首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
The Patras, Corinth, and northern Saronic gulfs occupy a 200-km-long, N120° trending Pleistocene rift zone, where Peloponnese drifts away from mainland Greece. The axes of Patras and Corinth basins are 25 km apart and linked by two transfer-fault zones trending N040°. The older one defines the western slope of Panachaïkon mountain, and the younger one limits the narrow Rion–Patras littoral plain. Between these two faults, the ca. 4-km-thick Rion–Patras series dips 20–30° SSW. It is part of the Patras gulf synrift deposits, which pile in an asymmetric basin governed by a fault dipping ca. 25–35° NNE, located in the southern Gulf of Patras. Mapping of this fault to the east in northern Peloponnese shows that it is an inactive north-dipping low-angle normal fault (0° to 30°N), called the northern Peloponnese major fault (NPMF). The structural evolution of the NPMF was different in the gulfs of Patras and Corinth. In the Gulf of Patras, it is still active. In northern Peloponnese, footwall uplift and coeval southward tilting flattened the fault and locked its southern part. Steeper normal faults formed north of the locked area, connecting the still active northern part of the NPMF to the surface. After several locks, the presently active normal faults (Psathopyrgos, Aigion, Helike) trend along the southern shore of the Gulf of Corinth. This migration of faults caused the relative 25 km northward shift of the Corinth basin, and the formation of NE–SW trending transfer-faults between the Corinth and Patras gulfs.  相似文献   

2.
The NW—SE trending southern California coastline between the Palos Verdes Peninsula and San Diego roughly parallels the southern part and off-shore extension of the dominantly right-lateral, strike-slip, Newport—Inglewood fault zone. Emergent marine terraces between Newport Bay and San Diego record general uplift and gentle warping on the northeast side of the fault zone throughout Pleistocene time. Marine terraces on Soledad Mt. and Point Loma record local differential uplift (maximum 0.17 m/ka) during middle to late Pleistocene time on the southwest side of the fault (Rose Canyon fault) near San Diego.The broad Linda Vista Mesa (elev. 70–120 m) in the central part of coastal San Diego County, previously thought to be a single, relatively undeformed marine terrace of Plio—Pleistocene age, is a series of marine terraces and associated beach ridges most likely formed during sea-level highstands throughout Pleistocene time. The elevations of the terraces in this sequence gradually increase northwestward to the vicinity of San Onofre, indicating minor differential uplift along the central and northern San Diego coast during Pleistocene time. The highest, oldest terraces in the sequence are obliterated by erosional dissection to the northwest where uplift is greatest.Broad, closely spaced (vertically) terraces with extensive beach ridges were the dominant Pleistocene coastal landforms in central San Diego County where the coastal slope is less than 1% and uplift is lowest. The beach ridges die out to the northwest as the broad low terraces grade laterally into narrower, higher, and more widely spaced (vertically) terraces on the high bluffs above San Onofre where the coastal slope is 20–30% and uplift is greatest. At San Onofre the terraces slope progressively more steeply toward the ocean with increasing elevation, indicating continuous southwest tilt accompanying uplift from middle to late Pleistocene time. This southwest tilt is also recorded in the asymmetrical valleys of major local streams where strath terraces occur only on the northeast side of NW—SE-trending valley segments.The deformational pattern (progressively greater uplift to the northwest with slight southwest tilt) recorded in the marine and strath terraces of central and northern coastal San Diego County conforms well with the historic pattern derived by others from geodetic data. It is not known how much of the Santa Ana structural block (between the Newport—Inglewood and the Elsinore fault zones) is affected by this deformational pattern.  相似文献   

3.
This paper reviews recent studies of Holocene coastal uplift in tectonically active areas near the plate boundaries of the western Pacific Rim. Emergent Holocene terraces exist along the coast of North Island of New Zealand, the Huon Peninsula of Papua New Guinea, the Japanese Islands, and Taiwan. These terraces have several features in common. All comprise series of subdivided terraces. The highest terrace is a constructional terrace, underlain by estuarine or marine deposits, and the lower terraces are erosional, cutting into transgressive deposits or bedrock. The highest terrace records the culmination of Holocene sea-level rise at ca. 6–6.5 ka BP. Lower terraces were coseismically uplifted. Repeated major earthquakes have usually occurred at ka intervals and meter-scale uplift. The maximum uplift rate and number of terraces are surprisingly similar, about 4 m/ka and seven to four major steps in North Island, Huon Peninsula, and Japan. Taiwan, especially along the east coast of the Coastal Range, is different, reaching a maximum uplift rate of 15 m/ka with 10 subdivided steps. They record a very rapid uplift. Comparison between short-term (Holocene) and long-term since the last interglacial maximum (sub-stage 5e) uplift rates demonstrates that a steady uplift rate (Huon Peninsula) or accelerated uplift toward the present (several areas of Japan and North Island) has continued at least since isotope sub-stage 5e. Rapid uplift in eastern Taiwan probably started only in the early Holocene, judging from the absence of any older marine terraces. Most of the causative faults for the coastal uplift may be offshore reverse faults, branched from the main plate boundary fault, but some of them are onshore faults, which deformed progressively with time.  相似文献   

