首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lithofacies zoning is described for the first time for the Neo- and Eopleistocene of the Bering Sea. Four lithofacies sedimentation zones are distinguished: (I) terrigenous; (II) siliceous–terrigenous; (III) siliceous, and (IV) volcanoterrigenous ones. Corresponding maps were treated using Ronov volumetric method to quantify sedimentation parameters for distinguished lithofacies zones (subzones) and types of Pleistocene sediments. It was revealed that terrigenous sediments predominate over other sediments. Accumulation of the terrigenous sediments was more intense (by 1.4 times) in the Neopleistocene than in the Eopleistocene. The sedimentation rate of siliceous sediments of the Bowers Ridge in the Eopleistocene was two times higher than in the Neopleistocene.  相似文献   

2.
The work discusses peculiarities of sedimentation during the onset and middle phase of the postrift subsidence in the southern part of the East European Platform corresponding to the Early and Middle Carboniferous epochs, which were marked by an accumulation of the most contrasting (in lithology and formation setting) sediments: coals and radiolaria-bearing domanikoid rocks. These are the early-middle Visean (Early Carboniferous) and late Bashkirian-early Moscovian (Middle Carboniferous) epochs. It should be noted that precisely these epochs were marked by a substantial renewal in faunal and floral communities, which also resulted from the new phase of the postrift subsidence. Radiolaria-bearing domanikoid facies were formed in the marine basin with normal salinity. The reconstruction of sedimentation settings indicates that shallow-water sediments (algal limestones) of the inner shelf were separated from deep-sea domanikoid facies of the outer shelf and, probably, continental slope by a chain of bioherms with an apron of organogenic-detrital limestones or spiculebearing facies.  相似文献   

3.
In the Ordovician time, the transform margin of the Gornyi Altai region consisted of two bathymetric stages: (1) shelf and upper parts of continental slope; (2) foothills and lower parts of continental slope. The first stage includes the shallow-water facies complexes (terrigenous and terrigenous-carbonate schlieren and variegated flyschoid), while the second stage is composed of deep-water (black shale terrigenous) and subflysch gray (carbonate terrigenous) complexes. Model series of the facies complexes established in our work should be taken into account during the geodynamic analysis of fold zones.  相似文献   

4.
Morphological features of the columnar-stratiform stromatolites, which resemble the cone-in-cone structure, from Neogene lacustrine sediments of northern Vietnam are analyzed. Their structural-textural peculiarities and interrelations with the host terrigenous sediments of a stromatolitic buildup are discussed. It is shown that stages of the growth of columns are recorded in the succession of vertically oriented carbonate plates, which form stromatolites, and in the serrate surface protrusions of the plates at their contacts with host sediments. It is established that replacement of the columnar stromatolites by the stratiform varieties in the section can be related to variations in the intensity of terrigenous material influx to the sedimentation basin. Stratiform stromatolites were formed during relatively slow accumulation of sedimentary material. Appearance of the columnar varieties is attributed to intensification of sedimentation.  相似文献   

5.
杨朝青  庆安 《沉积学报》1990,8(2):59-66
云南曲靖中泥盆统曲靖组中发育了陆源碎屑与海相碳酸盐的混合沉积。混合沉积发生在以泥为背景沉积物的海湾中,系由突发性事件造成,属间断混合。主要表现为:在同一沉积环境背景上,陆源碎屑与灰泥和生物屑混合掺杂而形成混合组分沉积物。本文还对混合组分岩石的分类命名作了讨论,并命名了混合沉积的典型产物“混积岩”  相似文献   

6.
A comparative analysis of Pleistocene pelagic sedimentation in the Pacific, Indian, and Atlantic oceans revealed the predominance of terrigenous sediments, while carbonate and siliceous sediments are second and third in abundance. During Pleistocene, the mass of terrigenous and siliceous sediments increased, while that of carbonates slightly decreased. The latter is related to the fact that the bottom waters aggressive to carbonates became increasingly generated at high latitudes, thus exceeding an increase in the productivity of plankton carbonate organisms. The peculiarities of accumulation of the main types of bottom sediments in the Pleistocene are considered. It is concluded that the Pleistocene geological history of continents, especially neotectonic uplift and continental glaciations, played an important role in pelagic sedimentation.  相似文献   

