首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
In this paper, U‐Pb zircon, monazite and rutile data for crystalline rocks deposited as clasts in the Upper Viséan conglomerates at the eastern margin of the Bohemian Massif are reported. U‐Pb data of spherical zircon from three different granulite clasts yielded a mean age of 339.0 ± 0.7 Ma (±2σ), while oval and spherical grains of another granulite pebble define a slightly younger date of 337.1 ± 1.1 Ma. These ages are interpreted as dating granulite facies metamorphism. Thermochronology and the derived pressure–temperature (P–T) path of the granulite pebbles reflect two‐stage exhumation of the granulites. Near‐to‐isothermal decompression from at least 44 km to mid‐crustal depths of around 22 km was followed by a near‐isobaric cooling stage based on reaction textures and geothermobarometry. Minimum average exhumation rate corresponds to 2.8–4.3 mm year?1. The extensive medium‐pressure/high‐temperature overprint on granulite assemblages is dated by U‐Pb in monazite at c. 333 Ma. This thermal event probably has a close link to generation and emplacement of voluminous Moldanubian granites, including the cordierite granite present in clasts. This granite was emplaced at mid‐crustal levels at 331 ± 3 Ma (U‐Pb monazite), whereas the U‐Pb zircon ages record only a previous magmatic event at c. 378 Ma. Eclogites and garnet peridotites normally associated with high‐pressure granulites are absent in the clasts but exotic subvolcanic and volcanic members of the ultrapotassic igneous rock series (durbachites) of the Bohemian Massif have been found in the clasts. It is therefore assumed that the clasts deposited in the Upper Viséan conglomerates sampled a structurally higher tectonic unit than the one that corresponds to the present denudation level of the Moldanubicum of the Bohemian Massif. The strong medium‐temperature overprint on granulites dated at c. 333 Ma is attributed to the relatively small size of the entirely eroded bodies compared with the presently exposed granulites.  相似文献   

2.
U-Pb zircon and rutile multigrain ages and 207Pb/206Pb zircon evaporation ages are reported from high-pressure felsic and metapelitic granulites from northern Bohemia, Czech Republic. The granulites, in contrast to those from other occurrences in the Bohemian Massif, do not show evidence of successive HT/MPLP overprints. Multigrain size fractions of nearly spherical, multifaceted, metamorphic zircons from three samples are slightly discordant and yield a U-Pb Concordia intercept age of 348 ± 10 Ma, whereas single zircon evaporation of two samples resulted in 207Pb/206Pb ages of 339 ± 1.5 and 339 ± 1.4 Ma, respectively. A rutile fraction from one sample has a U-Pb Concordia intercept age of 346 ± 14 Ma. All ages are identical, within error, and a mean age of 342 ± 5 Ma was adopted to reflect the peak of HP metamorphism. Because rutile has a lower closing temperature for the U-Pb isotopic system than zircon, the results and the P-T data imply rapid uplift and cooling after peak metamorphism. The above age is identical to ages for high-grade metamorphism reported from the southern Bohemian Massif and the Granulite Massif in Saxony. It can be speculated that all these granulites were part of the same lower crustal unit in early Carboniferous, being separated later due to crustal stacking and subsequent late Variscan orogenic collapse.  相似文献   

3.
U–Pb and Pb–Pb zircon ages for metamorphic zircons from granulites in the Saxonian granulite complex are reported, using the SHRIMP ion microprobe, conventional multigrain and single-gain techniques and the evaporation method. This is complemented by a Pb–Pb evaporation age for a post-granulite granite emplaced into the schist mantle around the granulites during uplift of the complex. We also demonstrate that zircon ages are not reset during high-grade metamorphism, as commonly argued, but have a very high closure temperature and usually preserve the isotopic composition reflecting the time of their formation. Multifaceted zircons from four granulite samples that probably grew close to the peak of high-grade metamorphism yielded identical U–Pb and Pb–Pb ages of ~340?Ma which support previously published data and unambiguously show that the granulites formed during a lower Carboniferous event and not in the early Palaeozoic or Precambrian as previously suggested. Older cores in some of the metamorphic zircons reveal early Palaeozoic components at 470–485?Ma that we interpret as ages reflecting magmatic crystallization of the granulite precursors. One sample suggests an inherited component as old as ~1700?Ma. The post-granulite granite has a Pb–Pb evaporation age of 333.1±1.0?Ma, and the short time interval between granulite metamorphism and granite intrusion implies that uplift, crustal extension and cooling of the granulite complex occurred rapidly after peak metamorphic conditions.  相似文献   