4.
阴山位于河套断陷带北部,晚新生代以来,构造运动非常活跃,阴山持续不断隆起,河套随之不断下陷,作为地貌响应之一,阴山河谷中发育了一系列河流阶地。本文通过详细的野外地质调查,结合地貌学、沉积学及年代学方面的研究,厘定了阴山西段河谷普遍发育的4~5级河流阶地;并利用光释光(OSL)测年方法,恢复了其堆积-下切历史,建立了河流阶地年代框架:T4、T3、T2、T1级阶地大致形成时间分别为58.00ka BP、46.25ka BP、32.19ka BP、15.79ka BP之后;分析了本区河流阶地的成因:阴山的构造隆升为本区河流下切提供动力基础,是形成河流阶地的主要驱动力,气候变化通过改变水流流量与沉积物通量的比率影响阶地的堆积-下切行为的转换,是河流阶地形成的重要影响因素;进而利用河流侵蚀速率差异性讨论了晚更新世以来阴山西段的构造隆升模式:51.61~41.28ka BP之间,阴山西段隆升以中部高于东西部的穹窿式差异性隆升为主,23.22ka BP之后,阴山西段的隆升区段差异性减小,趋向于整体隆升。  相似文献   

5.
The NW—SE trending segments of the California coastline from Point Arena to Point Conception (500 km) and from Los Angeles to San Diego (200 km) generally parallel major right-lateral strike-slip fault systems. Minor vertical crustal movements associated with the dominant horizontal displacements along these fault systems are recorded in local sedimentary basins and slightly deformed marine terraces. Typical maximum uplift rates during Late Quaternary time are about 0.3 m/ka, based on U-series ages of corals and amino-acid age estimates of fossil mollusks from the lowest emergent terraces.In contrast, the E–W-trending segments of the California coastline between Point Conception and Los Angeles (200 km) parallel predominantly northward-dipping thrust and high-angle reverse faults of the western Transverse Ranges. Along this coast, marine terraces display significantly greater vertical deformation. Amino-acid age estimates of mollusks from elevated marine terraces along the Ventura—Santa Barbara coast imply anomalously high uplift rates of between 1 and 6 m/ka over the past 40 to 100 ka. The deduced rate of terrace uplift decreases from Ventura to Los Angeles, conforming with a similar trend observed by others in contemporary geodetic data.The more rapid rates of terrace uplift in the western Transverse Ranges reflect N—S crustal shortening that is probably a local accommodation of the dominant right-lateral shear strain along coastal California.  相似文献   