7.
The Rottnest Shelf is a narrow, wave-dominated open shelf on the passive continental margin of southwest Australia, adjacent to a hinterland of low relief and sluggish drainage. High physical energy, low nutrients in cool subtropical waters, and rapid postglacial transgression have limited carbonate productivity, restricted grain types, and reworked the transgressed surface to form only a thin ( < 1 m) blanket of carbonate and relict sediment, with little terrigenous influx. Subaerial weathering of the shelf during Late Pleistocene emergence was followed by postglacial drowning, erosional shoreface retreat, and generation of a transgressive lag deposit. Establishment of the warm temperate biota, dominated by bryozoans and calcareous red algae, resulted in bioerosion of the shelf disconformity surface and generation of hardground veneers and thin skeletal carbonate sheets. Linear topographic ridges of Pleistocene limestone partition the shelf into systems with varying physical energy, biota and sediment supply. The Holocene sediments are a shallowing-upward coastal sequence; wave-ripple cross-stratified grainstone (Inner Shelf); and bioturbated bryozoan grainstone to skeletal wackestone (Outer Shelf to Upper Continental Slope), characterised by seaward fining and increasing percentages of planktic carbonate sediment.

Given sufficient time, the Rottnest Shelf could recover from drowning, and form blanket-like skeletal carbonates. Thin ( < 1 m) lags overlying disconformities, which underlie shallowing-upward coastal and shelf sediments a few metres thick, will be generated by glacio-eustatic cycles of sedimentation (105 y duration). Thick (several tens of metres) sediment bodies, composed of wave-rippled to bioturbated skeletal carbonate sediment with a temperate biota, will be formed during longer term (1–10 My) sedimentation cycles. Such cycles have characterised passive margins during the Cenozoic. The Rottnest Shelf thus provides a facies model for temperate shelf sedimentation along passive continental margins.  相似文献   


8.
Results of research into recent sediments and their distribution in Lake Baikal are presented. Five areas with different mechanisms of sedimentation have been recognized: (1) deep-water plains with pelagic mud and turbidites; (2) littoral zones without turbidites; (3) underwater ridges (rises) with hemipelagic mud accumulated under calm sedimentation conditions; (4) delta (fan) areas near the mouths of large rivers, where sediments consist mainly of terrigenous material; and (5) shallow Maloe More with poorly sorted terrigenous material and abundant sand. The rate of sedimentation differs considerably in different Baikal areas. The highest rates appear near the mouths of large rivers, lower ones occur in the deep lake basins, and the minimum rates are developed on underwater ridges. A map of the distribution of Holocene sediments in Baikal has been compiled for the first time. The obtained results show that the bottom morphology significantly determines the type of sediments in the lake.  相似文献   

9.
Shelf‐edge deltas play a critical role in shelf‐margin accretion and deepwater sediment delivery, yet much remains to be understood about the detailed linkage between shelf edge and slope sedimentation. The shelf edge separates the flat‐lying shelf from steeper slope regions, and is observable in seismic data and continuous outcrops; however, it is commonly obscured in non‐continuous outcrops. Defining this zone is essential because it segregates areas dominated by shelf currents from those governed by gravity‐driven processes. Understanding this linkage is paramount for predicting and characterizing associated deepwater reservoirs. In the Tanqua Karoo Basin, the Permian Kookfontein Formation shelf‐slope clinothems are well‐exposed for 21 km along depositional strike and dip. Two independent methods identified the shelf‐edge position, indicating that it is defined by: (i) a transition from predominantly shelf‐current to gravitational deposits; (ii) an increase in soft‐sediment deformation; (iii) a significant gradient increase; and (iv) clinothem thickening. A quantitative approach was used to assess the impact of process‐regime variability along the shelf edge on downslope sedimentation. Facies proportions were quantified from sedimentary logs and photographic panels, and integrated with mapped key surfaces to construct a stratigraphic grid. Spatial variability in facies proportions highlights two types of shelf‐edge depositional zones within the same shelf‐edge delta. Where deposition occurred in fluvial‐dominated zones, the slope is sand rich, channelized with channels widening downslope, and rich in collapse features. Where deltaic deposits indicate considerable tidal reworking, the deposits are thin and pinch‐out close to the shelf edge, and the slope is sand poor and lacks channelization. Amplification of tidal energy, and decrease in fluvial drive on the shelf, coincides with a decrease in mouth bar and shelf‐edge collapse, and a lack of channelization on the slope. This analysis suggests that process‐regime variability along the shelf edge exercised significant control on shelf‐edge progradation, slope channelization and deepwater sediment delivery.  相似文献   

10.

