首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Sergeev  V. A.  Bikkuzina  G. R.  Newell  P. T. 《Annales Geophysicae》1997,15(10):1233-1245
Recently it has been shown that isotropic precipitation of energetic protons on the nightside is caused by a non-adiabatic effect, namely pitch-angle scattering of protons in curved magnetic field lines of the tail current sheet. Here we address the origin of isotropic proton precipitation on the dayside. Computations of proton scattering regions in the magnetopheric models T87, T89 and T95 reveal two regions which contribute to the isotropic precipitation. The first is the region of weak magnetic field in the outer cusp which provides the 1–2° wide isotropic precipitation on closed field lines in a 2–3 hour wide MLT sector centered on noon. A second zone is formed by the scattering on the closed field lines which cross the nightside equatorial region near the magnetopause which provides isotropic precipitation starting 1.5–2 h MLT from noon and which joins smoothly the precipitation coming from the tail current sheet. We also analyzed the isotropic proton precipitation using observations of NOAA low altitude polar spacecraft. We find that isotropic precipitation of >30 to > 80 keV protons continues around noon forming the continuous oval-shaped region of isotropic precipitation. Part of this region lies on open field lines in the region of cusp-like or mantle precipitation, its equatorward part is observed on closed field lines. Near noon it extends 1–2° below the sharp boundary of solar electron fluxes (proxy of the open/closed field line boundary) and equatorward of the cusp-like auroral precipitation. The observed energy dispersion of its equatorward boundary (isotropic boundary) agrees with model predictions of expected particle scattering in the regions of weak and highly curved magnetic field. We also found some disagreement with model computations. We did not observe the predicted split of the isotropic precipitation region into separate nightside and dayside isotropic zones. Also, the oval-like shape of the isotropic boundary has a symmetry line in 10–12 MLT sector, which with increasing activity rotates toward dawn while the latitude of isotropic boundary is decreasing. Our conclusion is that for both dayside and nightside the isotropic boundary location is basically controlled by the magnetospheric magnetic field, and therefore the isotropic boundaries can be used as a tool to probe the magnetospheric configuration in different external conditions and at different activity levels.  相似文献   

2.
The response of the dayside ionospheric flow to a sharp change in the direction of the interplanetary magnetic field (IMF) measured by the WIND spacecraft from negative Bz and positive By, to positive Bz and small By, has been studied using SuperDARN radar, DMSP satellite, and ground magnetometer data. In response to the IMF change, the flow underwent a transition from a distorted twin-cell flow involving antisunward flow over the polar cap, to a multi-cell flow involving a region of sunward flow at high latitudes near noon. The radar data have been studied at the highest time resolution available (2 min) to determine how this transition took place. It is found that the dayside flow responded promptly to the change in the IMF, with changes in radar and magnetic data starting within a few minutes of the estimated time at which the effects could first have reached the dayside ionosphere. The data also indicate that sunward flows appeared promptly at the start of the flow change (within 2 min), localised initially in a small region near noon at the equatorward edge of the radar backscatter band. Subsequently the region occupied by these flows expanded rapidly east-west and poleward, over intervals of 7 and 14 min respectively, to cover a region at least 2 h wide in local time and 5° in latitude, before rapid evolution ceased in the noon sector. In the lower latitude dusk sector the evolution extended for a further 6 min before quasi-steady conditions again prevailed within the field-of-view. Overall, these observations are shown to be in close conformity with expectations based on prior theoretical discussion, except for the very prompt appearance of sunward flows after the onset of the flow change.  相似文献   

3.
This study presents cross-sectional vector maps of the magnetic field derived from IMP 8 magnetometer in the magnetosheath at 30 Re behind the Earth. In addition the vector patterns of the magnetosheath field for northward, southward, and east-west interplanetary magnetic field (IMF) directions are qualitatively compared with those obtained from the Spreiter-Stahara gas dynamic (GD) and Fedder-Lyon magnetohydrodynamic models (MHD). The main purpose is to display the cross-sectional differences in relation to the dayside merging with different IMF directions, allowing the reader to make direct visual comparisons of the vector patterns. It is seen that for east-west IMF directions, the data-based and MHD-based patterns differ noticeably in a similar way from the GD model, presumably reflecting the influence of dayside magnetic merging of the Earths magnetic field with the y-component of the interplanetary magnetic field. All three northward IMF cross sections show comparable field draping patterns as expected for a closed magnetosphere. For southward IMF case, on the other hand, differences between the three cross-sectional patterns are greater as seen in the field vector sizes and directions, especially closer to the magnetopause where more disturbed magneto-spheric conditions are known to be exist. The data comparisons with the MHD and GD models show that the differences result from the magnetic field-flow coupling and that the effects of dayside reconnection are present in IMP 8 magnetic field measurements.  相似文献   