6.
The Quaternary deposits of tectonically stable areas are a powerful tool to investigate high‐frequency climate variations (<10 ka) and to distinguish allogenic and autogenic factors controlling deposition. Therefore, an Upper Pleistocene–Holocene coastal apron‐fan system in north–western Sardinia (Porto Palmas, Italy) was studied to investigate the relations between climate changes, sea‐level fluctuations and sediment source‐supply that controlled its development. The sedimentary sequence records the strong influence of local (wet/dry) and worldwide (sea‐level) environmental variations in the sedimentation and preservation of the deposits. A multi‐disciplinary approach allowed subdivision of the succession into four major, unconformity‐bounded stratigraphic units: U1 U2, U3 and U4. Unit U1, tentatively dated to the warm and humid Marine Isotopic Stage (MIS) 5, consists of sandy, gravelly coastal/beach deposits developed during high sea‐level in low‐lying areas. Unit U2 consists of debris‐flow dominated fan‐deposits (ca 74 ka; MIS 4), preserved as partial fills of small valleys and coves. Unit U2 is mainly composed of reddish silty conglomerate to pebbly siltstones sourced from the Palaeozoic metamorphic inland hills (bedrock), superficially disintegrated during the preceding warm, vegetation‐rich MIS 5. The cold and semi‐arid climate strongly reduced vegetation cover along the valley flanks. Therefore, sediment gravity‐flow processes, possibly activated by rainstorms, led to deposition of debris‐flow dominated fans. Unit U3 consists of water‐flow dominated alluvial‐fan deposits (ca 47 to 23 ka; MIS 3), developed on a slightly inclined coastal plain. Unit U3 is composed of sandstone and sandy conglomerate fed from two main sediment sources: metamorphic inland bedrock and Quaternary bioclastic‐rich shelf‐derived sands. During this cold phase, sea‐level dropped sufficiently to expose bioclastic sands accumulated on the shelf. Frequent climate fluctuations favoured inland aeolian transport of sand during dry phases, followed by reworking of the aeolian bodies by flash floods during wet phases. Bedrock‐derived fragments mixed with water‐reworked, wind‐blown sands led to the development of water‐flow dominated fans. The Dansgaard–Oeschger events possibly associated with sand landward deflation and main fan formations are Dansgaard–Oeschger 13 (ca 47 ka), Dansgaard–Oeschger 8 (ca 39 ka) and Dansgaard–Oeschger 2 (ca 23 ka). No record of sedimentation during MIS 2 was observed. Finally, bioclastic‐rich aeolianites (Unit U4, ca 10 to 5 ka; MIS 1), preserved on a coastal slope, were developed during the Holocene transgression (ca 10 to 5 ka; MIS 1). The studied sequence shows strong similarities with those of other Mediterranean sites; it is, however, one of the few where the main MIS 4 and MIS 3 climatic fluctuations are registered in the sedimentary record.  相似文献   

7.
《Quaternary Science Reviews》2007,26(3-4):536-559
The Ironshore Formation on Grand Cayman is formed of six unconformity-bounded packages (units A–F). Units A, B, C, and D, known from the subsurface in the northeastern part of Grand Cayman, formed during Marine Isotope Stages (MIS) 11(?), 9, 7, and 5e, respectively. Unconformities at the tops of units A, B, and C are highlighted by terra rossa and/or calcrete layers. Strata in core obtained from wells drilled in George Town Harbour and exposed on the west part of Grand Cayman belong to unit D, and the newly defined units E and F. Corals from unit E yielded Th/U ages of ∼104 ka whereas conch shells from unit F gave ages of ∼84 ka. Unit E equates to MIS 5c whereas unit F developed during MIS 5a.Th/U dating of corals and conchs from the Ironshore Formation on the western part of Grand Cayman shows that unit D formed during the MIS 5e highstand whereas units E and F developed in association with highstands at 95–110 ka (MIS 5c) and 73–87 ka (MIS 5a). Unit E, ∼5 m thick in the offshore cores, is poorly represented in onshore exposures. Unit F, which unconformably overlies unit D at most localities, is formed largely of fossil-poor, cross-bedded ooid grainstones. The unconformity at the top of unit D, a marine erosional surface with up to 2.5 m relief, is not characterized by terra rossa or calcrete in the offshore cores or onshore exposures. Unit D formed with a highstand of +6 m asl, whereas units E and F developed when sea level was +2 to +5 asl and +3 to +6 m asl, respectively. Thus, the highstands associated with MIS 5e, 5c, and 5a were at similar elevations.  相似文献   