The Great Barrier Reef represents the largest modern example of a mixed siliciclastic‐carbonate system. The Burdekin River is the largest source of terrigenous sediment to the lagoon and is therefore an ideal location to investigate regional patterns of mixed sedimentation. Sediments become coarser grained and more poorly sorted away from the protection of eastern headlands, with mud accumulation focused in localised ‘hot spots‘ in the eastern portion of embayments protected from southeast trade winds. The middle shelf has a variable facies distribution but is dominated by coarse carbonate sand. North of Bowling Green Bay, modern coarse carbonate sand and relict quartzose sand occur. Shore‐normal compositional changes show Ca‐enrichment and Al‐dilution seawards towards the reef, and shore‐parallel trends show Al‐dilution westwards (across bays) along a Ca‐depleted mixing line. Intermediate siliciclastic‐carbonate sediment compositions occur on the middle shelf due to the abundance of relict terrigenous sand, a pattern that is less developed on the narrow northern Great Barrier Reef shelf. Rates of sediment deposition from seismic evidence and radiochemical tracers suggest that despite the magnitude of riverine input, 80–90% of the Burdekin‐derived sediment is effectively captured in Bowling Green Bay. Over millennial time‐scales, stratigraphic controls suggest that sediment is being preferentially accreted back to the coast.  相似文献   

11.
文章通过对辽河群上百条实测剖面中岩石类型进行了加权平均统计,得出了辽河群中各种岩石类型的百分含量;对辽河群中已有的上千组岩石化学数据进行了筛选,选取具有代表性的94组数据,用以对辽河群原岩建造恢复和形成构造环境的讨论。认为辽河群的原岩建造为巨厚的陆源沉积碎屑岩—内源沉积碳酸盐岩(夹少量火山岩)建造,具有典型的大陆架沉积特征;这在威尔逊旋回中属于成年期洋盆(大西洋)阶段所独具的沉积特征,这个洋盆暂且称之为辽吉古元古洋。  相似文献   

12.
Temperate shelf carbonate sediments in the Cenozoic of New Zealand   总被引:1,自引:0,他引:1  
Shelf limestones are widely distributed in New Zealand Cenozoic sequences and are especially well developed in the Oligocene. Detailed field and laboratory work on several Oligocene occurrences, and reconnaissance field-work at most other sections have elucidated the major characteristics of the environment, texture, composition and diagenesis of these sediments. Several generalizations emerge which contrast with the commonly accepted characteristics of shallow marine carbonate sedimentation established from studies of tropical and subtropical deposits. The limestones are either calcarenites or, less commonly, calcilutites and, in general, these two lithologies are mutually exclusive, both in time and space. The allochems and interparticle carbonate mud (where developed) in calcarenitic limestones consist almost exclusively of fragmented skeletal material derived primarily from bryozoan, echinodermal, benthic foraminiferal, barnacle, brachiopod, bivalve and coralline red algal tests. The calcilutitic limestones consist mainly of whole and disintegrated tests of pelagic foraminifers and coccolithophorids. Non-skeletal carbonate components such as ooids, pellets and aggregates are conspicuously absent from both lithologies. Reefal structures are also absent or rare and are mainly oyster reefs. The limestones commonly contain a significant content of terrigenous material and/or glauconite and at the stratigraphic level the limestones are intimately associated with terrigenous formations. The distribution of the carbonate sediments has been governed mainly by rate of supply of river-derived terrigenous material, by subsequent dispersal patterns of this material over the shelf, and by current sorting. As a consequence of selective grain transport, bedding in the limestones is often defined by the cyclic alternation on a wide range of scales of carbonate units that are relatively enriched and relatively impoverished in terrigenous material. The primary (carbonate) mineralogy of the carbonate sediments was completely dominated by magnesium calcite and/or calcite with only small amounts of aragonite and no dolomite or associated evaporite minerals. The metastable magnesium calcite and aragonite grains were probably altered on, or close below, the shallow sea-floor. Among other factors, transformation was encouraged by the absorption of magnesium in pore waters by montmorillonitic clays and by the complete oxidation of all organic matter in the bottom sediments. Magnesium calcite grains were stabilized by texturally non-destructive incongruent dissolution, but aragonite was often dissolved without trace from the sediment, especially in grainstones. Thus submarine diagenesis has been characterized by selective dissolution phenomena. Cementation by granular and syntaxial rim orthosparite of calcite and/or ferroan calcite composition occurred mainly during shallow subsurface burial and was associated with the intergranular solution of calcitic skeletal fragments, especially at those levels in the sediment relatively enriched in terrigenous material. This lithification process has worked to accentuate and modify original litho-logic differences and sedimentary structures in the primary sediments and has produced a kind of rhythmic vertical alternation of less well cemented, microstylolitized, impure limestone beds (‘cement-donor’ beds) and well cemented, more open textured, purer limestone beds (‘cement-receptor’ beds). The New Zealand limestones formed between latitudes 60° S and 35° S under generally cool temperate to warm temperate climate conditions. Oxygen isotopes suggest that surface waters were mainly significantly cooler than 20°C, so that shelf waters may have experienced extended periods of undersaturation with respect to calcium carbonate. Generally open circulation patterns maintained near normal salinity values over the entire shelf platform. Calculated sedimentation rates for the New Zealand carbonate sediments are generally very low (< 5 cm/1000 years). Periods of more active deposition commonly alternated with longer periods of non-deposition and by-passing or erosion. It is concluded that many characteristics of the New Zealand shelf limestone occurrences are explained best by a temperate latitude model of shallow marine carbonate sedimentation.  相似文献   