4.
Summary On the dayside of the Earth, a huge current system, the so-called equatorial electrojet, flows along the magnetic dip equator in the ionosphere, mainly in easterly direction. At the surface of the Earth it generates strong variations of the geomagnetic field which severely impair marine geomagnetic measurements. Independent of its changing intensity, the position of the current system is remarkably constant.For marine geomagnetic measurements in the South China Sea and the Sulu Sea the latitude dependence of the variations was determined from the data themselves, using an appropriate functional relation. By a digital filter it was taken into consideration that the slowly changing parts are less latitude-dependent. Thus, with one recording station, it was possible to reduce the variations to only 15% of their original size for distances up to 500 km.Using the comprehensive data set of two research cruises into the Dangerous Grounds area of the South China Sea, it is shown which statements on the structure of the crust are possible with the corrected data.
Die Reduktion erdmagnetischer Messungen auf See in der Nähe des magnetischen Äquators
Zusammenfassung Entlang des magnetischen Inklinations-Äquators fließt auf der Tagseite der Erde in der Ionosphäre ein riesiges Stromsystem, der sogenannte Äquatoriale Elektroje. Es erzeugt an der Erdoberfläche starke zeitliche Veränderungen des erdmagnetischen Feldes, die seemagnetische Vermessungen erheblich beeinträchtigen. Die Lage des Stromsystems ist auch bei wechselnden Stromstärken bemerkenswert konstant. Für seemagnetische Messungen im Südchinesischen Meer wurde die Breitenabhängigkeit der Variationen unter Benutzung eines geeigneten Funktionsansatzes aus den Daten selbst bestimmt. Durch eine Filterung wurde berücksichtigt, daß langsam veränderliche Anteile weniger stark breitenabhängig sind. Dadurch gelang es, die Variationen unter Benutzung einer einzigen Registrierstation in Entfernungen bis 500 km auf nur 15% zu reduzieren.An Hand des umfangreichen Meßdatensatzes zweier Forschungsfahrten in das Gebiet der Dangerous Grounds im Südchinesischen Meer wird gezeigt, welche geowissenschaftlichen Aussagen über den Aufbau der Erdkruste nach der Verbesserung möglich werden.

Réduction des mesures de magnétisme à la mer effectuées au voisinage de l'équateur géomagnétique
Résumé Du côté jour de la terre, un flux plasmatique puissant appelé électrojet équatorial s'écoule le long de l'équateur magnétique (champ total et composante horizontale identiques) dans l'ionosphère, principalement en direction de l'Est. Ce flux engendre à la surface du globe de fortes variations du champ géomagnétique, qui ont pour effet de perturber sévèrement les mesures de magnétisme à la mer. La position de ce courant est d'une constance remarquable, et indépendante de ses variations d'intensité.Pour les mesures de magnétisme effectuées dans les mers de Chine Sud et de Sulu, les variations en fonction de la latitude ont été déterminées à partir des données elles-mêmes, au moyen de relations fonctionelles appropriées. L'emploi d'un filtre digital a permis de tenir compte du fait que les éléments variables lentement sont moins dépendants de la latitude. C'est ainsi qu'avec une station d'enregistrement, il a été possible de réduire les variations à 15% seulement de leur valeur originale jusqu'à des distances de 500 km.En s'appuyant sur la collection très complète de données recueillies au cours de deux campagnes de recherche effectuées dans la zone des Hauts-fonds dangereux, au Sud de la mer de Chine, on montre les hypothèses qu'il est possible de formuler quant à la structure de la croûte, à partir des données corrigées.
  相似文献   

