首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
This paper addresses the incorporation of high resolution topography, soils and vegetation information into the simulation of land surface processes in atmospheric circulation models (ACM). Recent work has concentrated on detailed representation of one-dimensional exchange processes, implicitly assuming surface homogeneity over the atmospheric grid cell. Two approaches that could be taken to incorporate heterogeneity are the integration of a surface model over distributed, discrete portions of the landscape, or over a distribution function of the model parameters. However, the computational burden and parameter intensive nature of current land surface models in ACM limits the number of independent model runs and parameterizations that are feasible to accomplish for operational purposes. Therefore, simplications in the representation of the vertical exchange processes may be necessary to incorporate the effects of landscape variability and horizontal divergence of energy and water. The strategy is then to trade off the detail and rigor of point exchange calculations for the ability to repeat those calculations over extensive, complex terrain. It is clear the parameterization process for this approach must be automated such that large spatial databases collected from remotely sensed images, digital terrain models and digital maps can be efficiently summarized and transformed into the appropriate parameter sets. Ideally, the landscape should be partitioned into surface units that maximize between unit variance while minimizing within unit variance, although it is recognized that some level of surface heterogeneity will be retained at all scales. Therefore, the geographic data processing necessary to automate the distributed parameterization should be able to estimate or predict parameter distributional information within each surface unit.  相似文献   

2.
Single collection stations for wet or bulk deposition are generally inadequate to describe atmospheric inputs to watersheds in complex terrain. Atmospheric deposition is delivered by wet, dry and cloud deposition processes, and these processes are controlled by a wide range of landscape features, including canopy type and structure, topographic exposure, elevation and slope orientation. As a result, there can be a very high degree of spatial variability within a watershed, and a single sampling point, especially at low elevation, is unlikely to be representative. Atmospheric inputs at the watershed scale can be calculated from the whole watershed mass balance if the outputs and within-watershed sources and sinks are known with sufficient accuracy. Alternatively, indices of atmospheric deposition such as Pb accumulation in the forest floor and SO2−4 flux in throughfall can be used to characterize patterns of total deposition, and these indices can be used to model deposition to the entire watershed based on known landscape features such as elevation and canopy type. © 1997 John Wiley & Sons, Ltd.  相似文献   

3.
Mellor  George 《Ocean Dynamics》2019,69(1):43-50
Ocean Dynamics - When coping with numerical models of ocean surface waves and circulation, one should differentiate between wind-driven drag due to turbulent skin friction and form drag, but how to...  相似文献   

4.
In the present paper the first results of the international KOPEX-86 experiment are presented. The experiment took place at the Kopisty Atmospheric Observatory of the Institute of Physics of the Atmosphere in Prague as part of a special project of the Commission of the Academy of Sciences in Planetary Geophysics (KAPG) in June and July 1986. Using 4 ultrasonic anemometers at 4 levels up to 80 m, Doppler-SODAR and wind-, temperature- and radiation balance gradients from 2 to 80 m, a complex investigation of the atmospheric boundary layer in an industrial area was made. The authors present the first results of
–  the anthropogenic influence on the energy exchange in the atmospheric boundary layer.
–  the influence of a complex terrain on the turbulent characteristics and their vertical distribution.
am n mam ¶rt;a¶rt; numa -86. num n¶rt;u mu u u u 1986. a num mu amuu mumma uuu am aa nma . u nu 4 amuu am a 4 ma ¶rt; 80 , ¶rt;nn ¶rt;aa u uua¶rt;um mu ma, mnam u a¶rt;uauu 2 ¶rt; 80 n¶rt;uu n u¶rt;au nau am. m n¶rt;aam n mam, aau
–  u¶rt;au amn ¶rt;mu a muu na am,
–  uu n mmu a aamumuu mmmu u a u mua an¶rt;u.
  相似文献   

5.
An exact numerical time integration of scalar equations for undamped structural systems is presented. Typical numerical examples are included to illustrate the use of the proposed procedure.  相似文献   

6.
To display the distribution characteristics of turbulence eddy under condition of complex terrain in Loess Plateau,and to enhance the precision of turbulence measurements,the research of turbulence ergodicity is considered to be the prior section of the experiment.With the statistics of single-site turbulence measurements obtained in Baimiao Tableland,Ping Liang,Gan Su,analysis result shows that not only the turbulence with scale less than 10 min,which can easily satisfy the ergodicity,the tableland terrain can also be a major cause of the coherent structure of periodic,large-scale turbulence;compared to which for the turbulence above the flat underlying surface,the distribution of 10–40 min,large-scale turbulence in the tableland region tends to be more steady and,thus,can also satisfy the ergodicity easily.Under the condition of extremely unstable stratification,the wind is comparatively low in speed and features distinctly large-scale,periodical fluctuation,and with the trend of smooth increase in temperature,large-scale wind turbulence and temperature turbulence both tend to satisfy ergodicity.In comparison,under the condition of extremely stable stratification,the aperiodicity of large-scale wind turbulence and temperature turbulence caused by intermittency is comparatively strong,and the turbulence cannot satisfy ergodicity easily.  相似文献   