8.
Late Quaternary landscape development along the Rancho Marino coastal range front in the central‐southern Pacific Coast Ranges of California has been documented using field mapping, surveying, sedimentary facies analysis and a luminescence age determination. Late Quaternary sediments along the base of the range front form a single composite marine terrace buried by alluvial fans. Marine terrace sediments overlie two palaeoshore platforms at 5 m and 0 m altitude. Correlation with the nearby Cayucos and San Simeon sites links platform and marine terrace development to the 125 ka and 105 ka sea‐level highstands. Uplift rate estimates based on the 125 ka shoreline angle are 0.01–0.09 m ka?1 (mean 0.04 m ka?1), and suggest an increase in regional uplift along the coast towards the NW where the San Simeon fault zone intersects the coastline. Furthermore, such low rates suggest that pre‐125 ka uplift was responsible for most of the relief generation at Rancho Marino. The coastal range front landscape development is, thus, primarily controlled by post 125 ka climatic and sea‐level changes. Post 125 ka sea‐level lowering expanded the range front piedmont area to a width of 7.5 km by the 18 ka Last Glacial Maximum lowstand. This sea‐level lowering created space for alluvial fan building along the range front. A 45 ± 3 ka optically stimulated luminescence (OSL) age provides a basal age for alluvial fan building or marks the time by which distal alluvial fan sedimentation has reached 300 m from the range front slope. Fan sedimentation is related to climatic change, with increased sediment supply to the range front occurring during (1) glacial period cold stage maxima and/or (2) the Late Pleistocene–Holocene transition, when respective increases in precipitation and/or storminess resulted in hillslope erosion. Sea‐level rise after the 18 ka lowstand resulted in range front erosion, with elevated localised erosion linked to the higher relief and steeper slopes in the SE. This study demonstrates that late Quaternary coastal range front landscape development is driven by interplay of tectonics, climatic and sea‐level change. In areas of low tectonic activity, climatic and sea‐level changes dominate coastal landscape development. When the sea‐level controlled shoreline is in close proximity to the coastal range front, localised patterns of sedimentation and erosion are passively influenced by the pre‐125 ka topography. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

9.
Coral terrace surveys and U-series ages of coral yield a surface uplift rate of ∼0.5 m/ka for Kisar Island, which is an emergent island in the hinterland of the active Banda arc–continent collision. Based on this rate, Kisar first emerged from the ocean as recently as ∼450 ka. These uplifted terraces are gently warped in a pattern of east–west striking folds. These folds are strike parallel to more developed thrust-related folds of similar wavelength imaged by a seismic reflection profile just offshore. This deformation shows that the emergence of Kisar is influenced by forearc closure along the south-dipping Kisar Thrust. However, the pinnacle shape of Kisar and the protrusion of its metamorphic rocks through the forearc basin sediments also suggest a component of extrusion along shear zones or active doming.Coral encrusts the island coast in many locations over 100 m above sea level. Terrace morphology and coral ages are best explained by recognizing major surfaces as mostly growth terraces and minor terraces as mostly erosional into older terraces. All reliable and referable coral U-series ages determined by MC-ICP-MS correlate with marine isotope stage (MIS) 5e (118–128 ka). The only unaltered coral samples are found below 6 m elevation; however an unaltered Tridacna (giant clam) shell in growth position at 95 m elevation yields a U-series age of 195 ± 31 ka, which corresponds to MIS 7. This age agrees with the best-fit uplift model for the island. Loose deposits of unaltered coral fragments found at elevations between 8 and 20 m yield U-series ages of <100 years and may represent paleotsunami deposits from previously undocumented tectonic activity in the region.  相似文献   

10.
内蒙古狼山山前台地成因及其新构造运动意义   总被引:3,自引:0,他引:3  
内蒙古狼山地处阴山造山带西段、河套断陷带的西北缘,晚新生代以来狼山山前断裂广泛发育、构造抬升强烈。研究晚更新世以来狼山的构造隆升对深入了解河套断陷带的形成演化机制及其隆升过程对河套盆地古地理格局的影响具有重要的意义。狼山山前翁格勒其格和乌兰敖包台地的沉积学、地貌学和年代学研究表明,T1台地形成于47.4 kaB.P.,其沉积物为晚更新世河套古大湖沉积;T2台地形成于69 kaB.P.,其沉积物可能为黄河流经狼山山前的冲积物。台地特征的分析显示,狼山山前台地主要由构造抬升形成,两级台地记录了狼山晚更新世晚期(Qp3-2)以来的构造隆升过程。69 kaB.P.到47.4 kaB.P.翁格勒其格和乌兰敖包地区的隆升速率分别为1.34 m/ka和1.25 m/ka,47.4 kaB.P.以来分别为0.81 m/ka和1.18 m/ka,狼山南段(翁格勒其格地区)构造抬升有减小的趋势。晚更新世晚期(Qp3-2)以来由于狼山的快速隆升,导致黄河河道不断东迁,河套平原的古河道是其迁移的证据。狼山山前湖岸阶地的研究进一步证实晚更新世晚期河套地区发育统一古大湖。  相似文献   