13.
Carbonaceous–terrigenous sequences hosting the largest gold deposits in Russia are divided for the first time into two lithochemical (normal potassic and anomalous sodic) rock types. It is shown that the type of terrigenous rock alkalinity is governed by peculiarities of the tectonic evolution of sedimentary-rock basins and stages of lithogenesis. The alkalinity type reflects the character of ore-forming processes. In potassic rocks, primarily disseminated-stringer gold–sulfide deposits are formed as a result of sedimentary-diagenetic processes. In sodic rocks, gold–quartz veins and stringer zones are formed as a result of elisional and catagenetic transformations. All these deposits should be identified as lithogenic objects. Processes of the subsequent zonal metamorphism or tectonomagmatic reactivation complicate the structure of gold deposits (sedimentary-diagenetic sulfide and elisional-catagenetic quartz veins) or create new deposits at the expense of primary lithogenic ore material in other lithostructural environments.  相似文献   

14.
Suspended sediments (SS) from the Atchafalaya River (AR) and the Mississippi River and surficial sediment samples from seven shallow cross-shelf transects west of the AR in the northern Gulf of Mexico were examined using elemental (%OC, C/N), isotopic (δ13C, Δ14C), and terrigenous biomarker analyses. The organic matter (OM) delivered by the AR is isotopically enriched (∼−24.5‰) and relatively degraded, suggesting that soil-derived OM with a C4 signature is the predominant OM source for these SS. The shelf sediments display OC values that generally decrease seaward within each transect and westward, parallel to the coastline. A strong terrigenous C/N (29) signal is observed in sediments deposited close to the mouth of the river, but values along the remainder of the shelf fall within a narrow range (8-13), with no apparent offshore trends. Depleted stable carbon isotope (δ13C) values typical of C3 plant debris (−27‰) are found near the river mouth and become more enriched (−22 to −21‰) offshore. The spatial distribution of lignin in shelf sediments mirrors that of OC, with high lignin yields found inshore relative to that found offshore (water depth > 10 m).The isotopic and biomarker data indicate that at least two types of terrigenous OM are deposited within the study area. Relatively undegraded, C3 plant debris is deposited close to the mouth of the AR, whereas more degraded, isotopically enriched, soil-derived OM appears to be deposited along the remainder of the shelf. An important input from marine carbon is found at the stations offshore from the 10-m isobath. Quantification of the terrigenous component of sedimentary OM is complicated by the heterogeneous composition of the terrigenous end-member. A three-end-member mixing model is therefore required to more accurately evaluate the sources of OM deposited in the study area. The results of the mixing calculation indicate that terrigenous OM (soil-derived OM and vascular plant debris) accounts for ∼79% of the OM deposited as inshore sediments and 66% of OM deposited as offshore sediments. Importantly, the abundance of terrigenous OM is 40% higher in inshore sediments and nearly 85% higher in offshore sediments than indicated by a two-end-member mixing model. Such a result highlights the need to reevaluate the inputs and cycling of soil-derived OM in the coastal ocean.  相似文献   

