首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Linok Formation is made up of clayey and carbonate strata, 180–300 m thick, formed at the terminal Middle Riphean on the northwestern margin of the Siberian Platform. In the modern structure, it is exposed in the lower part of the Turukhansk Uplift section. The sediments accumulated in the distal part of the epiplatformal basin as a symmetrical transgressive–regressive cycle. Its lower part represents a deep-water basin environment with the mixed carbonate–clayey sedimentation, whereas the upper part reflects the origination and evolution of a carbonate platform. Microstructures discussed in this work suggest not only the ancient existence of benthic microbial assemblages (mats) but their active influence upon the facies pattern of sediments as well. The influence was determined by the ability of mat-forming communities to produce carbonate sediments under certain environmental conditions. The analysis of the facies succession suggested the absence of an appreciable influx of carbonate material to the basin from other sources. Based on the carbonate generation ability, one can distinguish three (carbonate-free, low-productive, and high-productive) groups of microbial communities. Groups 1 and 2 represent deep-water basin mats, whereas group 3 represents relatively shallow-water platformal microbial–mineral systems. The carbonate productivity of communities is inversely proportional to the depth of their dwelling and the relative rate of clayey sedimentation. The morphological reconstruction of microbiolite structures showed that the structures in basins and platforms greatly differed in terms of the size of elements. The ability of microbial communities to generate carbonate could be realized only within large ecosystems.  相似文献   

2.
A new way of formation of the problematic Molar Tooth (MT) structures, which, along with stromatolites, could be considered as a “visiting card” of the Riphean, was examined on the example of carbonate sediments of the Riphean Sukhaya Tunguska Formation from the Turukhansk Uplift, Siberia. These structures were formed due to the consequent replacement of oozy constituent of carbonate sediments with calcitic microsparite in the course of diagenesis with substantial shift of the dynamic equilibrium toward the solution in the sediment—porous solution—microsparite system. An excess of soluble magnesium significantly hampering precipitation of crystal cores of the future calcitic microsparite could be one of the possible causes of the shift. It is suggested that magnesium mole fraction of the porous solutions was related to the early dissolution of the metastable high-Mg calcite of the silty sediment brought from the areas of active stromatolite formation. The facies occurrence of the MT-structures indicates that they occurred in descending trails of the most productive zones of carbonate platforms tapering toward the basin. The synchronism of stratigraphic trends of the MT-structures and stromatolites in the Precambrian resulted from the evolution of carbonate-productive microbe-mineral systems which were the immediate suppliers of fine-grained carbonate sediment into external zones of carbonate platforms.  相似文献   

3.
Structures and textures of the peloidal wackestones, as well as size, shape, and composition of peloidal grains, from the Mesoproterozoic (Middle Riphean) Sukhaya Tunguska carbonate platform in the Turukhansk Uplift (Siberia) are considered. It is shown that these grains formed in the course of diagenesis were closely associated with the microsparitic replacement and the formation of molar tooth (MT) structures. Diagenetic transformations of rocks were related to the activity of anaerobic microbial communities inside the buried carbonate silt layers. The microbial activity during diagenesis was governed by the carbonate sediment composition and conservation mechanism of the high-molecular organic matter of primary producers therein, since this organic matter was the nutritious substrate for the primary anaerobe communities.  相似文献   

4.
Structure of the lower subformation of the Khaipakh Formation from the upper portion of the Middle Riphean Olenek Uplift (northern Siberia) is considered. It has been noted for the first time that the glauconite-containing sandy-aleurolitic rocks (hereafter, sandstones and siltstones) in sections of the Khorbusuonka River include glauconitite laminas and siderite lenses that are distinct marker horizons of this stratigraphic interval. It has been shown that the glauconitites are weakly cemented and almost completely composed of glauconite grains and glauconite cement. The paper presents detailed mineralogical and structural-crystallochemical characteristics of Al-glauconite in specimens with different degrees of cementation (solid and loose rocks). The paper discusses genetic features of glauconite grains and their secondary alterations. Comparative characteristics of glauconite from solid and loose rocks from both Khaipakh sections and previously studied terrigenous rocks of the Arymas and Totta formations (Middle Riphean Olenek Uplift and Uchur-Maya region) are given. Suitability of glauconite extracted from the glauconitites for isotope-geochronological investigations is estimated. Literature and original data on glauconitites formed in situ in Precambrian and Phanerozoic sections are compared. It is concluded that their primary macroscopic and microscopic features are very similar.  相似文献   

