in 6 sampling points.The study indicates that the sources of salinity of the Janah aquifer include dissolution of salt diapir and evaporite rocks, a geothermal spring and intrusion of the river water which function individually or together in different parts of the aquifer. Based on the hydrogeochemical and geological studies conceptual flow models were prepared for different parts of the aquifer which illustrate how each source of salinity deteriorates the quality of the alluvial aquifer. We proposed few remediation methods including construction of cemented channel and sealed basins to improve groundwater quality. These methods would prevent infiltration of low quality water into the alluvial aquifer.  相似文献   

10.
Temporal changes in the quantity and chemical status of groundwater resources must be accurately quantified to aid sustainable management of aquifers. Monitoring data show that the groundwater level in Shahrood alluvial aquifer, northeastern Iran, continuously declined from 1993 to 2009, falling 11.4 m in 16 years. This constitutes a loss of 216 million m3 from the aquifer’s stored groundwater reserve. Overexploitation and reduction in rainfall intensified the declining trend. In contrast, the reduced abstraction rate, the result of reduced borehole productivity (related to the reduction in saturated-zone thickness over time), slowed down the declining trend. Groundwater salinity varied substantially showing a minor rising trend. For the same 16-year period, increases were recorded in the order of 24% for electrical conductivity, 12.4% for major ions, and 9.9% for pH. This research shows that the groundwater-level declining trend was not interrupted by fluctuation in rainfall and it does not necessarily lead to water-quality deterioration. Water-level drop is greater near the aquifer’s recharging boundary, while greater rates of salinity rise occur around the end of groundwater flow lines. Also, fresher groundwater experiences a greater rate of salinity increase. These findings are of significance for predicting the groundwater level and salinity of exhausted aquifers.  相似文献   

11.
Solutes in saline groundwater (total dissolved solids up to 37 000 mg/L) in the Lake Cooper region in the southern margin of the Riverine Province of the Murray Basin are derived by evapotranspiration of rainfall with minor silicate, carbonate and halite dissolution. The distribution of hydraulic heads, salinity, percentage modern carbon (pmc) contents, and Cl/Br ratios imply that the groundwater system is complex with vertical flow superimposed on lateral flow away from the basin margins. Similarities in major ion composition, stable (O, H, and C) isotope, and 87Sr/86Sr ratios between groundwater from the shallower Shepparton Formation and the deeper Calivil – Renmark aquifer also imply that these aquifers are hydraulically interconnected. Groundwater in the deeper Calivil – Renmark aquifer in the Lake Cooper region has residence times of up to 25 000 years, implying that pre-land-clearing recharge rates were <1 mm/y. As in other regions of the Murray Basin, the low recharge rates account for the occurrence of high-salinity groundwater. Shallow (<20 m) groundwater yields exclusively modern 14C ages and shows a greater influence of evaporation over transpiration. Both these observations reflect the rise of the regional water-table following land clearing over the last 200 years and a subsequent increase in recharge to 10 – 20 mm/y. The rise of the regional water-table also has increased vertical and horizontal hydraulic gradients that may ultimately lead to the export of salt from the Lake Cooper embayment into the adjacent fresher groundwater resources.  相似文献   

12.
In central Turkey, there are serious groundwater quality problems in the main river valleys and plains, and even in the lower parts of the secondary basins due to the underlying evaporitic geological formations. Groundwater quality improves towards the upstreams in the alluvium aquifers in most secondary valleys; however, groundwater potential decreases as well due to the reduced basin area, areal extent and thickness of the aquifers. The Malibogazi valley is situated to some 100 km north of Ankara. The dam constructed in the narrowest section of the valley has an average storage coefficient of 0.2 and the total and active storage capacities of 110,000 and 55,000 m3, respectively. The 20-m-thick aquifer extends for 6–7 km till the dam site within valley with an average width of 50–70 m. It mostly comprises sandy–gravely alluvial deposits. Malibogazi groundwater dam is a valve-controlled gravity flow dam. When the valves are opened, the water from the aquifer reservoir flows by gravity through supply pipe to the main irrigation channel, but when the valves are closed the water is stored in the aquifer and groundwater level begins to rise. Average groundwater discharge was about 20 l/s in 2005–2006 irrigation period. In this period, groundwater levels were about 2 m higher compared to the groundwater levels in the same seasons before the construction of the groundwater dam. Because the dam is of gravity flow type, it means an important contribution to the farmers since the operation cost is quite low. Malibogazi groundwater dam represents one of the first experiences of Turkey in the field of groundwater storage. Although the dam has small storage capacity, it may be a model for Turkey from the viewpoints of investigation, construction, dam wall, intake facility and measurements etc.  相似文献   