11.
西昆仑山前河流阶地的形成及其构造意义   总被引:4,自引:0,他引:4  
王永  王军  肖序常  迟振卿  王彦斌 《地质通报》2009,28(12):1779-1785
西昆仑山前河流普遍发育6级阶地,利用光释光(OSL)与热释光(TL)方法对采自西昆仑山前几条主要河流的低阶地堆积物样品进行年代测定。研究结果显示,主要河流低阶地的形成具有同时性,构造活动是河流阶地形成的主要控制因素。河流阶地的年龄测定结果表明,西昆仑山前河流阶地最早形成于约1.2Ma,T4、T3、T2阶地分别形成于约39ka、18ka和5ka。多级阶地的形成反映了河流自早更新世中期开始下切于活动抬升的西昆仑山。河流阶地的发育及区域对比揭示了西昆仑第四纪晚期以来的隆升过程,区域构造活动明显地影响河流的形态与行为。河流阶地的分布、地貌特征及区域对比表明,河流阶地的形成与演化受新构造活动、山脉隆升、气候变化等多种因素的影响。  相似文献   

12.
Deformed marine terraces and alluvial deposits record Quaternary crustal deformation along segments of a major, seismically active branch of the San Andreas fault which extends 190 km SSE roughly parallel to the California coastline from Bolinas Lagoon to the Point Sur area. Most of this complex fault zone lies offshore (mapped by others using acoustical techniques), but a 4-km segment (Seal Cove fault) near Half Moon Bay and a 26-km segment (San Gregorio fault) between San Gregorio and Point Ano Nuevo lie onshore.At Half Moon Bay, right-lateral slip and N—S horizontal compression are expressed by a broad, synclinal warp in the first (lowest: 125 ka?) and second marine terraces on the NE side of the Seal Cove fault. This structure plunges to the west at an oblique angle into the fault plane. Linear, joint0controlled stream courses draining the coastal uplands are deflected toward the topographic depression along the synclinal axis where they emerge from the hills to cross the lowest terrace. Streams crossing the downwarped part of this terrace adjacent to Half Moon Bay are depositing alluvial fans, whereas streams crossing the uplifted southern limb of the syncline southwest of the bay are deeply incised. Minimum crustal shortening across this syncline parallel to the fault is 0.7% over the past 125 ka, based on deformation of the shoreline angle of the first terrace.Between San Gregorio and Point Ano Nuevo the entire fault zone is 2.5–3.0 km wide and has three primary traces or zones of faulting consisting of numerous en-echelon and anastomozing secondary fault traces. Lateral discontinuities and variable deformation of well-preserved marine terrace sequences help define major structural blocks and document differential motions in this area and south to Santa Cruz. Vertical displacement occurs on all of the fault traces, but is small compared to horizontal displacement. Some blocks within the fault zone are intensely faulted and steeply tilted. One major block 0.8 km wide east of Point Ano Nuevo is downdropped as much as 20 m between two primary traces to form a graben presently filling with Holocene deposits. Where exposed in the sea cliff, these deposits are folded into a vertical attitude adjacent to the fault plane forming the south-west margin of the graben. Near Point Ano Nuevo sedimentary deposits and fault rubble beneath a secondary high-angle reverse fault record three and possibly six distinct offset events in the past 125 ka.The three primary fault traces offset in a right-lateral sense the shoreline angles of the two lowest terraces east of Point Ano Nuevo. The rates of displacement on the three traces are similar. The average rate of horizontal offset across the entire zone is between 0.63 and 1.30 cm/yr, based on an amino-acid age estimate of 125 ka for the first terrace, and a reasonable guess of 200–400 ka for the second terrace. Rates of this magnitude make up a significant part of the deficit between long-term relative plate motions (estimated by others to be about 6 cm/yr) and present displacement rates along other parts of the San Andreas fault system (about 3.2 cm/yr).Northwestward tilt and convergence of six marine terraces northeast of Ano Nuevo (southwest side of the fault zone) indicate continuous gentle warping associated with right-lateral displacement since early or middle Pleistocene time. Minimum local crustal shortening of this block parallel to the fault is 0.2% based on tilt of the highest terrace. Five major, evenly spaced terraces southeast of Ano Nuevo on the southwest flank of Mt. Ben Lomond (northeast side of the fault zone) rise to an elevation of 240 m, indicating relatively constant uplift (about 0.19 m/ka and southwestward tilt since Early or Middle Pleistocene time (Bradley and Griggs, 1976).  相似文献   

