共查询到20条相似文献,搜索用时 15 毫秒
1.
A comparative analysis of sunspot oscillations and related radio sources in the active regions AR 8949, AR 8951, and AR 8953 is carried out using SOHO MDI data and simultaneous observations with the Nobeyama Radioheliograph, with a one-minute time resolution on scales of tens to hundreds of minutes. The radio sources in the selected active regions are ~40 000–60 000 km away from the corresponding spots, with the periods of long-term oscillations of the radio sources being ~12% longer. 相似文献
2.
Parameters of 100 radio pulsars detected outside the radio range (he pulsars) are compared with those of pulsars radiating only in the radio (n pulsars). The periods of he pulsars are, on average, appreciably shorter than those of n pulsars: 〈P〉 = 0.10 and 0.56 s, respectively. The distribution of the magnetic field at the light cylinder is shifted toward higher magnetic fields for the pulsars with high-energy radiation, compared to the distribution for pulsars radiating only in the radio. The magnetic fields at the light cylinder are 〈B lc〉 = 9×103 G for he radio pulsars, and 〈Blc〉 = 56 G formost purely radio pulsars. This suggests the generation of high-energy nonthermal radiation in radio pulsars at the peripheries of their magnetospheres. The distribution of the spin-energy loss rate dE/dt is uniform for he pulsars, and is characterized by a higher average value \(\left( {\left\langle {\log \frac{{dE}} {{dt}}} \right\rangle = 35.53} \right) \) , compared to n pulsars, \(\left( {\left\langle {\log \frac{{dE}} {{dt}}} \right\rangle = 32.60} \right) \) . The spatial distribution of he pulsars is nonuniform: they form two well separated clouds. 相似文献
3.
The mutual arrangement of very rich Abell clusters of galaxies influences the radio properties of these clusters, making it possible to explain certain peculiarities of their radio correlation functions. 相似文献
4.
S. I. Gopasyuk O. S. Gopasyuk I. P. Zalesov D. V. Karkach V. V. Svistel’nikov 《Astronomy Reports》2000,44(7):481-486
The magnetic-field structure in solar active regions outside spots is studied. The line-of-sight fields were measured using the new Crimean digital magnetograph in three spectral lines—Fe I 5253 Å, Fe II 5234 Å, and Ti I 5193 Å. Observations in the Fe II 5234 Å line indicate systematically higher field strengths than those in the Fe I 5253 Å line. The magnetic fluxes in 2″ elements are ~4.3×1018 Mx, ~4.6×1018 Mx, and ~6.2×1018 Mx according to the Fe I 5253 Å, Ti I 5193 Å, and FeII 5234 Å observations, respectively. Elements 2″–8″ in size make the largest contribution to the magnetic fluxes of active regions outside spots. 相似文献
5.
We study the twist properties of photospheric magnetic fields in solar active regions using magnetographic data on 422 active regions obtained at the Huairou Solar Observing Station in 1988–1997. We calculate the mean twist (force-free field αf) of the active regions and compare it with the mean current-helicity density of these same active regions, h c =B ∥·(?×B)∥. The latitude and longitude distributions and time dependence of these quantities is analyzed. These parameters represent two different tracers of the α effect in dynamo theory, so we might expect them to possess similar properties. However, apart from differences in their definitions, they also display differences associated with the technique used to recalculate the magnetographic data and with their different physical meanings. The distributions of the mean αf and h c both show hemispherical asymmetry—negative (positive) values in the northern (southern) hemisphere—although this tendency is stronger for h c. One reason for these differences may be the averaging procedure, when twists of opposite sign in regions with weak fields make a small contribution to the mean current-helicity density. Such transequatorial regularity is in agreement with the expectations of dynamo theory. In some active regions, the average αf and h c do not obey this transequatorial rule. As a whole, the mean twist of the magnetic fields αf of active regions does not vary significantly with the solar cycle. Active regions that do not follow the general behavior for αf do not show any appreciable tendency to cluster at certain longitudes, in contrast to results for h c noted in previous studies. We analyze similarities and differences in the distributions of these two quantities. We conclude that using only one of these tracers, such as αf, to search for signatures of the α effect can have disadvantages, which should be taken into account in future studies. 相似文献
6.
Two solar radio bursts exhibiting narrow-band millisecond pulsations in intensity and polarization are analyzed. There were considerable time delays between the left-and right-circularly polarized components of the radio emission. The observed oscillations of the degree of polarization are due to the different group velocities of the ordinary and extraordinary modes in their propagation from the source to the observer; the frequency dependence of the delay is in excellent agreement with the theoretically calculated group delay in a magnetoactive plasma. It unambiguously follows that the pulsed radio emission is generated near the double upper hybrid frequency by the nonlinear plasma mechanism, since the source emission has a low degree of polarization. In addition to dispersion effects, a Fourier analysis also reveals effects associated with the source inhomogeneity. We detected a frequency drift of pulsations (autodelays) with different signs for different polarization components. This drift suggests that, apart from the dispersion effects, there are also the effects related to inhomogeneity of the radio source. It is shown, in particular, that the upper hybrid modes (generating the radio emission) are unstable in regions with enhanced gradients of the plasma density and/or magnetic field. 相似文献
7.