7.
An understanding of surface and subsurface water contributions to streamflow is essential for accurate predictions of water supply from mountain watersheds that often serve as water towers for downstream communities. As such, this study used the end‐member mixing analysis technique to investigate source water contributions and hydrologic flow paths of the 264 km2 Boulder Creek Watershed, which drains the Colorado Front Range, USA. Four conservative hydrochemical tracers were used to describe this watershed as a 3 end‐member system, and tracer concentration reconstruction suggested that the application of end‐member mixing analysis was robust. On average from 2009 to 2011, snowmelt and rainwater from the subalpine zone and groundwater sampled from the upper montane zone contributed 54%, 22%, and 24% of the annual streamflow, respectively. These values demonstrate increased rainwater and decreased snow water contributions to streamflow relative to area‐weighted mean values derived from previous work at the headwater scale. Young water (2.3 ± 0.8 months) fractions of streamflow decreased from 18–22% in the alpine catchment to 8–10% in the lower elevation catchments and the watershed outlet with implications for subsurface storage and hydrological connectivity. These results contribute to a process‐based understanding of the seasonal source water composition of a mesoscale watershed that can be used to extrapolate headwater streamflow generation predictions to larger spatial scales.  相似文献   

8.
为了揭示黄土高原复杂地形条件下湍流涡旋的分布特征,提高湍流观测的精度,湍流的各态历经性研究随即成为实验研究的首要问题.文章利用甘肃省平凉市白庙塬地形条件下单点湍流观测的结果,对比分析并揭示了从稳定层结到不稳定层结,除小于10min尺度的湍流易于满足各态历经性外,地形易造成周期性存在的大尺度湍流相干结构.与平坦下垫面湍流...  相似文献   

9.
A method for generating daily surfaces of temperature, precipitation, humidity, and radiation over large regions of complex terrain is presented. Required inputs include digital elevation data and observations of maximum temperature, minimum temperature and precipitation from ground-based meteorological stations. Our method is based on the spatial convolution of a truncated Gaussian weighting filter with the set of station locations. Sensitivity to the typical heterogeneous distribution of stations in complex terrain is accomplished with an iterative station density algorithm. Spatially and temporally explicit empirical analyses of the relationships of temperature and precipitation to elevation were performed, and the characteristic spatial and temporal scales of these relationships were explored. A daily precipitation occurrence algorithm is introduced, as a precursor to the prediction of daily precipitation amount. Surfaces of humidity (vapor pressure deficit) are generated as a function of the predicted daily minimum temperature and the predicted daily average daylight temperature. Daily surfaces of incident solar radiation are generated as a function of Sun-slope geometry and interpolated diurnal temperature range. The application of these methods is demonstrated over an area of approximately 400 000 detailed illustration of the parameterization process. A cross-validation analysis was performed, comparing predicted and observed daily and annual average values. Mean absolute errors (MAE) for predicted annual average maximum and minimum temperature were 0.7°C and 1.2°C, with biases of +0.1°C and −0.1°C, respectively. MAE for predicted annual total precipitation was 13.4 cm, or, expressed as a percentage of the observed annual totals, 19.3%. The success rate for predictions of daily precipitation occurrence was 83.3%. Particular attention was given to the predicted and observed relationships between precipitation frequency and intensity, and they were shown to be similar. We tested the sensitivity of these methods to prediction grid-point spacing, and found that areal averages were unchanged for grids ranging in spacing from 500 m to 32 km. We tested the dependence of the results on timestep, and found that the temperature prediction algorithms scale perfectly in this respect. Temporal scaling of precipitation predictions was complicated by the daily occurrence predictions, but very nearly the same predictions were obtained at daily and annual timesteps.  相似文献   