5.
Using the Equator-S spacecraft and SuperDARN HF radars an extensive survey of bursty reconnection at the magnetopause and associated flows in the polar ionosphere has been conducted. Flux transfer event (FTE) signatures were identified in the Equator-S magnetometer data during periods of magnetopause contact in January and February 1998. Assuming the effects of the FTEs propagate to the polar ionosphere as geomagnetic field-aligned-currents and associated Alfveén-waves, appropriate field mappings to the fields-of-view of SuperDARN radars were performed. The radars observed discrete ionospheric flow channel events (FCEs) of the type previously assumed to be related to pulse reconnection. Such FCEs were associated with 80% of the FTEs and the two signatures are shown to be statistically associated with greater than 99% confidence. Exemplary case studies highlight the nature of the ionospheric flows and their relation to the high latitude convection pattern, the association methodology, and the problems caused by instrument limitations.  相似文献   

6.
In this study we quantify the spatial variability of seasonal water balances within the Omo-Ghibe River Basin in Ethiopia using methods proposed within the Prediction in Ungauged Basins initiative. Our analysis consists of: (1) application of the rainfall–runoff model HBV-Light to several sub-catchments for which runoff data are available, and (2) estimation of water balances in the remaining ungauged catchments through application of the model with regionalized parameters. The analyses of the resulting water balance outcomes reveal that the seasonal water balance across the Omo-Ghibe Basin is driven by precipitation regimes that change with latitude, from being strongly “seasonal” in the north to “precipitation spread throughout the year, but with a definite wetter season” in the south. The basin is divided into two distinct regions based on patterns of seasonal water balance and, in particular, seasonal patterns of soil moisture storage.
EDITOR D. Koutsoyiannis

ASSOCIATE EDITOR A. Efstratiadis  相似文献   

7.
A study has been performed on the occurrence of pulsed ionospheric flows as detected by the CUTLASS Finland HF radar. These flows have been suggested as being created at the ionospheric footprint of newly-reconnected field lines, during episodes of magnetic flux transfer into the terrestrial magnetosphere (flux transfer events or FTEs). Two years of both high-time resolution and normal scan data from the CUTLASS Finland radar have been analysed in order to perform a statistical study of the extent and location of the pulsed ionospheric flows. We note a great similarity between the statistical pattern of the coherent radar observations of pulsed ionospheric flows and the traditional low-altitude satellite identification of the particle signature associated with the cusp/cleft region. However, the coherent scatter radar observations suggest that the merging gap is far wider than that proposed by the Newell and Meng model. The new model for cusp low-altitude particle signatures, proposed by Lockwood and Onsager and Lockwood provides a unified framework to explain the dayside precipitation regimes observed both by the low-altitude satellites and by coherent scatter radar detection.  相似文献   

8.
The optical detection of auroral subarcs a few tens of m wide as well as the direct observation of shears several m/s per m over km to sub km scales by rocket instrumentation both indicate that violent and highly localized electrodynamics can occur at times in the auroral ionosphere over scales 100 m or less in width. These observations as well as the detection of unstable ion-acoustic waves observed by incoherent radars along the geomagnetic field lines has motivated us to develop a detailed time-dependent two-dimensional model of short-scale auroral electrodynamics that uses current continuity, Ohms law, and 8-moment transport equations for the ions and electrons in the presence of large ambient electric fields to describe wide auroral arcs with sharp edges in response to sharp cut-offs in precipitation (even though it may be possible to describe thin arcs and ultra-thin arcs with our model, we have left such a study for future work). We present the essential elements of this new model and illustrate the models usefulness with a sample run for which the ambient electric field is 100 mV/m away from the arc and for which electron precipitation cuts off over a region 100 m wide. The sample run demonstrates that parallel current densities of the order of several hundred A m-2 can be triggered in these circumstances, together with shears several m/s per m in magnitude and parallel electric fields of the order of 0.1 mV/m around 130 km altitude. It also illustrates that the local ionospheric properties like densities, temperature and composition can strongly be affected by the violent localized electrodynamics and vice-versa.  相似文献   