15.
The late Weichselian sequence in the northern part of the Norwegian Trench is composed of eight units. The two lowermost units are massive, firm to stiff diamictons, interpreted to have been deposited beneath ice-streams that in all likelihood reached the shelf edge. They are overlain by glaciomarine and normal-marine sediments deposited after 15000BP. The first phase of glacial retreat from the Norwegian Trench (15000–14800 BP) was very rapid and left a thin layer of proximal sediments on top of the tills. This was followed by a period with lower accumulation rates (14800–13600 BP), probably as a result of rapid source retreat and cold meltwater inhibiting dropstone fall-out. The end of this interval marks the change from ice-stream calving in cold water to melting on land. According to lithologic and isotopic data, the maximum rate of Fennoscan-dian ice-sheet disintegration took place around 12500 BP. The water temperatures declined significantly and rates of sedimentation and ice-rafting fell in association with the Younger Dryas period. The final retreat of the ice began as early as 10 500 BP, and the transition to normal-marine sedimentation is reflected by precipitation of iron oxide followed by pyrite, reduced sedimentation rates, and a change from terrigenous to biogenic sedimentation.  相似文献   

16.
The paper presents characteristics of the least studied iron formations of the East European Craton (Archean banded iron formations of the calciphyre-metabasite-gneiss association), a typical member of granulite complexes of the Ukrainian Shield, Belarussian-Baltic region, and Voronezh crystalline massif. They are mainly composed of diverse metasedimentary rocks: aluminous gneisses; silicate-magnetite, magnetite, and barren quartzites; eulysites; calciphyres; and marbles associated with metavolcanic rocks. Data on chemical compositions of the metasedimentary rocks are summarized for the first time and their possible primary mineral composition has been reconstructed using the MINLITH software. It is shown that they could be formed from a lithogenetic series of sediments linked by gradual transitions and geochemical commonness of sediments: from fine-grained terrigenous insufficiently mature sediments to chemogenic sediments depleted in terrigenous material (ferruginous-siliceous, ferruginous-siliceous-carbonate, siliceous-carbonate, and carbonate sediments). The inferred primary mineral assemblage indicates sedimentation in the central parts of large paleobasins in a reducing environment characterized by deficit of oxygen and excess of carbon dioxide. Lithological specifics of the banded iron formations in different regions presumably reflect different distances of sedimentation zones from submarine hydrothermal discharge sites and sources of terrigenous material. The banded iron formations at the present-day erosion section of basement represent metamorphosed fragments of the lateral-facies zoning of rocks of the Archean sedimentary basins (or a single basin) of the East European Craton. Unlike other Early Precambrian banded iron formations of the East European Craton, rocks of the calciphyre-metabasite-gneiss association are marked by a high Mn content.  相似文献   

17.
Structure and mechanisms of the formation of coastal paragenetic associations are widespread in the Permian terrigenous sequences of northern Russia. They are examined using the Kungurian-Ufimian rocks of northeastern Pai-Khoi as an example. Analysis of bed successions in the 620-m-thick section interval made it possible to distinguish 37 cyclothems, each being the result of execution of one transgression-regression sedimentation cycle. Based on the results obtained, the structural-genetic characteristics of bed successions of two types are given. The first type is represented by the Liur-Yaga ideal cyclothem related to landscapes of open coasts, which exist in both transgression and regression phases of sedimentation. The second type is represented by the Tab-Yu ideal cyclothem related to the formation of lagoon-bar systems in the regression phase of the sedimentation cycle and their destruction during transgressions. In the Pechora and Taimyr basins, bed successions of the two types were revealed in similar (with respect to composition and structure) Permian formations of different ages. It is likely that the proposed models are universal enough to be applicable for studying the terrigenous epicontinental rocks of humid zones irrespective of their age.  相似文献   