13.
Prior to its disruption during the Anglian glaciation (MIS 12), the Ingham or Bytham River used to flow eastwards across central England and East Anglia into the southern North Sea. It thus had a much larger catchment than any extant river system in Britain; its headwaters may well have been as far away as North Wales and/or NW England. Terrace deposits of this former river system crop out across East Anglia and, as for any other river, can be used to investigate uplift, landscape evolution and the physical properties of the underlying continental crust. However, such an investigation has hitherto been hampered by inconsistencies between different authors' terrace schemes; furthermore, and controversially, one such scheme has formed the basis for the inference that the region was affected by a pre‐Anglian (MIS 16) glaciation. By re‐examining the raw data, the Ingham River deposits are shown to be disposed in three terraces, inferred to date from MIS 16, 14 and 12. The evidence previously attributed to pre‐Anglian glaciation is associated with the youngest of these terraces, and thus marks the MIS 12 (i.e. Anglian) glaciation; the argument for glaciation of the region in MIS 16 is thus an artefact of previous miscorrelation of the terrace deposits. It is inferred that development of the very large Ingham River was synchronous with decapitation of the former ‘Greater Thames’, or ‘High‐level Kesgrave Thames’ river, some time between MIS 18 and MIS 16. Uplift histories at representative localities across East Anglia have been modelled using composite data sets, combining the terrace deposits of the Ingham River and of the post‐Anglian rivers Lark and Waveney. The sites modelled are typefied by much faster uplift in the early Middle Pleistocene than in the late Middle Pleistocene; this effect is shown to be a consequence of the relative thinness (no more than ~7–8 km thick) of the mobile lower‐crustal layer, itself a consequence of the low surface heat flow in the London Platform crustal province. The post‐Early Pleistocene uplift tapers eastward, consistent with the observed downstream convergence of the Ingham and Waveney terraces, and is close to zero near the modern coastline around Lowestoft and Great Yarmouth. Stratigraphic relationships between the Ingham terrace deposits and temperate‐stage marine and terrestrial deposits in this coastal area allow sites to be dated; thus, Pakefield and Corton date from MIS 15, whereas Norton Subcourse dates from MIS 17. The oldest known Lower Palaeolithic sites in the region, characterized by flake artefacts, are Pakefield (MIS 15) and Hengrave (?MIS 14); younger pre‐Anglian sites that have yielded handaxes and/or fossil material of the water vole Arvicola cantiana date from MIS 13. The minimal vertical crustal motion in this coastal area, where temperate‐stage deposits from different climate cycles crop out close to present‐day sea level, does not imply high crustal stability; instead, it indicates a ‘hinge zone’ between the uplifting hinterland and the subsiding depocentre in the southern North Sea.  相似文献   

14.
Quaternary Geology and Faulting in the Damxung-Yangbajain Basin   总被引:7,自引:1,他引:6  
The detailed geological mapping, conducted in the Damxung-Yangbajain basin, shows that there are many types of deposits formed since the Pliocene. The oldest sediments are formed during the Pliocene. The most prominent sediments are three sets of moraines and fluvioglacial deposits. The ESR, U-series and OSL dates indicate they are formed about 700-500 ka B.P., 250-125 ka B.P. and 75-12 ka B.P. respectively and indicate that there are three glacial periods since the mid-Pleistocene in the Nyainqentanglha Range. Along the southeast side of the Nyainqentanglha Range, the main southeast dipping fault zone which bounds the Damxung-Yangbajain Graben on its western edge was mapped. The fault zone consists of three secondary fault zones and their initiation ages that the fault zones became active gradually decrease southeastward. Prominent faulting occurred in about 700-500 ka B.P., 350-220 ka B.P., -140 ka B.P. and 70-50 ka B.P. since the mid-Pleistocene. The height of fault scarps which offset the sediments f  相似文献   