9.
10.
Measurements with a HF Doppler sounder at Kodaikanal (10.2°N, 77.5°E, geomagnetic latitude 0.8°N) showed conspicuous quasi-periodic fluctuations (period 25/35 min) in F region vertical plasma drift, Vz in the interval 0047/0210 IST on the night of 23/24 December, 1991 (Ap = 14, Kp < 4). The fluctuations in F region vertical drift are found to be coherent with variations in Bz (north-south) component of interplanetary magnetic field (IMF), in geomagnetic H/X components at high-mid latitude locations both in the sunlit and dark hemispheres and near the dayside dip equator, suggestive of DP2 origin. But the polarity of the electric field fluctuations at the midnight dip equator (eastward) is the same as the dayside equator inferred from magnetic variations, contrary to what is expected of equatorial DP2. The origin of the coherent occurrence of equatorial electric field fluctuations in the DP2 range of the same sign in the day and night hemispheres is unclear and merits further investigations.  相似文献   

11.
Zusammenfassung In einer früheren Mitteilung wurde berichtet, daß in der astronomischen Navigation alle Höhendifferenzen (h) eines bestimmten Koppelortes einen Kreis beschreiben (Löhr, Dt. Hydrogr. Z. Bd. 11, Heft 1, 35, 1958).Im folgenden wird dieser geometrische Ort näher untersucht und h-Kreis benannt. Seine wesentliche Eigenschaft besteht darin, daß jede Sehne des Kreises, die vom Koppelort aus unter einem bestimmten Azimutwinkel gezogen wird, die Höhendifferenz des Gestirnes darstellt, das im Zeitpunkt der Beobachtung sich auf dem entsprechenden Azimutgroßkreis befand.Da die Längen- und Breitendifferenz ebenfalls Höhendifferenzen von Gestirnen — die einen Azimut von 90° (270°) und 0° (180°) nachweisen — darstellen, so ergibt sich daraus, daß die durch Konstruktion des h-Kreises entstandenen Schnittpunkte mit dem Meridian und Breitenparallel des Koppelortes die wahre Länge und Breite des Ortes des Beobachters angeben.
The h-circle and its practical use in determining the longitude and latitude of a point of observation
Summary An earlier report (Löhr, Dt. Hydrogr. Z., Vol. 11, Issue 1, p. 35, 1958) dealing with astronomical navigation, establishes that all altitude differences (h) from any given dead reckoning describe a circle.The following report examines this locus which is termed the h-Circle. The h-circle is characterized by the fact that any chord drawn from the dead reckoning at a certain azimuthal angle will represent the difference in altitude of that celestial body which at the time of observation was located in the corresponding azimuthal great circle.The longitude and latitude differences also represent the altitude differences of celestial bodies with azimuth 90° (270°) and 0° (180°). Hence, it follows that the true longitude and latitude of the observer's position are indicated by the points where the meridian and the latitude parallel of the dead reckoning are intersected by the h-circle.

Le h-cercle et sa mise en pratique pour la détermination de la longitude et de la latitude du lieu d'observation
Résumé Dans une communication précédente il a été rapporté qu'en navigation astronomique toutes les différences d'hauteur (h) d'un certain point estimé font un cercle (Löhr, Dt. Hydrogr. Z. Bd. 11, Heft 1, 35, 1958).Ci-après ce lieu géométrique sera examiné plus près et sera nommé le cercle h. Sa qualité essentielle réside dans le fait que chaque corde du cercle, tirée du point estimé sous un angle azimutal déterminé, constitue la différence d'hauteur de l'étoile, qui au moment de l'observation se trouva au grand cercle azimutal correspondant.Vu que des différences en longitude et en latitude forment également des différences d'hauteur des étoiles- qui indiquent un azimut de 90° (270°) et 0° (180°)-, il en ressort, que les points d'intersection entre les coordonnées géographiques du point estimé et le h-cercle, indiquent la vraie longitude et latitude du lieu de l'observateur.
  相似文献   

12.
In this work we use ion and magnetic field data from the AMPTE-UKS mission to study the characteristics of low frequency (r p) waves observed upstream of the Earths bow shock. We test the application of various plasma-field correlations and magnetic ratios derived from linear Vlasov theory to identify the modes in this region. We evaluate (for a parameter space consistent with the ion foreshock) the Alfvén ratio, the parallel compressibility, the crosshelicity, the noncoplanar ratio, the magnetic compression and the polarization for the two kinetic instabilities that can be generated in the foreshock by the interaction of hot diffuse ions with the solar wind: the left-hand resonant and the right-hand resonant ion beam instabilities. Comparison of these quantities with the observed plasma-field correlations and various magnetic properties of the waves observed during 10 intervals on 30 October 1984, where the waves are associated with diffuse ions, allows us to identify regions with Alfvénic waves and regions where the predominant mode is the right-hand resonant instability. In all the cases the waves are transverse, propagating at angles 33° and are elliptically polarized. Our results suggest that while the observed Alfvén waves are generated locally by hot diffuse ions, the right-handed waves may result from the superposition of waves generated by two different types of beam distribution (i.e. cold beam and diffuse ions). Even when there was good agreement between the values of observed transport ratios and the values given by the theory, some discrepancies were found. This shows that the observed waves are different from the theoretical modes and that mode identification based only on polarization quantities does not give a complete picture of the waves characteristics and can lead to mode identification of waves whose polarization may agree with theoretical predictions even when other properties can diverge from those of the theoretical modes.  相似文献   