4.
《Gondwana Research》2009,15(4):675-685
Chemical Th–U–total Pb (CHIME) dating of monazite by electron probe microanalyzer (EPMA) and proton microprobe (PIXE) was carried out on felsic granulites from Stary Gierałtów, Poland, which represent part of the Orlica-Śnieżnik Dome in the NE Bohemian Massif. Analyzed monazite is characterized by mosaic zoning rather than simple core-to-rim growth, and strontium contents of up to 750ppm. An isochron age of 347 ± 13Ma represents timing of amphibolite-facies metamorphism, in agreement with previously published estimates.  相似文献   

5.
Correct interpretation of zircon ages from high-grade metamorphic terrains poses a major challenge because of the differential response of the U–Pb system to metamorphism, and many aspects like pressure–temperature conditions, metamorphic mineral transformations and textural properties of the zircon crystals have to be explored. A large (c. 450?km2) coherent migmatite complex was recently discovered in the Bohemian Massif, Central European Variscides. Rocks from this complex are characterized by granulite- and amphibolite-facies mineral assemblages and, based on compositional and isotopic trends, are identified as the remnants of a magma body derived from mixing between tonalite and supracrustal rocks. Zircon crystals from the migmatites are exclusively large (200–400?μm) and yield 207Pb/206Pb evaporation ages between 342–328?Ma and single-grain zircon fractions analysed by U–Pb ID-TIMS method plot along the concordia curve between 342 and 325?Ma. High-resolution U–Pb SHRIMP analyses substantiate the existence of a resolvable age variability and yield older 206Pb/238U ages (342–330?Ma, weighted mean age?=?333.6?±?3.1?Ma) for inner zone domains without relict cores and younger 206Pb/238U ages (333–320?Ma, weighted mean age?=?326.0?±?2.8?Ma) for rim domains. Pre-metamorphic cores were identified only in one sample (206Pb/238U ages at 375.0?±?3.9, 420.3?±?4.4 and 426.2?±?4.4?Ma). Most zircon ages bracket the time span between granulite-facies metamorphism in the Bohemian Massif (~345?Ma) and the late-Variscan anatectic overprint (Bavarian phase, ~325?Ma). It is argued that pre-existing zircon was variously affected by these metamorphic events and that primary magmatic growth zones were replaced by secondary textures as a result of diffusion reaction processes and replacement of zircon by dissolution and recrystallization followed by new zircon rim growth. Collectively, the results show that the zircons equilibrated during high-grade metamorphism and record partial loss of radiogenic Pb during post-peak granulite events and new growth under subsequent anatectic conditions.  相似文献   

6.
High‐pressure kyanite‐bearing felsic granulites in the Bashiwake area of the south Altyn Tagh (SAT) subduction–collision complex enclose mafic granulites and garnet peridotite‐hosted sapphirine‐bearing metabasites. The predominant felsic granulites are garnet + quartz + ternary feldspar (now perthite) rocks containing kyanite, plagioclase, biotite, rutile, spinel, corundum, and minor zircon and apatite. The quartz‐bearing mafic granulites contain a peak pressure assemblage of garnet + clinopyroxene + ternary feldspar (now mesoperthite) + quartz + rutile. The sapphirine‐bearing metabasites occur as mafic layers in garnet peridotite. Petrographical data suggest a peak assemblage of garnet + clinopyroxene + kyanite + rutile. Early kyanite is inferred from a symplectite of sapphirine + corundum + plagioclase ± spinel, interpreted to have formed during decompression. Garnet peridotite contains an assemblage of garnet + olivine + orthopyroxene + clinopyroxene. Thermobarometry indicates that all rock types experienced peak P–T conditions of 18.5–27.3 kbar and 870–1050 °C. A medium–high pressure granulite facies overprint (780–820 °C, 9.5–12 kbar) is defined by the formation of secondary clinopyroxene ± orthopyroxene + plagioclase at the expense of garnet and early clinopyroxene in the mafic granulites, as well as by growth of spinel and plagioclase at the expense of garnet and kyanite in the felsic granulite. SHRIMP II zircon U‐Pb geochronology yields ages of 493 ± 7 Ma (mean of 11) from the felsic granulite, 497 ± 11 Ma (mean of 11) from sapphirine‐bearing metabasite and 501 ± 16 Ma (mean of 10) from garnet peridotite. Rounded zircon morphology, cathodoluminescence (CL) sector zoning, and inclusions of peak metamorphic minerals indicate these ages reflect HP/HT metamorphism. Similar ages determined for eclogites from the western segment of the SAT suggest that the same continental subduction/collision event may be responsible for HP metamorphism in both areas.  相似文献   