5.
Geology of Ore Deposits - Data on the chemical composition and a degree of roundness of detrital tourmaline from the Chetlasskaya, Bystrinskaya, Vymskaya, and Kislorucheyskaya groups of Upper...  相似文献   

6.
Silicified carbonates of the latest Mesoproterozoic Sukhaya Tunguska Formation, northwestern Siberia, contain abundant and diverse permineralized microfossils. Peritidal environments are dominated by microbial mats built by filamentous cyanobacteria comparable to modern species of Lyngbya and Phormidium. In subtidal to lower intertidal settings, mat-dwelling microbenthos and possible coastal microplankton are abundant. In contrast, densely woven mat populations with few associated taxa characterize more restricted parts of tidal flats; the preservation of vertically oriented sheath bundles and primary fenestrae indicates that in these mats carbonate cementation was commonly penecontemporaneous with mat growth. Eoentophysalis mats are limited to restricted environments where microlaminated carbonate precipitates formed on or just beneath the sediment surface. Most microbenthic populations are cyanobacterial, although eukaryotic microfossils may occur among the simple spheroidal cells interpreted as coastal plankton. Protists are more securely represented by large (up to 320 micrometers in diameter) but poorly preserved acritarchs in basinal facies. The Sukhaya Tunguska assemblage contains 27 species in 18 genera. By virtue of their stratigraphic longevity and their close and predictable association with specific paleoenvironmental conditions, including substrates, Proterozoic cyanobacteria support a model of bacterial evolution in which populations adapt rapidly to novel environments and, thereafter, resist competitive replacement. The resulting evolutionary pattern is one of accumulation and stasis rather than the turnover and replacement characteristic of Phanerozoic plants and animals.  相似文献   

7.
Siderite microconcretions in the glauconite-bearing clayey-silty rock member of the lower sub-formation of the Khaipakh Formation (Middle Riphean, Olenek Uplift) are scrutinized for the first time. In two Khorbusuonka River sections located with a spacing of 12 km, the microconcretions occur as lenses and interlayers. Together with glauconitites, they serve as a distinct marker horizon of this stratigraphic interval. Their structures, morphologies, diffraction characteristics, chemical compositions, and isotope data are considered. They were examined comprehensively with modern investigation methods (X-ray diffraction, scanning electron microscopy with the application of local microprobe analysis, and others). Structural-morphological types of microconcretions are identified. Calculation of the chemical composition of carbonates based on numerous microprobe analyses made it possible to reveal different degrees of mineral heterogeneity in each type in terms of the distribution of macro- and microlevel isomorphous trace-elements and to refine the character of their secondary alterations at different stages of lithogenesis. The results of oxygen and hydrogen isotopic studies are presented for algal dolomites and limestones from the Middle and Lower Riphean sections in the Olenek Uplift (Debengda, Arymass, and Kyutingda formations). They demonstrated that siderites are similar to limestones and dolomites in terms of the oxygen isotopic composition (δ18O = 17.6–24.8, δ18Oav = 20.0 ± 2.4‰), but are marked by low δ13C values (from ?6.3 to ?12.0‰ (δ13Cav = ?8.6 ± 2.1‰), suggesting the formation of microconcretions during early diagenesis. Siderite microconcretions were formed in the clayey-silty sediment slightly after glauconite, whose grains could serve as crystallization centers and (or) be entrapped during the growth of separate microcrystals. The role of catalyzers during the formation of both glauconite and siderite was played by bacterial communities, whose poorly preserved remnants have been detected not only in the studied member of the lower Khaipakh subformation, but also above and below the section. Separate types of microconcretion could be formed during the replacement of oncolites by siderite.  相似文献   