13.
Hyperboloid is a multi-directional mass spectrometer measuring ion distribution functions in the auroral and polar magnetosphere of the Earth in the thermal and suprathermal energy range. The instrument encompasses two analyzers containing a total of 26 entrance windows, and viewing in two almost mutually perpendicular half-planes. The nominal angular resolution is defined by the field of view of individual windows 13° × 12.5°. Energy analysis is performed using spherical electrostatic analyzers providing differential measurements between 1 and 80 eV. An ion beam emitter (RON experiment) and/or a potential bias applied to Hyperboloid entrance surface are used to counteract adverse effects of spacecraft potential and thus enable ion measurements down to very low energies. A magnetic analyzer focuses ions on one of four micro-channel plate (MCP) detectors, depending on their mass/charge ratio. Normal modes of operation enable to measure H+, He+, O++, and O+ simultaneously. An automatic MCP gain control software is used to adapt the instrument to the great flux dynamics encountered between spacecraft perigee (700 km) and apogee (20 000 km). Distribution functions in the main analyzer half-plane are obtained after a complete scan of windows and energies with temporal resolution between one and a few seconds. Three-dimensional (3D) distributions are measured in one spacecraft spin period (120 s). The secondary analyzer has a much smaller geometrical factor, but offers partial access to the 3D dependence of the distributions with a few seconds temporal resolution. Preliminary results are presented. Simultaneous, local heating of both H+ and O+ ions resulting in conical distributions below 80 eV is observed up to 3 Earths radii altitudes. The thermal ion signatures associated with large-scale nightside magnetospheric boundaries are investigated and a new ion outflow feature is identified associated to the polar edge of the auroral oval. Detailed distribution functions of injected magnetosheath ions and ouflowing cleft fountain ions are measured down to a few eVs in the dayside.  相似文献   

14.
15.
The coupled thermosphere-ionosphere-plasmasphere model CTIP is used to study the global three-dimensional circulation and its effect on neutral composition in the midlatitude F-layer. At equinox, the vertical air motion is basically up by day, down by night, and the atomic oxygen/molecular nitrogen [O/N2] concentration ratio is symmetrical about the equator. At solstice there is a summer-to-winter flow of air, with downwelling at subauroral latitudes in winter that produces regions of large [O/N2] ratio. Because the thermospheric circulation is influenced by the high-latitude energy inputs, which are related to the geometry of the Earth’s magnetic field, the latitude of the downwelling regions varies with longitude. The downwelling regions give rise to large F2-layer electron densities when they are sunlit, but not when they are in darkness, with implications for the distribution of seasonal and semiannual variations of the F2-layer. It is also found that the vertical distributions of O and N2 may depart appreciably from diffusive equilibrium at heights up to about 160 km, especially in the summer hemisphere where there is strong upwelling.  相似文献   