7.
Zircon ages are reported for three Moldanubian amphibolite grade orthogneisses from the southern Bohemian Massif obtained by conventional U/Pb analyses. For two of these orthogneisses, conventional U/Pb data are supported by ion microprobe single zircon ages or single grain evaporation data. The amphibolite grade orthogneisses, occurring in three small tectonic lenses within the Varied Group close to the South Bohemian Main Thrust, are of tonalitic, granodioritic or quartz dioritic composition.Conventional bulk size fraction and ion microprobe analyses of nearly euhedral zircons from a metatonalite, erroneously interpreted as a metagreywacke in a previous study, yielded an upper Concordia intercept age of 2048 ± 12 Ma. The well preserved euhedral grain shapes of the zircons suggest crystallization from a magmatic phase, and the upper Concordia intercept age is now interpreted as reflecting a magmatic event at that time. The age of this rock is compatible with the conventional zircon data and the (207Pb/206Pb)* single grain evaporation result from two further orthogneisses providing intrusion ages of 2 060 ± 12, 2 104 ± 1 and 2 061 ± 6 Ma, respectively. For one sample a concordant U/Pb age for sphene of 355 ± 2 Ma defines the age of amphibolite facies metamorphism. The upper Concordia intercept ages of three orthogneisses constitute the first direct evidence for the presence of early Proterozoic crust under the supracrustal cover in the southern part of the Bohemian Massif. Correspondence to: J. I. Wendt  相似文献   

8.
Deformation of granulite-facies rocks in the Moldanubian Zone of the southern Bohemian Massif is expressed in two intersecting planar fabrics - steeply disposed (S1) and flat-laying (S2) - which correspond to two deformation stages (D1) and (D2). The existing Sm-Nd garnet ages from banded granulite gneisses, new U-Pb zircon data from deformed granite intrusions within the granulite gneisses, and the P-T and field structural relations constrain the ages and P-T conditions of the two deformation phases. The early deformation (D1) was associated with a HP-HT metamorphic stage with a minimum age of ca. 354 Ma which was followed by a near-isothermal decompression. A concordant U-Pb zircon age of 318ǃ Ma dates the emplacement of intrusions of deformed granite into the granulite gneisses and constrains deformation phase (D2). This phase was associated with an LP-HT metamorphism dated in the region at ca. 340-330 Ma. The available structural and isotopic data indicate that granulites in the southern Bohemian Massif were exhumed from lower to middle crust during compression. The structural relations and P-T-t data for the studied granulites are consistent with their exhumation by near-vertical extrusion of the softened orogenic root.  相似文献   