10.
The Mesoscale Alpine Programme’s Riviera project investigated the turbulence structure and related exchange processes in an Alpine valley by combining a detailed experimental campaign with high-resolution numerical modelling. The present contribution reviews published material on the Riviera Valley’s boundary layer structure and discusses new material on the near-surface turbulence structure. The general conclusion of the project is that despite the large spatial variability of turbulence characteristics and the crucial influence of topography at all scales, the physical processes can accurately be understood and modelled. Nevertheless, many of the “text book characteristics” like the interaction between the valley and slope wind systems or the erosion of the nocturnal valley inversion need reconsideration, at least for small non-ideal valleys like the Riviera Valley. The project has identified new areas of research such as post-processing methods for turbulence variables in complex terrain and new approaches for the surface energy balance when advection is non-negligible. The exchange of moisture and heat between the valley atmosphere and the free troposphere is dominated by local “secondary” circulations due to the curvature of the valley axis. Because many curved valleys exist, and operational models still have rather poor resolution, parameterization of these processes may be required.  相似文献   

11.
The dissipation method, the method preferred for estimating scalar surface fluxes over open water has not traditionally been used by agronomists, whereas the surface renewal (SR) theory in conjunction with the analysis of the scalar time trace offers tremendous advantages for estimating fluxes over agronomic crops. For a steady and horizontally homogeneous flow, it is shown that the dissipation method and SR analysis are closely related. As a consequence, a new dissipation–SR analysis expression for estimating scalar surface fluxes was derived. The new equation requires no calibration, and the scalar time trace measured at a frequency capable of identifying canopy‐scale coherent structures (typically 4–10 Hz in agriculture) is the only input required. Sensible and latent heat flux estimates obtained from 10 Hz air temperature and water vapour concentration measurements in the inertial sub‐layer (2 m height) over short, homogeneous rangeland grass at a site where similarity does not hold gave similar results to those measured with the eddy covariance (EC) method. For unstable cases, the new equation provided a root mean square error of 57 W m?2 for the surface energy‐balance closure. For stable cases, the performance was difficult to evaluate because the EC fluxes were similar in magnitude to the sensor error. It is concluded that the proposed method can contribute to a better understanding of hydrological processes and water requirements by providing an accurate, less costly, alternative method to indirectly estimate evapotranspiration as the residual of the energy balance equation. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

12.
The availability of in situ measurements of precipitation in remote locations is limited. As a result, the use of satellite measurements of precipitation is attractive for water resources management. Combined precipitation products that rely partially or entirely on satellite measurements are becoming increasingly available. However, these products have several weaknesses, for example their failure to capture certain types of precipitation, limited accuracy and limited spatial and temporal resolution. This paper evaluates the usefulness of several commonly used precipitation products over data scarce, complex mountainous terrain from a water resources perspective. Spatially averaged precipitation time series were generated or obtained for 16 sub-basins of the Paute river basin in the Ecuadorian Andes and 13 sub-basins of the Baker river basin in Chilean Patagonia. Precipitation time series were generated using the European Centre for Medium Weather Range Forecasting (ECMWF) 40 year reanalysis (ERA-40) and the subsequent ERA-interim products, and the National Centers for Environmental Prediction/National Center for Atmospheric Research reanalysis dataset 1 (NCEP R1) hindcast products, as well as precipitation estimation from Remotely Sensed Information using Artificial Neural Networks (PERSIANN). The Tropical Rainfall Measurement Mission (TRMM) 3B42 is also used for the Ecuadorian Andes. These datasets were compared to both spatially averaged gauged precipitation and river discharge. In general, the time series of the remotely sensed and hindcast products show a low correlation with locally observed precipitation data. Large biases are also observed between the different products. Hydrological verification based on river flows reveals that water balance errors can be extremely high for all evaluated products, including interpolated local data, in basins smaller than 1000 km2. The observations are consistent over the two study regions despite very different climatic settings and hydrological processes, which is encouraging for extrapolation to other mountainous regions.  相似文献   