16.
The seasonal effects in the thermosphere and ionosphere responses to the precipitating electron flux and field-aligned current variations, of the order of an hour in duration, in the summer and winter cusp regions have been investigated using the global numerical model of the Earths upper atmosphere. Two variants of the calculations have been performed both for the IMF By < 0. In the first variant, the model input data for the summer and winter precipitating fluxes and field-aligned currents have been taken as geomagnetically symmetric and equal to those used earlier in the calculations for the equinoctial conditions. It has been found that both ionospheric and thermospheric disturbances are more intensive in the winter cusp region due to the lower conductivity of the winter polar cap ionosphere and correspondingly larger electric field variations leading to the larger Joule heating effects in the ion and neutral gas temperature, ion drag effects in the thermospheric winds and ion drift effects in the F2-region electron concentration. In the second variant, the calculations have been performed for the events of 28–29 January, 1992 when precipitations were weaker but the magnetospheric convection was stronger than in the first variant. Geomagnetically asymmetric input data for the summer and winter precipitating fluxes and field-aligned currents have been taken from the patterns derived by combining data obtained from the satellite, radar and ground magnetometer observations for these events. Calculated patterns of the ionospheric convection and thermospheric circulation have been compared with observations and it has been established that calculated patterns of the ionospheric convection for both winter and summer hemispheres are in a good agreement with the observations. Calculated patterns of the thermospheric circulation are in a good agreement with the average circulation for the Southern (summer) Hemisphere obtained from DE-2 data for IMF By < 0 but for the Northern (winter) Hemisphere there is a disagreement at high latitudes in the afternoon sector of the cusp region. At the same time, the model results for this sector agree with other DE-2 data and with the ground-based FPI data. All ionospheric and thermospheric disturbances in the second variant of the calculations are more intensive in the winter cusp region in comparison with the summer one and this seasonal difference is larger than in the first variant of the calculations, especially in the electron density and all temperature variations. The means that the seasonal effects in the cusp region are stronger in the thermospheric and ionospheric responses to the FAC variations than to the precipitation disturbances.  相似文献   

17.
We have analysed a database of 300 h of tristatic ionospheric velocity measurements obtained overhead at Tromsø (66.3° magnetic latitude) by the EISCAT UHF radar system, for the presence of flow effects associated with the y-component of the IMF. Since it is already known that the flow depends upon IMF Bz, a least-squares multivariate analysis has been used to determine the flow dependence on both IMF By and Bz simultaneously. It is found that significant flow variations with IMF By occur, predominantly in the midnight sector (2100/0300 MLT), but also pre-dusk (1600/1700 MLT), which are directed eastward for IMF By positive and westward for IMF By negative. The flows are of magnitude 20/30 m s–1 nT–1 in the midnight sector, and smaller, 10/20 m s–1 nT–1, pre-dusk, and are thus associated with significant changes of flow of order a few hundred m s–1 over the usual range of IMF By of about ±5 nT. At other local times the IMF By-related perturbation flows are much smaller, less than 5 m s–1 nT–1, and consistent with zero within the uncertainty estimates. We have investigated whether these IMF By-dependent flows can be accounted for quantitatively by a theoretical model in which the equatorial flow in the inner magnetosphere is independent of IMF By, but where distortions of the magnetospheric magnetic field associated with a penetrating component of the IMF By field changes the mapping of the field to the ionosphere, and hence the ionospheric flow. We find that the principal flow perturbation produced by this effect is an east-west flow whose sense is determined by the north-south component of the unperturbed flow. Perturbations in the north-south flow are typically smaller by more than an order of magnitude, and generally negligible in terms of observations. Using equatorial flows which are determined from EISCAT data for zero IMF By, to which the corotation flow has been added, the theory predicts the presence of zonal perturbation flows which are generally directed eastward in the Northern Hemisphere for IMF By positive and westward for IMF By negative at all local times. However, although the day and night effects are therefore similar in principle, the model perturbation flows are much larger on the nightside than on the dayside, as observed, due to the day-night asymmetry in the unperturbed magnetospheric magnetic field. Overall, the model results are found to account well for the observed IMF By-related flow perturbations in the midnight sector, in terms of the sense and direction of the flow, the local time of their occurrence, as well as the magnitude of the flows (provided the magnetic model employed is not too distorted from dipolar form). At other local times the model predicts much smaller IMF By-related flow perturbations, and thus does not account for the effects observed in the pre-dusk sector.  相似文献   

18.
The typical quiet day variations of the equatorial electrojet (EEJ) current intensity with time of the day, season, sunspot number, and geomagnetic latitude are presented in terms of the corresponding variations of H which is the deviation of the horizontal component (H) of the geomagnetic field from its steady nighttime level. The observed height structure of the current density in the EEJ as measured in rocket flights is presented, along with the theoretically computed structure. Theoretical model results on the polarization electric fields and east-west currents as generated by the local interactions of height-varying winds in the EEJ show large height gradients and reversals for both currents and electric fields; experimental evidence for the reality of such height structures is also shown. The characteristics of the counter-electrojet events are presented and the possible causative mechanisms are discussed critically.Some typical experimental results are presented on the electric field changes in the EEJ which result from its sensitive response to electrodynamic disturbances in the magnetosphere and the auroral-polar latitude ionosphere during geomagnetic substorms and storms; and their implications are discussed. Possibilities for utilizing the EEJ as a very useful medium for important scientific studies on the larger space domain of ionosphere-magnetosphere system, on plasma waves, and on the earth's conductivity are emphasized.  相似文献   