8.
Silicified shallow-water marine carbonate deposits of the Proterozoic Debengda Formation (the Olenek Uplift, northeastern Siberia) contain well preserved microfossils. One or two distinct assemblages consists only of filamentous Siphonophycus microfossils, which are presumably the extracellular sheaths of hormogonium cyanobacteria. The other is dominated by coccoidal microfossils, first by the entophysalidacean cyanobacterium Eoentophysalis. The coccoidal assemblage was recognized in the layered carbonate precipitate structures of a superficially stromatolite appearance. Despite its simple composition, the microfossil assemblage supports the generally accepted Mesoproterozoic (middle Riphean) age of the Debengda Formation. This conclusion corresponds to the available data on isotopic geochronology, and to the composition of columnar stromatolites from the Dehengda Formation. Both the structural features and carbon isotopic composition of its rocks are comparable to those of rocks of known Mesoproterozoic age, but differ from the characteristics of definitely Neoproterozoic deposits.  相似文献   

9.
Lithology and Mineral Resources - The results of studying the material composition of sandy rocks from Cenozoic deposits in the West Sakhalin Terrane are considered. It has been established that...  相似文献   

10.
Clay subfractions (SFs) of <0.1, 0.1–0.2, 0.2–0.3, 0.3–0.6, 0.6–2 and 2–5 μm separated from Middle Riphean shales of the Debengda Formation are studied using the TEM, XRD, K-Ar and Rb-Sr isotopic methods. The oxygen and hydrogen isotope compositions in the SFs are studied as well. The low-temperature illite-smectite is dominant mineral in all the SFs except for the coarsest ones. The XRD, chemical and isotopic data imply that two generations of authigenic illite-smectite different in age are mixed in the SFs. The illite crystallinity index decreases in parallel with size diminishing of clay particles. As compared to coarser SFs, illite of fine-grained subfractions is enriched in Al relative to Fe and Mg, contains more K, and reveals higher K/Rb and Rb/Sr ratios. The Rb-Sr age calculated by means of the leachochron (“inner isochron”) method declines gradually from 1254-1272 Ma in the coarsest SFs to 1038-1044 Ma in finest ones, while the K-Ar age decreases simultaneously from 1225–1240 to 1080 Ma. The established positive correlation of δ18O and δD values with dimensions of clay particles in the SFs seems to be also consistent with the mixing systematics. The isotopic systematics along with data on mineral composition and morphology lead to the conclusion that mixedlayer illite-smectite was formed in the Debengda shales during two periods 1211–1272 and 1038–1080 Ma ago. The first period is likely close to the deposition time of sediments and corresponds to events of burial catagenesis, whereas the second one is correlative with the regional uplift and changes in hydrological regime during the pre-Khaipakh break in sedimentation.  相似文献   

11.
The geochemical composition of Cretaceous terrigenous rocks of the West Sakhalin terrane is analyzed and their paleogeodynamic interpretation is suggested. It is revealed that the rocks are characterized by the low maturity of clastic material. They contain fragments of both volcanomictic and sialic material and in composition correspond to graywackes, being petrogenic or “first cycle” rocks. The geochemical data were generalized and interpreted on the basis of their comparison with compositions of the present-day and ancient rocks formed in known geodynamic settings. The obtained results indicate that terrigenous rocks of the terrane were formed in a pull-apart basin at an active continental margin. The source area, which supplied clastic material in this sedimentation basin during the Berriasian–Danian, included a sialic land made up of granite-metamorphic and sedimentary rocks and the mature (deeply dissected) ensialic Moneron–Samarga island arc, which was accreted to the continental margin at the moment of basin initiation. Sediments were accumulated in general along the continent–ocean boundary against the background of large-scale sinistral transform strike-slip movements of the Izanagi Plate relative to the Eurasian continent.  相似文献   

12.
The Pb-Pb age of phosphorite concretions of the Zigaza-Komarovo Formation, which composes the intermediate horizons of the Riphean stratotype of the South Urals, was determined in fractions resulting from the stepwise dissolution of concretions in 0.1 N, 0.5 N, and 1 N HCl. The determination of the Sr isotopic composition in phosphate fractions was favorable for rejection the fractions polluted with extraneous material. On the 207Pb/204Pb-206Pb/204Pb diagram, the isochron based on 31 points corresponds to 1330 ± 20 Ma (MSWD = 1.12), which is in agreement with the stratigraphic position of the Zigaza-Komarovo Formation. The decreased μ2 value of 9.57 for the phosphorite concretions relative to that of the average earthly lead based on the Stacey-Kramers model (9.74) is related to the rocks with an admixture of mantle lead, which occur in the run-off area of the Zigaza-Komarovo sediments.  相似文献   