18.
The Great Barrier Reef (GBR) shelf contains a range of coral reefs on the highly turbid shallow inner shelf, where interaction occurs with terrigenous sediments. The modern hydrodynamic and sedimentation regimes at Paluma Shoals, a shore‐attached ‘turbid‐zone’ coral reef, and at Phillips Reef, a fringing reef located 20 km offshore, have been studied to document the mechanisms controlling turbidity. At each reef, waves, currents and near‐bed turbidity were measured for a period of ≈1 month. Bed sediments were sampled at 135 sites. On the inner shelf, muddy sands are widespread, with admixed terrigenous and carbonate gravel components close to the reefs and islands, except on their relatively sheltered SW side, where sandy silty clays occur. At Paluma Shoals, the coral assemblage is characteristic of inner‐shelf or sheltered habitats on the GBR shelf (dominated by Galaxea fascicularis, up to >50% coral cover) and is broadly similar to that at Phillips Reef, further offshore and in deeper water. The sediments of the Paluma Shoals reef flats consist of mixed terrigenous and calcareous gravels and sands, with intermixed silts and clays, whereas the reef slope is dominated by gravelly quartz sands. The main turbidity‐generating process is wave‐driven resuspension, and turbidity ranges up to 175 nephelometric turbidity units (NTU). In contrast, at Phillips Reef, turbidity is <15 NTU and varies little. At Paluma Shoals, turbidity of >40 NTU probably occurs for a total of >40 days each year, and relatively little time is spent at intermediate turbidities (15–50 NTU). The extended time spent at either low or high turbidities is consistent with the biological response of some species of corals to adopt two alternative mechanisms of functioning (autotrophy and heterotrophy) in response to different levels of turbidity. Sedimentation rates over periods of hours may reach the equivalent of 10 000 times the mean global background terrigenous flux (BTF) of sediment to the sea floor, i.e. 10 000 BTF, over three orders of magnitude greater than the Holocene average for Halifax Bay of <3 BTF. As elsewhere along the nearshore zone of the central GBR, dry‐season hydrodynamic conditions form a primary control upon turbidity and the distribution of bed sediments. The location of modern nearshore coral reefs is controlled by the presence of suitable substrates, which in Halifax Bay are Pleistocene and early Holocene coarse‐grained (and relatively stable) alluvial deposits.  相似文献   

19.
Geochemistry of two sediment cores from the west coast of India   总被引:2,自引:0,他引:2  
Copper, Pb, Zn, Ni, Co, Mn, AI, Ca, magnetic susceptibility and loss on ignition of sediments from two cores near Mangalore along the western continental shelf of India have been studied. The sediments have high Al and organic matter contents due to the high sedimentation rate and their proximity to river mouths. Down-core variations of elements indicate a decrease of lithogenous component during probably the past few centuries. While abundance of calcareous shells in some zones has lead to the dilution of most of the metals, it appears that Pb and Mn are associated with this phase. Copper, Zn and Fe are associated with organic matter and detrital particles, whereas Ni and Co are predominantly associated with the insoluble fraction. Oxides/hydroxides of Fe and Mn are absent because of the reducing conditions and the high terrigenous influx. Geochemically, Mn and Fe are present in different phases of sediments (in the insoluble fraction and organic matter respectively). The Fe content of one of the cores is positively correlated with magnetic susceptibility.  相似文献   

20.
The Cauvery basin of the Indian Peninsular shield, formed during the fragmentation of the Gondwana Supercontinent, continued to evolve until the end of Neogene through rift, pull-apart, shelf sag and tilt processes. The basin witnessed many cycles of transgression, regression, erosion and deposition. A more or less complete succession of upper Cretaceous–Paleocene sediments is exposed in the Ariyalur–Pondicherry depression of the basin. Anisotropy of magnetic susceptibility (AMS) technique is applied in an attempt to examine the depositional and eustatic conditions prevailed during the formation of these sedimentary sequences. AMS results point to the sedimentation history dominated by marked sea level changes with several phases of transgression and regression. The sedimentation occurred mainly in a shallow epicontinental sea which has been punctuated with terrigenous supply more often. Greater utility of magnetic fabrics is suggested as a tool to trace fluvial responses to tectonic and climatic changes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号