9.
The exhumation of eclogite facies granulites (Omp–Plg–Grt–Qtz–Rt) in the Rychleby Mts, eastern Czech Republic, was a localised process initiated by buckling of crustal layers in a thickened orogenic root. Folding and post‐buckle flattening was followed by the main stage of exhumation that is characterized by vertical ductile extrusion. This process is documented by structural data, and the vertical ascent of rocks from a depth of c. 70 to c. 35 km is documented by metamorphic petrology. SHRIMP 206Pb/238U and 207Pb/206Pb evaporation zircon ages of 342 ± 5 and 341.4 ± 0.7 Ma date peak metamorphic conditions. The next stage of exhumation was associated with sideways flat thrusting associated with lateral viscous spreading of granulites and surrounding rocks over indenting adjacent continental crust at a depth of c. 35–30 km. This stage was associated with syntectonic intrusion of a granodiorite sill at 345–339 Ma, emplaced at a crustal depth of c. 25 km. The time required for cooling of the sill as well as for heating of the country rocks brackets this event to a maximum of 250 000 years. Therefore, similar ages of crystallization for the granodiorite magma and the peak of eclogite facies metamorphism of the granulite suggest a very short period of exhumation, limited by the analytical errors of the dating methods. Our calculations suggest that the initial exhumation rate during vertical extrusion was 3–15 mm yr?1, followed by an exhumation rate of 24–40 mm yr?1 during further uplift along a magma‐lubricated shear zone. The extrusion stage of exhumation was associated with a high cooling rate, which decreased during the stage of lateral spreading.  相似文献   

10.
The Orlica–?nie?nik complex (OSC) is a key geological element of the eastern Variscides and mainly consists of amphibolite facies orthogneisses and metasedimentary rocks. Sporadic occurrences of eclogites and granulites record high‐pressure (HP) to ultrahigh‐pressure (UHP) metamorphic conditions. A multimethod geochronological approach (40Ar–39Ar, Rb–Sr, Sm–Nd, U–Pb) has been used to gain further insights into the polymetamorphic evolution of eclogites and associated country rocks. Special attention was given to the unresolved significance of a 370‐ to 360 Ma age group that was repeatedly described in previous studies. Efforts to verify the accuracy of c. 370 Ma K–Ar phengite and biotite dates reported for an eclogite and associated country‐rock gneiss from the location Nowa Wie? suggest that these dates are meaningless, due to contamination with extraneous Ar. Extraneous Ar is also considered to be responsible for a significantly older 40Ar–39Ar phengite date of c. 455 Ma for an eclogite from the location Wojtowka. Attempts to further substantiate the importance of 370–360 Ma zircon dates as an indicator for a melt‐forming high‐temperature (HT) episode did not provide evidence in support of anatectic processes at this time. Instead, SHRIMP U–Pb zircon dating of leucosomes and leucocratic veins within both orthogneisses and (U)HP granulites revealed two age populations (490–450 and 345–330 Ma respectively) that correspond to protolith ages of the magmatic precursors and late Variscan anatexis. The results of this study further underline the importance of Late Carboniferous metamorphic processes for the evolution of the OSC that comprise the waning stages of HP metamorphism and lower pressure HT overprinting with partial melting. Eclogites and their country rocks provided no chronometric evidence for an UHP and ultrahigh‐temperature episode at 387–360 Ma, as recently suggested for granulites from the OSC, based on Lu–Hf garnet ages ( Anczkiewicz et al., 2007 ).  相似文献   

11.
http://www.sciencedirect.com/science/article/pii/S1674987112000564   总被引:10,自引:0,他引:10  
High-pressure(HP) granulites widely occur as enclaves within tonalite-trondhjemitegranodiorite (TTG) gneisses of the Early Precambrian metamorphic basement in the Shandong Peninsula, southeast part of the North China Craton(NCC).Based on cathodoluminescence(CL),laser Raman spectroscopy and in-situ U-Pb dating,we characterize the zircons from the HP granulites and group them into three main types:inherited(magmatic) zircon,HP metamorphic zircon and retrograde zircon.The inherited zircons with clear or weakly defined magmatic zoning contain inclusions of apatites,and 207Pb/206Pb ages of 2915—2890 Ma and 2763—2510 Ma,correlating with two magmatic events in the Archaean basement. The homogeneous HP metamorphic zircons contain index minerals of high-pressure metamorphism including garnet,clinopyroxene.plagioclase,quartz,rutile and apatite,and yield 207Pb/206Pb ages between 1900 and 1850 Ma,marking the timing of peak HP granulite fades metamorphism.The retrograde zircons contain inclusions of orthopyroxene.plagioclase.quartz,apatite and amphibole.and yield the youngest 207Pb/206Pb ages of 1840—1820 Ma among the three groups,which we correlate to the medium to low-pressure granulite fades retrograde metamorphism.The data presented in this study suggest subduction of Meso- and Neoarchean magmatic protoliths to lower crust depths where they were subjected to HP granulite facies metamorphism during Palaeoproterozoic(1900—1850 Ma).Subsequently, the HP granulites were exhumated to upper crust levels,and were overprinted by medium to low-pressure granulite and amphibolite facies retrograde event at ca.1840—820 Ma.  相似文献   