13.
The water resources of the Essaouira coastal basin (west of Marrakesh) are characteristic of a semi-arid climate and are severely impacted by the climate in terms of quantity and quality. Considering the importance of the Essaouira aquifer in the groundwater supply of a vast region (nearly 1,200 km2), a research study was conducted in order to better understand groundwater evolution in this aquifer system. It is a coastal aquifer located on the Atlantic coastline, southern Morocco, and salinization problems have been reported. Covering the Palaeozoic bedrock, the sedimentary series range from the Triassic to the Quaternary. Besides the possibility of seawater intrusion problems, the geological structures delineate a syncline bordered by the Tidzi diapir (of Triassic age) outcropping to the east and south. This is a recharge area for the aquifer, whereas the main groundwater flow direction is from SE to NW towards the Atlantic Ocean. In spite of the occurrence of calcareous and dolomitic levels, all waters in the Essaouira basin are of the Na–Cl-type. Based on a range of experimental methodologies, combined with PCA and geochemical modelling, it was possible to identify the mineralization processes occurring in the groundwater system, and the importance of the water–rock interaction in the water chemistry. Scenarios were tested using a simple mass balance model through the PHREEQC programme. The reaction path was assumed to be such that waters observed at shallow depths evolved to more mineralized waters. An important contribution of water–rock interaction in groundwater mineralization was found, corroborating the influence of preferential recharge from the Tidzi diapir in the water’s signature. Anthropogenic contamination was also identified and could lead to serious problems with groundwater degradation in the near future, in a country with scarce water resources.  相似文献   

14.
The frequent appearance of some hydro-environmental hazard features, such as waterlogging and soil salinization along the susceptible zones at Northwest Sinai area (NWSA), has put serious challenges and obstacles for a correct and efficient land use planning of this region, for several decades. Although previous studies have shown that the whole region of Northern Sinai is greatly affected by the tectonic movements associated with the Syrian Arc folding system (SAS), NWSA is barren of any obvious surficial structures. The current work aims to investigate the effect of subsurface tectonic features on the hydrogeologic regime of NWSA.Hydrogeological and remote sensing data were integrated with ground geophysical gravity and magnetic measurements, using the geographic information system. Data integration asserts the role played by buried tectonic features not only in governing the landforms of the upper water-bearing quaternary formations but also in controlling their flow regime.Two major subsurface structures were identified through interpreting the geophysical measurements. A buried dome-like structure, dominating the central part of the mapped area, coincides with the radial flow pattern observed on the water table map. At the southwestern corner of the study area, an elevated groundwater level, caused by continuous groundwater accumulation at the discharge boundary, is superimposing a subsurface block-faulted depression. The waterlogging features (saturation of the soil by groundwater and inundation of local depressions due to rising of water table) dominating the discharge lowlands of NWSA support the conclusion that a buried block-faulted structure exerts a strong influence on the thickness and groundwater flow regime of the shallow quaternary aquifer.  相似文献   

15.
The Beypazari region in NW Anatolia (Turkey) is characterized by high water demand and stress on available water resources. Tectonic structures control the groundwater flow, hydraulic head and well yield in the study area, which is located in the central part of the Beypazari Neogen basin. The impact of major tectonic structures on groundwater flow in the Cakiloba-Karadoruk aquifer is described. This aquifer is of sedimentary composition and underwent tectonic deformation, post-Miocene, forming northeast-striking asymmetric synclines, anticlines, monoclines, high-angle reverse faults and N–S striking tensional faults. Some of these structures affect groundwater flow by separating the aquifer system into sub-compartments, each having unique recharge, boundary and flow conditions. The groundwater system is compartmentalized into three sub-systems under the impacts of the Zaviye and Kanliceviz faults: (1) Arisekisi, (2) Elmabeli and (3) Southern sub-systems. The southern part of the Arisekisi sub-system and the Southern sub-system are characterized by a syncline and the aquifer is confined in the central part of the syncline. The Elmabeli sub-system has unconfined conditions. Consequently, the effects of tectonic structures are shown to be important for selecting well locations, evaluating groundwater use, groundwater management, and contaminant control in the study area, and also in other tectonic regions.  相似文献   

16.
Agua Amarga coastal aquifer in southern Spain has been the subject of chemical and physical measurements since May 2008 in order to monitor the potential effects of water withdrawal for the Alicante desalination plants on the salt marsh linked to the aquifer. Electrical conductivity contour maps and depth profiles, piezometric-head contour maps, hydrochemical analyses, isotopic characterizations and temperature depth profiles show not only the saltwater intrusion caused by water abstraction, but also the presence of a pronounced convective density-driven flow below the salt marsh; this flow was a consequence of saltwork activity in the early 1900s which generated saline groundwater contamination. The influence of a seawater recharge programme, carried out over the salt marsh in 2009–2010, on the diminishing groundwater salinity and the recovery of groundwater levels is also studied. Based on collected field data, the project provides a deeper understanding of how these successive anthropogenic interventions have modified flow and mixing processes in Agua Amarga aquifer.  相似文献   