13.
General trends of the formation of Middle Riphean fine-grained aluminosiliciclastic rocks in the Bashkir Meganticlinorium are considered. It is shown that Yurmatinian shales do not contain any significant pyroclastic admixture. Judging from the relatively constant Th/Cr ratio throughout the Yurmatinian section, the tectonic regime in the study territory during the early Middle Riphean is suggested to be rather stable. The main paleoclimatic indices and indicators of the pelitic material maturity (CIA, CIW, IVC, PIA, and Ce/Y) suggest that paleodrainage systems in the early Middle Riphean were dominated by humid climate that gave way to the arid or semiarid type in the middle Yurmatinian. The low Mo/Mn ratio and some other indicators of redox conditions in shales from all Yurmatinian lithostratigraphic units show that no explicit reducing conditions existed in the basin during the early Middle Riphean. The shales were characterized by the increase in K2O/Al2O3 ratio, gradual enrichment in REE, and growth of LREE/HREE and LaN/YbN ratios toward the middle Yurmatinian, indicating the gain of an appreciable amount of slightly weathered arkosic aluminosiliciclastic material in the sedimentary basin about 1220–1200 Ma ago. The REE distribution and the UCC- and AUC-normalized shale compositions suggest that the eroded upper crust was compositionally close to the UCC. The occurrence of mafic and ultramafic rocks is also inferred. Data points of Yurmatinian shales plotted in the Cr–Ni, Eu/Eu*–GdN/YbN, and (La/YB)N–YbN diagrams are localized between the fields of Upper Archean and post-Archean rocks or within the latter field. Hence, post-Archean igneous and metamorphic complexes prevailed in paleodrainage systems of the early Middle Riphean. This is also confirmed by the model Nd ages.  相似文献   

14.
商河地区沙一中广泛发育陆源碎屑与湖相碳酸盐的混合沉积。本文将混积层系、混积岩和呈零星分布的一起定义为广义的混合沉积,并且对于混合沉积来讲,没有一个具体的组分含量标准,只要该沉积物(岩)的确为陆源碎屑与碳酸盐的沉积,而非成岩作用或以后改造的假混合就可认定为混合沉积。研究区内混合沉积特征为陆源碎屑与湖相碳酸盐以较高的频率交互沉积和同一岩层内陆源碎屑组分与碳酸盐组分混合沉积,混合沉积的类型分为三类,即渐变式混合沉积、突变式混合沉积和复合式混合沉积,其中复合式沉积分为复合式沉积Ⅰ和复合式沉积Ⅱ,研究区内复合式沉积Ⅰ发育,复合式沉积Ⅱ不发育。并且本文从研究区混合沉积的区域地质背景、岩石学特征、沉积环境等方面进行了详细分析,建立了混合沉积相模式,进而对混合沉积的控制因素进行了讨论。  相似文献   

15.
商河地区沙一中广泛发育陆源碎屑与湖相碳酸盐的混合沉积。本文将混积层系、混积岩和呈零星分布的一起定义为广义的混合沉积,并且对于混合沉积来讲,没有一个具体的组分含量标准,只要该沉积物(岩)的确为陆源碎屑与碳酸盐的沉积,而非成岩作用或以后改造的假混合就可认定为混合沉积。研究区内混合沉积特征为陆源碎屑与湖相碳酸盐以较高的频率交互沉积和同一岩层内陆源碎屑组分与碳酸盐组分混合沉积,混合沉积的类型分为三类,即渐变式混合沉积、突变式混合沉积和复合式混合沉积,其中复合式沉积分为复合式沉积Ⅰ和复合式沉积Ⅱ,研究区内复合式沉积Ⅰ发育,复合式沉积Ⅱ不发育。并且本文从研究区混合沉积的区域地质背景、岩石学特征、沉积环境等方面进行了详细分析,建立了混合沉积相模式,进而对混合沉积的控制因素进行了讨论。  相似文献   