12.
The Eger Complex in the northwestern Bohemian Massif consists mainly of amphibolite facies granitic gneisses containing a subordinate volume of felsic granulites. Microstructural changes and modelling of metamorphic conditions for both rock types suggest a short‐lived static heating from ~760 to ~850 °C at a constant pressure of ~16 kbar, which led to the partial granulitization of the granitoid rocks. Detailed study of the protolith zircon modifications and modelling of the Zr re‐distribution during the transition from amphibolite to granulite facies suggests that the development of c. 340 Ma old zircon rims in the granulite facies sample is the result of recrystallization of older (c. 475 Ma) protolith zircon. This study suggests that the partial granulitization is a result of a short exposure of the Eger Complex metagranitoids to a temperature of ~850 °C at the base of an arc/fore‐arc domain and their subsequent rapid exhumation during the Lower Carboniferous collision along the western margin of the Bohemian Massif.  相似文献   

13.
A structural, petrological and geochronological (U‐Th‐Pb of zircon and monazite) study reveals that the lower crust sequences of the Variscan high‐grade basement cropping out between Solenzara and Porto Vecchio, south‐east Corsica (France) have been tectonically juxtaposed along with middle crustal rocks during the extrusion of the orogenic root of the Variscan chain. We propose that a system of high‐temperature, orogen‐parallel shear zones that developed under a transpressive dextral tectonic regime caused the exhumation of the entire sequence. This tectonic complex is thus made up of rocks having undergone different P–T conditions (eclogite‐?, high‐pressure granulite facies and amphibolite facies) at different times, reflecting the progressive foreland migration of the orogenic front. The Solenzara granulites were derived from burial of continental crust to high‐pressure (1.8–1.4 GPa) and high‐ to ultrahigh‐temperature conditions (900–1000 °C) during the Variscan convergence: U–Pb ELA‐ICPMS zircon dating constrained the timing of this metamorphism at c. 360 Ma. The gneisses cropping out at Porto Vecchio are middle crustal‐level rocks that reached their peak temperature conditions (700–750 °C at <1.0 GPa) at c. 340 Ma. The diachronism of the metamorphic events, the foliation patterns and their geometry suggest that the granulites were exhumed to middle crustal levels through channel flow tectonics under continuous compression. The amphibolite facies gneisses of Porto Vecchio and the granulites of Solenzara were accreted through the development of a major dextral mylonitic zone forming under amphibolite facies conditions: in situ monazite isotope dating (ELA‐ICPMS) revealed that this deformation occurred at c. 320 Ma and was accompanied by the emplacement of syntectonic high‐K melts. A final HTLP static overprint, constrained at 312–308 Ma by monazite U‐Th‐Pb isotope dating, is related to the emplacement of the igneous products of the Sardinia‐Corsica batholith and marks the transition from the Variscan orogenic event to the Permian extension.  相似文献   

14.
Hf isotopic data of minerals in a mafic pyroxene granulite from the southern Bohemian Massif, together with their major and trace element composition and petrological observations were used to decipher the metamorphic history and behaviour of zircon in the granulite. The Hf isotopic composition in the minerals was used to estimate whether the decompression reaction, namely the consumption of garnet and rutile, could have provided Zr for the formation of newly grown metamorphic zircon. The age of the decompression reaction indicated by the evolution of Hf isotopes in garnet and orthopyroxene is between 333 and 331 Ma, i.e. ca. 7 Ma younger than the available U–Pb zircon ages from the Moldanubian granulites and than the newly obtained 343 ± 2 Ma laser ablation ICP-MS U–Pb age of zircons. The combination of bulk and in-situ Hf isotopic data, major and trace element composition and petrological modeling of P–T evolution revealed that the formation of zircons can not be related to the decompression phase of the evolution of the mafic granulites. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