19.
The 2D morphology of coherent HF radar and optical cusp aurora has been studied for conditions of predominantly southward IMF conditions, which favours low-latitude boundary layer reconnection. Despite the variability in shape of radar cusp Doppler spectra, the spectral width criterion of 220 m s–1 proves to be a robust cusp discriminator. For extended periods of well-developed radar backscatter echoes, the equatorward boundary of the 220 m s–1 spectral width enhancement lines up remarkably well with the equatorward boundary of the optical cusp aurora. The spectral width boundary is however poorly determined during development and fading of radar cusp backscatter. Closer inspection of radar Doppler profile characteristics suggests that a combination of spectral width and shape may advance boundary layer identification by HF radar. For the two December days studied the onset of radar cusp backscatter occurred within pre-existing 630.0 nm cusp auroral activity and appear to be initiated by sunrise, i.e. favourable radio wave propagation conditions had to develop. Better methods are put forward for analysing optical data, and for physical interpretation of HF radar data, and for combining these data, as applied to detection, tracking, and better understanding of dayside aurora. The broader motivation of this work is to develop wider use by the scientific community, of results of these techniques, to accelerate understanding of dynamic high-latitude boundary-processes. The contributions in this work are: (1) improved techniques of analysis of observational data, yielding meaningfully enhanced accuracy for deduced cusp locations; (2) a correspondingly more pronounced validation of correlation of boundary locations derived from the observational data set; and (3) a firmer physical rationale as to why the good correlation observed should theoretically be expected.  相似文献   

20.
Ondes de surface     
Résumé Le but de ce mémoire est de démontrer quelques nouvelles propriétés générales d'une classe de fonctions (les ondes de surface) très importante par son rôle en physique et en géophysique.On commence par la démontration d'un théoréme fondamental qui établit l'identité de l'ensemble des ondes de surface et de l'ensemble des fonctions pour lesquelles, à tout instantt 0 et en tout pointA 0 de leur domaine d'existence, on peut écrire une proportionnalité entre intervalles de temps (situés, en général asymétriquement, de part et d'autre det 0) et rayons des domaines circulaires centrés enA 0, telle que les moyennes temporelles et spatiales correspondantes soient égales. Ce théorème permet d'écrire, en termes finis, la solution des équations aux dérivées partielles de toute onde de surface.On applique ensuite les résultats généraux: 1° à la variation diurne de la pression lce qui permet de voir que ce phénomène peut être considéré comme une onde de surface et donne la loi fondamentale en cos3 ( latitude) pour l'amplitude de l'onde semidiurne progressive]; 2° aux ondes de variation de la pression synoptique. Pour ces ondes de variation on établit les relations qui existent entre leurs paramètres caractéristiques et on détermine finalement leur configuration théorique.
Summary The aim of this paper is to give the proof of some new general properties of a class of functions (the surface waves) which is very important in physics and geophysics.We first give the proof of a fundamental theorem establishing the identity of the set of all surface waves and the set of functions for which, at any momentt 0 and at any pointA 0 of their domain, there exists a proportionality between time intervals comprisingt 0 (asymmetrically, in the general case) and the radius of the circular domains centered onA 0, such that the corresponding temporal and spatial means are equal. This theorem allows to write in finite terms the solution of the partial differential equations of any surface wave.The general results are then applied: 1° to the diurnal pressure variation, showing that this phenomenon can be considered as a surface wave and giving the fundamental law cos3 ( latitude) for the amplitude of the progressive or travelling 12-hourly wave; 2° to the waves of the synoptic pressure variations. For these waves the relations between their characteristic parameters is first established and finally their theoretical spatial configuration or pattern is deduced.


Communication faite le 23 Avril 1957 à la Cinquième Assemblée de la «Società Italiana di Geofisica e Meteorologia» (Genova, 23–25 Avril 1957).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号