17.
河北平原地下水14C年龄新认识   总被引:4,自引:0,他引:4  
本文对河北平原第四系地下水14C年龄最新的结果进行了分析,得出如下认识:(1)垂向上,地下水的14C年龄随深度的增加而增大,或者沿地下水的流向而增大。但是,在同一孔组中,地下水埋深大于300m时出现了混乱现象。地下水14C年龄不但不增大,反而减小,其原因复杂;(2)水平方向上,第三含水组Q2地下水较老的年龄出现在河北平原中部,大致与子牙河方向一致,而第四含水组Q1地下水较老的年龄则呈北东东方向展布,即沧州—歧口一线分布,可能是地质结构影响所致。  相似文献   

18.
This paper focuses on a small back-barrier sand-island on the southeast coast of Queensland. The freshwater lens in the study area exhibits anomalously high short-range salinity gradients at shallow depths, which cannot be explained using a standard seawater intrusion model. The island groundwater system consists of two aquifers: a semiconfined aquifer hosting saline to hypersaline groundwater and an overlying unconfined freshwater aquifer. The deeper aquifer is semiconfined within an incised paleovalley, and groundwater flow is restricted to an east – west direction. Tidal response observations show that the tidal signal propagates far more rapidly and is of much higher magnitude in the semiconfined aquifer than the unconfined aquifer. The tidal wave-pulse amplitude is also subject to greater attenuation in the unconfined aquifer. A conceptual hydrogeological model illustrates how upwelling of hypersaline groundwater, induced by density-dependent flow and tidal pumping, has contaminated the shallow groundwater resource. Salinisation at shallow depths is restricted to an area proximal to the paleovalley aquifer. The spatial distribution of lithological heterogeneity is an initial limiting control on the movement of the upwelling saline plume. The extent of shallow groundwater contamination is also limited by the presence of a baroclinic field, resulting from lateral variations in fluid density. Hydrochemical signatures have been used to support the model hypothesis and link the salinisation of fresh groundwater with the semiconfined aquifer as opposed to the surrounding estuarine surface water. The geometry and thickness of the freshwater lens are further controlled by the presence of the largely impermeable bedrock paleosurface between 9 and 12 m depth. The combination of hypersaline groundwater and hydraulically restrictive lithology at shallow depths has produced excessive thinning of the freshwater lens, demonstrating that the application of a model such as the Dupuit – Ghyben – Herzberg relationship would grossly overestimate the available groundwater resource.  相似文献   

19.
天津平原地下水可开采量与确定依据   总被引:4,自引:0,他引:4       下载免费PDF全文
根据深层地下水开采对地面沉降的影响比较,天津中部平原和滨海平原第二、三含水层组深层地下水开采对地面沉降影响较小,为适宜开采层位。地面沉降控制在10 mm/a,第二、三含水层组深层地下水可开采量为2.68亿m3/a。中部平原浅层地下淡水、微咸水,在技术经济上鼓励开采,可开采量为1.64亿m3/a;山前平原地下水现状开采强度未引起明显的环境地质问题,开采强度适当,可开采量为2.79亿m3/a。天津平原生态环境保持良好,地下水总的可开采量为7.11亿m3/a。  相似文献   

20.
The main results that derived from this study is the quantitative determination of subsurface water balance and the water loses along flow line during drought decade (before 2000–2009), with intense exploitation of groundwater from water wells. The hydrogeological data are presented as spatial distribution maps and three dimensional models. The results are correlated with the main hydrogeologic control points including (storage and transmissivity coefficients, groundwater depths, aquifers thickness, lateral extensions, well productivity) to determine the preferable hydrogeologic districts for development and exploitations, avoiding groundwater depletion as captured zone flow. Based on the isotope analysis of deuterium, oxygen-18, tritium, carbon-13, and carbon-14, the recharge of the aquifer is originated to direct infiltration of atmospheric water through exposure outcrops within Hauran catchments area. The isotope compositions also show that the groundwater is a mixture of an old groundwater with modern recharge in the areas adjacent to Rutba. The fact that the Mullusi aquifer is of major importance as the water supply of people in Rutba region, particularly, for increasing demand of water resources and sustainability assessment in the future, this study developed a reliable strategic suggested plan in groundwater supply, based on groundwater exploitation and amount of safe yield within Dhabaa basin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号