15.
Chemical Th–U–total Pb (CHIME) dating of monazite by electron probe microanalyzer (EPMA) and proton microprobe (PIXE) was carried out on felsic granulites from Stary Gierałtów, Poland, which represent part of the Orlica-Śnieżnik Dome in the NE Bohemian Massif. Analyzed monazite is characterized by mosaic zoning rather than simple core-to-rim growth, and strontium contents of up to 750ppm. An isochron age of 347 ± 13Ma represents timing of amphibolite-facies metamorphism, in agreement with previously published estimates.  相似文献   

16.
Based on new evidence the Sulu orogen is divided from south‐east to north‐west into high‐pressure (HP) crustal slice I and ultrahigh‐pressure (UHP) crustal slices II and III. A combined set of mineral inclusions, cathodoluminescence images, U‐Pb SHRIMP dating and in situ trace element and Lu‐Hf isotope analyses was obtained on zircon from orthogneisses of the different slices. Zircon grains typically have three distinct domains that formed during crystallization of the magmatic protolith, HP or UHP metamorphism and late‐amphibolite facies retrogression, respectively: (i) oscillatory zoned cores, with low‐pressure (LP) mineral inclusions and Th/U > 0.38; (ii) high‐luminescent mantles (Th/U < 0.10), with HP mineral inclusions of Qtz + Grt + Arg + Phe + Ap for slice I zircon and Coe + Grt + Phe + Kfs + Ap for both slices II and III zircon; (iii) low‐luminescent rims, with LP mineral inclusions and Th/U < 0.08. Zircon U‐Pb SHRIMP analyses of inherited cores point to protolith ages of 785–770 Ma in all seven orthogneisses. The ages recorded for UHP metamorphism and subsequent retrogression in slice II zircon (c. 228 and c. 215 Ma, respectively) are significantly older than those of slice III zircon (c. 218 and c. 202 Ma, respectively), while slice I zircon recorded even older ages for HP metamorphism and subsequent retrogression (c. 245 and c. 231 Ma, respectively). Moreover, Ar‐Ar biotite ages from six paragneisses, interpreted as dating amphibolite facies retrogression, gradually decrease from HP slice I (c. 232 Ma) to UHP slice II (c. 215 Ma) and UHP slice III (c. 203 Ma). The combined data set suggests decreasing ages for HP or UHP metamorphism and late retrogression in the Sulu orogen from south‐east to north‐west. Thus, the HP‐UHP units are interpreted to represent three crustal slices, which underwent different subduction and exhumation histories. Slice I was detached from the continental lithosphere at ~55–65 km depth and subsequently exhumed while subduction of the underlying slice II continued to ~100–120 km depth (UHP) before detachment and exhumation. Slice III experienced a similar geodynamic evolution as slice II, however, both UHP metamorphism and subsequent exhumation took place c. 10 Myr later. Magmatic zircon cores from two types of orthogneiss in UHP slices II and III show similar mid‐Neoproterozoic crystallization ages, but have contrasting Hf isotope compositions (εHf(~785) = ?2.7 to +2.2 and ?17.3 to ?11.1, respectively), suggesting their formation from distinct crustal units (Mesoproterozoic and Paleoproterozoic to Archean, respectively) during the breakup of Rodinia. The UHP and the retrograde zircon domains are characterized by lower Th/U and 176Lu/177Hf but higher 176Hf/177Hf(t) than the Neoproterozoic igneous cores. The similarity between UHP and retrograde domains indicates that late retrogression did not significantly modify chemical and isotopic composition of the UHP metamorphic system.  相似文献   