15.
This paper presents the main recent results obtained by the seismological and geophysical monitoring arrays in operation in the rift of Corinth, Greece. The Corinth Rift Laboratory (CRL) is set up near the western end of the rift, where instrumental seismicity and strain rate is highest. The seismicity is clustered between 5 and 10 km, defining an active layer, gently dipping north, on which the main normal faults, mostly dipping north, are rooting. It may be interpreted as a detachment zone, possibly related to the Phyllade thrust nappe. Young, active normal faults connecting the Aigion to the Psathopyrgos faults seem to control the spatial distribution of the microseismicity. This seismic activity is interpreted as a seismic creep from GPS measurements, which shows evidence for fast continuous slip on the deepest part on the detachment zone. Offshore, either the shallowest part of the faults is creeping, or the strain is relaxed in the shallow sediments, as inferred from the large NS strain gradient reported by GPS. The predicted subsidence of the central part of the rift is well fitted by the new continuous GPS measurements. The location of shallow earthquakes (between 5 and 3.5 km in depth) recorded on the on-shore Helike and Aigion faults are compatible with 50° and 60° mean dip angles, respectively. The offshore faults also show indirect evidence for high dip angles. This strongly differs from the low dip values reported for active faults more to the east of the rift, suggesting a significant structural or rheological change, possibly related to the hypothetical presence of the Phyllade nappe. Large seismic swarms, lasting weeks to months, seem to activate recent synrift as well as pre-rift faults. Most of the faults of the investigated area are in their latest part of cycle, so that the probability of at least one moderate to large earthquake (M = 6 to 6.7) is very high within a few decades. Furthermore, the region west to Aigion is likely to be in an accelerated state of extension, possibly 2 to 3 times its mean interseismic value. High resolution strain measurement, with a borehole dilatometer and long base hydrostatic tiltmeters, started end of 2002. A transient strain has been recorded by the dilatometer, lasting one hour, coincident with a local magnitude 3.7 earthquake. It is most probably associated with a slow slip event of magnitude around 5 ± 0.5. The pore pressure data from the 1 km deep AIG10 borehole, crossing the Aigion fault at depth, shows a 1 MPa overpressure and a large sensitivity to crustal strain changes.  相似文献   

16.
This study presents an overview of Middle Pleistocene loess–palaeosol sequences (LPS) in northern France and discusses the palaeoclimatic significance of the pedosedimentary record in the context of western European LPS and of global climatic cycles for the last 750 ka. In this area, the oldest loess deposits (early Middle Pleistocene) are preserved in sedimentary traps (leeward scarps of fluvial terraces and dissolution sinkholes). They result from local deflation processes reworking Pleistocene sandy fluvial deposits or relicts of Tertiary sands. A large extension of typical calcareous loess over the landscape, the Loess Revolution, is then observed during MIS 6, with heavy mineral assemblages testifying to long-distance transport from the polar desert area of the dried eastern Channel. A correlation scheme is proposed between the global records of northern France in continental environments and both global palaeoclimatic records and other main western European LPS. After 30 years of research, northern France LPS stand as a fundamental archive of the impact of interglacial–glacial climatic cycles as well as millennial events. Finally, these works provide a robust chronoclimatic framework for the study of the western European Late Acheulean and Middle Palaeolithic and for the relative dating of the various fluvial terraces that they fossilise.  相似文献   

17.
The technique of optically stimulated luminescence (OSL) dating applied to fluvial sediments provided a geochronological framework of river terrace formation in the middle part of the Dunajec River basin – a reference area for studies of evolution of river valleys in the northern part of the Carpathians (West Carpathians). Fluvial sediments at 18–90 m above valley bottoms were dated in the valleys of the Dunajec River and one of its tributaries. The resulting ages range from 158.9±8.3 to 12.2±1.3 ka. This indicates that some of the terrace sediments were deposited much later than previously assumed on the grounds of a combined morphostratigraphical and climatostratigraphical approach. The OSL‐based chronostratigraphy of terrace formation consists of seven separate phases of fluvial aggradation, separated by periods of incision and lateral erosion. Some of the ages determined correspond to warm stages of the Pleistocene – Marine Isotope Stage 3 (MIS 3) and MIS 5 – demonstrating that some terraces were formed during interstadial or interglacial periods. The results provide a key for evaluating rates of neotectonic uplift, allowing us to decipher the response of a fluvial system to climate change within the context of the glacial–interglacial scheme.  相似文献   