16.
Recent lithological and geophysical studies of Riphean and Lower Vendian sedimentary rocks in the Kresttsy and Mid-Russian (Soligalich) aulacogens resulted in the recognition of four stages in the evolution of the East European Platform in the Late Proterozoic: (1) late Early Proterozoic–Early Riphean stage (formation of the protoplatform cover); (2) Middle Riphean stage (rifting only at platform margins); (3) late Middle Riphean–initial late Riphean stage (formation of the paleoplatform cover related to the existence of the epi-Grenville Rodinia supercontinent, which united all continents of the Earth at that time); (4) latest Riphean–early Vendian stage (rifting and origination of the Central Russian aulacogen system during the breakup of Rodinia and Cadomian orogeny.  相似文献   

17.
豫西云梦山组发育了大量的微生物成因沉积构造(MISS)。在地层纵剖面上,毫米级的深色沉积物层和浅色的石英颗粒层交替出现,形成典型的微生物席纹层,代表着微生物席在沉积表面的多次生长和埋藏。深色层包含有泥质物和细砂-粉砂颗粒,被认为是先前微生物席的残留区;浅色层则是较纯净的石英颗粒,由物理沉积作用形成。进一步对纹层区的薄片...  相似文献   

18.
It is shown that glauconite–quartz sandstones of the Upper Riphean Päräjarvi Formation (Srednii Peninsula, Murmansk coast of the Barents Sea) are subjected to deep catagenesis. They contain abundant chlorite that replaces globular and platy Al-glauconite to a variable extent. Crystallochemical characteristics and microtextures of chlorite are described. Genesis of platy Al-glauconite, as well as globular and platy chlorite, is discussed.  相似文献   

19.
Microbial mats, mainly dominated by filamentous algae Calothrix and Oscillatoria, are well developed in Tibetan hot springs. A great number of fossil microorganisms, which existed as algae lamination in thermal depositional cesium-bearing geyserite in this area, are identified as Calothrix and Oscillatoria through microexamination and culture experiments. These microbial mats show the ability to accumulate cesium from spring water to the extent of cesium concentration of 0.46–1.03% cell dry weight, 900 times higher than that in water, and capture large numbers of cesium-bearing opal grain. Silicon dioxide colloid in spring water replaces and fills with the organism and deposits on it to form algae laminated geyserite after dehydration and congelation. Cesium in the microbial mats and opal grain is then reserved in the geyserite. Eventually, cesium-bearing algae laminated geyserite is formed. Study on cesium distribution in geyserite also shows that cesium content in algae lamination, especially in heavily compacted algae lamination, is higher than in the opal layer. For geyserite with no algae lamination or other organism structure, which is generally formed in spring water with low silicon content, cesium accumulation and cesium-bearing opal grain assembled by the microbial mats are also indispensable. After the microbial mats accumulating cesium from spring water, silicon dioxide colloid poorly replaces and fills with the organism to form opal grain-bearing tremellose microbial mats. The shape and structure of the organisms are then destroyed, resulting in cesium-bearing geyserite with no algae lamination structure after dehydration and congelation. It is then concluded that microbial mats in the spring area contribute to the enrichment of cesium in the formation of cesium-bearing geyserite, and a biological genesis of the geyserite, besides of the physical and chemical genesis, is likely.  相似文献   

20.
Studied assemblages of diverse organic-walled microfossils separated from the Arymas and Debengda formations of the Olenek Uplift include several paleobiological groups of microorganisms. Sufficiently large morphotypes of the first group are identified with remains of cyanobacteria. Morphotypes of variable spiral structure, which dwelt in association or in symbiosis with cyanobionts, are attributed to the same bacterial community. The other group includes a series of different acritarch genera whose characters suggest their affinity with green algae of the order Desmidiales. It is very likely that this group coexisted on siliciclastic shoals with large ancestral forms of the present-day brown algae. Several microfossil taxa have been known before from the Neoproterozoic deposits only. With due regard for the relatively gradual accumulation of sedimentary succession lacking large hiatuses and for the regular series of K-Ar dates characterizing three Riphean formations of the Olenek Uplift, it is possible to suggest that there was the Arymas-Debengda-Khaipakh cycle of long-lasted, almost uninterrupted sedimentation within the time span of 1250–900 Ma. It is also admissible that age ranges of some Late Precambrian microfossils are much larger than their distribution intervals postulated formerly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号