17.
Polyphase metamorphic paragneisses from the drill core of the continental deep drilling project (KTB; NW Bohemian Massif) are characterized by peak pressures of about 8 kbar (medium‐P metamorphism) followed by strain accumulation at T >650 °C, initially by dislocation creep and subsequently by diffusion creep. U–Pb monazite ages and Rb–Sr whole‐rock data vary in the dm‐scale, indicating Ordovician and Mid‐Devonian metamorphic events. Such age variations are closely interconnected with dm‐scale domainal variations of microfabrics that indicate different predominant deformation mechanisms. U–Pb monazite age variations dependent on microfabric domains exceed grain‐size‐dependent age variations. In ‘mylonitic domains’ recording high magnitudes of plastic strain, dislocation creep and minor static annealing, monazite yields concordant and near concordant Lower Ordovician U–Pb ages, and the Rb–Sr whole‐rock system shows isotopic disequilibrium at an mm‐scale. In ‘mineral growth/mobilisate domains’, in which diffusive mass transfer was a major strain‐producing mechanism promoting diffusion creep of quartz and feldspar, and in which static recrystallization (annealing) reduced the internal free energy of the strained mineral aggregates, concordant U–Pb ages are Mid‐Devonian. Locally, in such domains, Rb–Sr dates among mm3‐sized whole‐rock slabs reflect post‐Ordovician resetting. In ‘transitional domains’, the U–Pb‐ages are discordant. We conclude that medium‐P metamorphism occurred at 484±2 Ma, and a second metamorphic event at 380–370 Ma (Mid‐Devonian) caused progressive strain in the rocks. Dislocation creep at high rates, even at high temperatures, does not reset the Rb–Sr whole‐rock system, while diffusion creep at low rates and stresses (i.e. low ε/Deff ratios), static annealing and the presence of intergranular fluids locally assist resetting. At temperatures above 650 °C, diffusive Pb loss did not reset Ordovician U–Pb monazite ages, and in domains of overall high imposed strain rates and stresses, resetting was not assisted by dynamic recrystallization/crystal plasticity. However, during diffusion creep at low rates, Pb loss by dissolution and precipitation (‘recrystallization’) of monazite produces discordance and Devonian‐concordant U–Pb monazite ages. Hence, resetting of these isotope systems reflects neither changes of temperature nor, directly, the presence or absence of strain.  相似文献   

18.
Granulite facies rocks from the northernmost Harts Range Complex (Arunta Inlier, central Australia) have previously been interpreted as recording a single clockwise cycle of presumed Palaeoproterozoic metamorphism (800–875 °C and >9–10 kbar) and subsequent decompression in a kilometre‐scale, E‐W striking zone of noncoaxial, high‐grade (c. 700–735 °C and 5.8–6.4 kbar) deformation. However, new SHRIMP U‐Pb age determinations of zircon, monazite and titanite from partially melted metabasites and metapelites indicate that granulite facies metamorphism occurred not in the Proterozoic, but in the Ordovician (c. 470 Ma). The youngest metamorphic zircon overgrowths from two metabasites (probably meta‐volcaniclastics) yield 206Pb/238U ages of 478±4 Ma and 471±7 Ma, whereas those from two metapelites yield ages of 463±5 Ma and 461±4 Ma. Monazite from the two metapelites gave ages equal within error to those from metamorphic zircon rims in the same rock (457±5 Ma and 462±5 Ma, respectively). Zircon, and possibly monazite ages are interpreted as dating precipitation of these minerals from crystallizing melt within leucosomes. In contrast, titanite from the two metabasites yield 206Pb/238U ages that are much younger (411±5 Ma & 417±7 Ma, respectively) than those of coexisting zircon, which might indicate that the terrane cooled slowly following final melt crystallization. One metabasite has a second titanite population with an age of 384±7 Ma, which reflects titanite growth and/or recrystallization during the 400–300 Ma Alice Springs Orogeny. The c. 380 Ma titanite age is indistinguishable from the age of magmatic zircon from a small, late and weakly deformed plug of biotite granite that intruded the granulites at 387±4 Ma. These data suggest that the northern Harts Range has been subject to at least two periods of reworking (475–460 Ma & 400–300 Ma) during the Palaeozoic. Detrital zircon from the metapelites and metabasites, and inherited zircon from the granite, yield similar ranges of Proterozoic ages, with distinct age clusters at c. 1300–1000 and c. 650 Ma. These data imply that the deposition ages of the protoliths to the Harts Range Complex are late Neoproterozoic or early Palaeozoic, not Palaeoproterozoic as previously assumed.  相似文献   