13.
A high‐resolution reflection seismic survey was carried out in the southern part of the Bavarian Molasse Basin in 1998 and 1999. The survey aimed to investigate the near‐surface structure of the complicated transition from the unfolded Foreland Molasse to the Folded Molasse, and the Folded Molasse to the internally complicated thrust systems of the Helveticum, the Ultrahelveticum and the Rhenodanubian Flysch. The study is linked to the TRANSALP seismic project, and the results help to fill the gap between the surface and the upper 300–500 ms two‐way traveltime (TWT), typical of deep‐reflection seismic experiments. The environmental conditions encountered in the study area required that particular attention be paid to the acquisition parameters for the three seismic lines (each about 4 km long). The energy source was a small vibrator; the geophone spread, spacing and frequency range were adjusted to image reflectors, which were expected to dip steeply southwards. In general, the unprocessed field records did not show signals that could be attributed to specific reflectors. Individual trace processing considerably improved the data quality, taking into account the influence of the Quaternary cover and also the strong lateral velocity variations of the shallow subsurface. The effects of the various processing steps, such as muting, refraction statics, residual statics and velocity analysis, are discussed. To assess the NMO velocities, the qualitative analysis of the seismic energy in a common‐shotpoint gather offered advantages over an analysis in a common‐midpoint gather or in a stacked section, and proved to be very effective. As demonstrated along the Miesbach 9801 line, low‐velocity zones extend locally down to about 400 ms, adjacent to zones of extremely high velocities close to the surface, reflecting steeply dipping strata. Besides the Quaternary cover on top, the Miesbach 9801 and Miesbach 9802 lines exhibit many horizontal reflections, in places down as far as 1400 ms TWT, indicating the sedimentary sequences of the unfolded Foreland Molasse. The southern part of both lines is dominated by southward‐dipping reflection bands, indicating units of the Folded Molasse. The reflection pattern shown by the Miesbach 9901 line suggests that there is almost no Quaternary cover. Southward‐dipping elements reflect the internal structure of the Folded Molasse, whereas a rather diffuse reflection signature may be attributed to Rhenodanubian Flysch units.  相似文献   

14.
Water and energy fluxes are inextricably interlinked within the interface of the land surface and the atmosphere. In the regional earth system models, the lower boundary parameterization of land surface neglects lateral hydrological processes, which may inadequately depict the surface water and energy fluxes variations, thus affecting the simulated atmospheric system through land-atmosphere feedbacks. Therefore, the main objective of this study is to evaluate the hydrologically enhanced regional climate modelling in order to represent the diurnal cycle of surface energy fluxes in high spatial and temporal resolution. In this study, the Weather Research and Forecasting model (WRF) and coupled WRF Hydrological modelling system (WRF-Hydro) are applied in a high alpine catchment in Northeastern Tibetan Plateau, the headwater area of the Heihe River. By evaluating and intercomparing model results by both models, the role of lateral flow processes on the surface energy fluxes dynamics is investigated. The model evaluations suggest that both WRF and coupled WRF-Hydro reasonably represent the diurnal variations of the near-surface meteorological fields, surface energy fluxes and hourly partitioning of available energy. By incorporating additional lateral flow processes, the coupled WRF-Hydro simulates higher surface soil moisture over the mountainous area, resulting in increased latent heat flux and decreased sensible heat flux of around 20–50 W/m2 in their diurnal peak values during summertime, although the net radiation and ground heat fluxes remain almost unchanged. The simulation results show that the diurnal cycle of surface energy fluxes follows the local terrain and vegetation features. This highlights the importance of consideration of lateral flow processes over areas with heterogeneous terrain and land surfaces.  相似文献   

15.
西藏地区复杂地形下的降水空间分布估算模型   总被引:16,自引:1,他引:16       下载免费PDF全文
本文提供了一个描述西藏地区年、季降水量空间分布的估算模型.利用卫星遥测数字化地形高程资料和西藏地区仅有的27个常规气象站的多年平均降水整编资料,根据地形坡向站点分为三类.再采用多元逐步回归方法,建立西藏地区的年、季降水量和经度、纬度、海拔高度、坡度、坡向、遮蔽度等6个地理、地形因子之间的关系模型,估算西藏地区降水量的空间分布.结果表明,此方法建立的关于西藏地区降水量与诸因子之间方程的相关性显著,平均绝对误差、相对误差分别为0.93mm和1.16%,对估算模型进行F检验,均通过置信度为0.95的相关检验,回归效果较显著.分析表明估算降水能够定量、定性地再现西藏地区的实际降水分布.  相似文献   

16.
Summary Two methods of the evaluation of sensible heat flux are briefly presented from the view point of their application to micrometeorology. The comparison of sensible fluxes for coastal and inland stations is presented, in order to explain the influence of the marine atmosphere on these fluxes. They reach a maximum value in summer at the coastal stations, due to maximum wind speed and high convective activity developed by the influence of the marine atmosphere.  相似文献   