18.
Electron spin resonance (ESR) dating of coral has become an efficient geochronological tool in supporting morphostratigraphic studies carried out on Barbados during the last 10 years. The newly developed approach for DE determination (DEDmax plot procedure) improves the precision of ESR dating of Pleistocene coral, and therefore permits differentiation between the main marine isotope stages (MIS) 5, 7, 9 and 11 and also between sub-stages 5e, c and a. This study compares results of ESR and TIMS Uranium series dating (U/Th) of emergent Last Interglacial coral reef terraces from Barbados, and presents some implications for the timing and extent of sea-level changes during marine isotope stages (MIS) 5e, c and a. Both dating methods indicate a distinct formation of up to three coral reef terraces during MIS 5e, at approximately 132 ka (ESR) to 128 ka (U/Th), at c. 128 ka (ESR) and at c. 120 ka (U/Th) to 118 ka (ESR). It is also highly probable that three reef terraces were developed during MIS 5c between c. 103 ka (U/Th) and 105 ka (ESR). The formation of two separate coral reefs during MIS 5a is recognized for the first time on Barbados, with an age estimate for the older MIS 5a-2 reef of 85 ka (ESR) or 84 ka (U/Th), and an age estimate for the younger MIS 5a-1 reef terraces of 74 ka (ESR) or 77 ka (U/Th). Assuming a constant uplift rate of 0.276 m/ka at the south coast of Barbados, sea-level reached its maximum during MIS 5e-3 and MIS 5e-2 between 132 and 128 ka ago. After this, sea-level declined reaching a level of c. −11 m below present sea level approx. 118–120 ka ago (MIS 5e-1). During the substage 5c sea-level was generally lower than in substage 5e. It reached relative maxima at c. −13, −20 and −25 m during MIS 5c (approx. 105 ka) and formed three distinct coral reef terraces probably in relative short time intervals. For the first time, a double sea-level oscillation is recognized on Barbados during MIS 5a: an early MIS 5a-2 (c. 85 ka) with a sea-level places at approx. −21 m, and a late MIS 5a-1 sub-stage (c. 74 or 77 ka) with a sea-level at approx. –19 m below present sea level.  相似文献   

19.
The cyanobacterium Rivularia haematites has calcified to form unusually large (up to 10 m high) bioherms in the Pleistocene Gulf of Corinth. Today R. haematites calcifies only in freshwater environments but these Gulf of Corinth bioherms have a brackish affinity, limited areal extent, and occur within marine deposits. Field relations and preliminary U-series dating suggest a marine isotope stage (MIS) 5e age for the bioherms. This age is compatible with published MIS 5e ages for corals in the marine sediments above the bioherms and is consistent with their current elevation based on average uplift rates. Bioherm growth during MIS 5e constrains their formation during a time of near sea-level highstand when the Gulf of Corinth was marine. Growth cavities in the bioherms are encrusted by brackish tolerant coralline algae. Field mapping of the MIS 5e highstand palaeoshoreline shows the bioherms grew in water <16 m deep. Mg contents of the bioherm calcites, and associated coralline algal skeletons, are both much lower than expected for marine MIS 5e carbonates. They are best explained if the calcites precipitated from brackish fluids with Mg/Ca ratios below 2, implying at least 60% input of freshwater with low Mg/Ca ratio. Sr isotopes confirm a strong input of groundwater that had partially equilibrated with Mesozoic limestones. The limited areal extent of the bioherms and their close association with karstified fault scarps suggest that they formed in shallow sea water where freshwater submarine springs delivered CaCO3 saturated water that promoted rapid calcification of cyanobacteria. Rapid calcification and strong degassing of CO2 from the spring water resulted in disequilibrium stable isotope compositions for the calcites.  相似文献   

20.
《Quaternary Science Reviews》2007,26(22-24):2844-2863
We present the first overall synthesis of the terrace deposits of the River Euphrates in SE Turkey, northern Syria, and western Iraq, combining new observations with summaries of data sets from different reaches that had previously been independently studied on a piecemeal basis. The largest number of terraces observed in any reach of the Euphrates is 11, in western Iraq, where this river leaves the uplands of the Arabian Platform. In many other localities not more than 5 or 6 terraces have previously been identified, although we infer that some of these are resolvable into multiple terraces. These terraces are typically formed of gravel, principally consisting of Neotethyan ophiolite and metamorphic lithologies transported from Anatolia. Although older gravels are also evident, most of the Euphrates terrace deposits appear, given the chronologies that have been established for different parts of the study region, to date from the late Early Pleistocene onwards, the cold stages most often represented being interpreted as marine Oxygen Isotope Stages 22, 16, 12, 8, 6 and/or 4, and 2. The formation of this terrace staircase reflects regional uplift of the Arabian Platform. Estimated amounts of uplift since the Middle Pliocene decrease southeastward from almost 300 m in SE Turkey to ∼150 m in western Iraq. Uplift rates increased in the late Early Pleistocene, the uplift estimated since then decreasing from ∼110 m in SE Turkey to a minimum of ∼50 m in the Syria–Iraq border region, then increasing further downstream across western Iraq to ∼70 m. Numerical modelling of this uplift indicates a relatively thin mobile lower-crustal layer, consistent with the low surface heat flow in the Arabian Platform.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号