19.
An eclogitemafic granulite occurs as a rare boudin within a felsic kyaniteK‐feldspar granulite in a low‐strain zone. Its boundary is marked by significant metasomatism–diffusional gain of potassium at the centimetre‐scale, and probable infiltration of felsic melt on a larger scale. This converted the eclogitemafic granulite into an intermediate‐composition, ternary‐feldspar‐bearing granulite. Based on inclusions in garnet, the peak P–T conditions of the original eclogite are 18 kbar at 850950 °C, with later matrix re‐equilibration at 12 kbar and 950 °C. Four samples from the transition of the eclogitemafic granulite through to the intermediate granulite were studied. In the eclogite, REE patterns in the garnet core show no Eu anomaly, compatible with crystallization in the absence of plagioclase and consistent with eclogite facies conditions. Towards the rim of garnet, LREE decrease, and a weak negative Eu anomaly appears, reflecting passage into HP granulite facies conditions with plagioclase present. The rims of garnet next to ternary feldspar in the intermediate granulite show the lowest LREE and deepest Eu anomalies. Zircon from the four samples was analysed by LASS (laser ablation–split‐stream inductively coupled plasma–mass spectrometry). It shows U–Pb ages from 404 ± 4.0 to 331 ± 3.3 Ma, with a peak at 340 ± 4.0 Ma corresponding to the likely exhumation of the rocks to 12 kbar. Older ages from zircon with steep HREE patterns indicate the minimum age of the protolith, and ages <360 ± 4.0 Ma are interpreted to correspond to the eclogite facies metamorphism. Only some zircon grains ≤350 ± 4.0 Ma have flat HREE patterns, suggesting that these are primarily modified protolith grains, rather than new zircon crystallized in the eclogite‐ or granulite facies. The metasomatic processes that converted the eclogitemafic granulite to an intermediate granulite may have facilitated zircon modification as zircon in the intermediate granulite has flat HREE and ages of 340 ± 4.0 Ma. The difference between the oldest and youngest ages with flat REE patterns indicates a 16 ± 5.6 Ma period of zircon modification in the presence of garnet.  相似文献   

20.
As a window of insight into the lower crust, high pressure granulite has received much attention since last decade. Yushugou high pressure granulite-peridotite Complex was located in the northeast margin of Southern Tianshan, NW China. Previous ideas agreed that the peridotite unit in Yushugou, combined with the ultramafic rocks in Tonghuashan and Liuhuangshan, represent an ophiolite belt. However, the metamorphic evolution and tectonic mechanism of the Yushugou high pressure(HP) granulite remain controversial. Petrological investigations and phase equilibrium modelling for two representative felsic granulite samples suggest two stages metamorphism of the rocks in Yushugou Complex. Granulite facies metamorphism(Stage Ⅰ) with P-T conditions of 9.8–10.4 kbar at 895–920°C was recorded by the porphyroblastic garnet core; HP granulite facies metamorphism(Stage Ⅱ) shows P-T conditions of 13.2–13.5 kbar at 845–860°C, based on the increasing grossular and decreasing pyrope contents of garnet rims. The Yushugou HP felsic granulites have recorded an anticlockwise P-T path, characterized by the temperature decreasing and pressure increasing simultaneously. The LA-ⅠCP-MS isotopic investigations on zircons from the felsic granulite show that the protolith ages of the granlulites are ~430 Ma, with two age groups of ~390 Ma and 340–350 Ma from the metamorphic rims of zircon, indicating the Stage Ⅰ and Ⅱ metamorphic events, respectively. A tectonic model was proposed to interpret the processes. The investigated felsic granulite was derived from deep rooted hanging wall, with Stage Ⅰ granulite facies metamorphism of ~390 Ma, which may be related to the Devonian arc magmatic intrusion; Stage Ⅱ HP granulite facies metamorphism(340–350 Ma) may due to the involvement of being captured into the subducting slab and experienced the high pressure metamorphism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号