17.
Space–time variability of precipitation plays a key role as driver of many environmental processes. The objective of this study is to evaluate a spatiotemporal (STG) Neyman–Scott Rectangular Pulses (NSRP) generator over orographically complex terrain for statistical downscaling of climate models. Data from 145 rain gauges over a 5760-km2 area of Cyprus for 1980–2010 were used for this study. The STG was evaluated for its capacity to reproduce basic rainfall statistical properties, spatial intermittency, and extremes. The results were compared with a multi-single site NRSP generator (MSG). The STG performed well in terms of average annual rainfall (+1.5 % in comparison with the 1980–2010 observations), but does not capture spatial intermittency over the study area and extremes well. Daily events above 50 mm were underestimated by 61 %. The MSG produced a similar error (+1.1 %) in terms of average annual rainfall, while the daily extremes (>50-mm) were underestimated by 11 %. A gridding scheme based on scaling coefficients was used to interpolate the MSG data. Projections of three Regional Climate Models, downscaled by MSG, indicate a 1.5–12 % decrease in the mean annual rainfall over Cyprus for 2020–2050. Furthermore, the number of extremes (>50-mm) for the 145 stations is projected to change between ?24 and +2 % for the three models. The MSG modelling approach maintained the daily rainfall statistics at all grid cells, but cannot create spatially consistent daily precipitation maps, limiting its application to spatially disconnected applications. Further research is needed for the development of spatial non-stationary NRSP models.  相似文献   

18.
利用中尺度气象数值模式(Weather Research and Forecasting Model,WRF)模拟风场,结合兰州大学半干旱气候与环境观测站(Semi-Arid Climate and Environment Observatory of Lanzhou University,SACOL)湍流观测资料,分析了黄土高原复杂地形上稳定边界层低空急流对近地层湍流活动的影响.黄土高原复杂地形上稳定边界层低空急流的形成与地形作用引发的局地环流有关.低空急流对近地层湍流活动有强烈影响,剪切作用使小尺度湍涡活动加剧,湍动能增大,同时非平稳运动被压制.低空急流发生时,观测数据有87.3%是弱稳定情形(梯度理查森数小于0.25);而无低空急流时,对应时段的观测表明65.4%属于强稳定层结(梯度理查森数大于0.3),非平稳运动造成湍流功率谱在低频端迅速增大.与无低空急流和弱低空急流情形相比,强低空急流发生时,近地层湍动能增大1倍,湍动能在垂直方向上的传递增大1个量级,且方向向下,约为-3 × 10-3 m3·s-3,湍流在上层产生并向下传递.  相似文献   

19.
Land surface evapotranspiration (ET) plays an important role in energy and water balances. ET can significantly affect the runoff yield of a basin and the available water resources in mountainous areas. The existing models to estimate ET are typically applicable to plains, and excessive data are required to calculate the surface fluxes accurately. This study established a simple and practical model capable of depicting the surface fluxes, while using relatively less parameters. Considering the complex terrain, solar radiation was corrected by importing a series of topographic factors. The water deficit index, a measure of land surface wetness, was calculated by applying the fc (vegetation fractional cover)‐Trad (land surface temperature) framework in the two‐source trapezoid model for evapotranspiration model to mountainous areas after corrections of temperature based on altitude variations. The model was successfully applied to the Kaidu River Basin, a basin with few gauges located in the east Tien Shan Mountains of China. Based on the time scale extensions, ET was analyzed at different time scales from 2000 to 2013. The results demonstrated that the corrected solar radiation and water deficit index were reasonably distributed in space and that this model is applicable to ungauged catchments, such as the Kaidu River Basin.  相似文献   

20.
This study examines the performance of integration methods for hybrid simulation of large and complex structural systems in the context of structural collapse due to seismic excitations. The target application is not necessarily for real-time testing, but rather for models that involve large-scale physical sub-structures and highly nonlinear numerical models. Four case studies are presented and discussed. In the first case study, the accuracy of integration schemes including two widely used methods, namely, modified version of the implicit Newmark with fixed-number of iteration (iterative) and the operator-splitting (non-iterative) is examined through pure numerical simulations. The second case study presents the results of 10 hybrid simulations repeated with the two aforementioned integration methods considering various time steps and fixed-number of iterations for the iterative integration method. The physical sub-structure in these tests consists of a single-degree-of-freedom (SDOF) cantilever column with replaceable steel coupons that provides repeatable highlynonlinear behavior including fracture-type strength and stiffness degradations. In case study three, the implicit Newmark with fixed-number of iterations is applied for hybrid simulations of a 1:2 scale steel moment frame that includes a relatively complex nonlinear numerical substructure. Lastly, a more complex numerical substructure is considered by constructing a nonlinear computational model of a moment frame coupled to a hybrid model of a 1:2 scale steel gravity frame. The last two case studies are conducted on the same porotype structure and the selection of time steps and fixed number of iterations are closely examined in pre-test simulations. The generated unbalance forces is used as an index to track the equilibrium error and predict the accuracy and stability of the simulations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号