The fine structure of the active region in the Orion KL gas-dust complex has been measured in polarized H2O maser emission (epoch December 12, 1998) with an angular resolution of 0.15 mas, or 0.07 AU, and a velocity resolution of 0.05 km/s. The maser emission is concentrated in a line with ΔV = 0.45 km/s, V LSR = 7.65 km/s, and a flux density of F = 2.1 MJy. The structure consists of a compact source (ejector), highly collimated bipolar outflow, and a toroidal component. The brightness temperature of the ejector is T b = 2 × 1016 K, and its degree of linear polarization reaches m ≈ 20%. The variation of the polarization angle across the profile is dX/dV = ?23°/(km/s), which considerably exceeds the Faraday rotation in the HII region foreground to the molecular cloud. The observed “rotation” is explained as an effect of different orientations for the polarization of the ejected outflows. The brightness temperature of the bipolar outflow is T b ≈ 1014 K, while that of individual components is T b ≈ 1015 K. The degree of polarization in the components exceeds that of the ejector and reaches m ≈ 50%. The position angle of the polarization is X ≈ 45° relative to the outflow. The torus, which is observed edge-on, has a diameter of 0.38 AU and a thickness of 0.08 AU. The brightness temperature of the tangential directions in the torus is T b ≈ 5 × 1015 K, and the rotational velocity is V rot ≈ 0.02 km/s. The degree of polarization is m ≈ 40%, and its position angle relative to the azimuthal plane is X ≈ 43°. The relative deviations of the polarization plane in the bipolar outflow and torus relative to the pumping direction are nearly the same and are determined by Faraday rotation within the HII region. 相似文献
8.
The fundamental possibility of reliably removing the π ambiguity from the transverse magnetic field detected in solar vector magnetographic measurements, independent of the location of the vector magnetograms on the solar disk is demonstrated. The corrected magnetograms are then used as boundary conditions for the reconstruction of the three-dimensional magnetic field. The calculated field lines agree well with observed non-potential magnetic loops. The π ambiguity is removed using a modified Metropolis algorithm adapted to a spherical geometry. The spatial configuration of the magnetic field is calculated in a nonlinear force-free approximation using an optimization method. Tests of the new algorithm for resolving the π ambiguity are demonstrated for various model cases and comparisons with results of the NPFC method. 相似文献
9.
The evolution of photospheric velocities from the first minutes after the emergence of fresh magnetic flux and the formation
of the first pores in active region NOAA 10488 is studied with a time resolution of 1 min and spatial resolution of 4″. The
emerging magnetic flux of a major active region is initially a bundle of magnetic-flux loops. Some of these loops erupt through
the system of supergranular cells with speeds of up to 1 km/s within 15–25 min and form pores and small spots. It is suggested
that the development of a pore represents the emergence of a horizontal magnetic field, which is converted into elements with
a strong vertical magnetic field. The region of ascending plasma initially coincides with the zero line of a bipolar magnetic
pair. Downflow and upflow regions are related to and appear with the development of pores. During the first hours of their
evolution, the trailing-polarity pores exhibit downflows with mean speeds of ∼500 m/s, while upflows with speeds of ∼250 m/s
dominate near the leading-polarity pores. It is concluded that a matter flow from the leading to the trailing end is present
in the rising loop of a magnetic flux tube, in agreement with well-known numerical-simulation results. The flow that develops
in the magnetic-flux tube erupting through the convection zone persists when pores and small spots emerge in the photosphere,
at least during the first hours of their evolution. 相似文献
10.
L. A. Akimov S. A. Beletskii I. L. Belkina O. I. Bugaenko Yu. I. Velikodskii I. A. Zhitnik A. P. Ignat’ev V. V. Korokhin S. V. Kuzin G. P. Marchenko A. A. Pertsov 《Astronomy Reports》2005,49(7):579-586
A spectral analysis of a series of integrated MgXII 8.42 Å X-ray intensities recorded by the CORONAS-F SPIRIT spectroheliometer is presented. Statistically significant peaks for periods in the intervals 12–30 min and 40–200 min were found in the power spectra. The power spectrum for these periods changed after the emergence of new photospheric magnetic flux in the active region NOAA 9840. 相似文献
11.
Data on thermal radio emission and absorption in and near the directions towards supernova remnants are used to estimate the distribution of ionized gas surrounding remnants of type II supernovae. The amount of absorption and emission toward the supernova remnants are determined by two types of HII regions. The first are extended HII regions around the supernova remnants (Strömgren spheres), while the second are more compact and bright HII regions surrounding early-type stars. In the early stages of evolution of the supernova remnants (1000–3000 yrs), the amount of thermal absorption and emission is minimum, apparently indicating that only the supernova Strömgren zones contribute in these stages, while there is an absence of absorption or emission from the compact HII regions. Possible mechanisms for this scenario are discussed. 相似文献
12.
I. F. Malov 《Astronomy Reports》2014,58(3):139-144
Previously developed methods for estimating the angle β between the spin axis of a neutron star and its magnetic moment together with observational data for anomalous X-ray pulsars (AXPs) indicate that these objects are nearly aligned rotators, and that the drift model can be applied to them. The magnetospheres of aligned rotators are appreciably more extended than in pulsars with large values of β. With such extents for the magnetosphere, the conditions for the generation of transverse waves via the cyclotron instability are satisfied. The expected spectrum of the resulting radiation is very steep (its spectral index is α > 3), consistent with the observed radio spectra of known AXPs (α > 2). A large magnetosphere also favors the appearance of appreciable pitch angles for relativistic electrons, and therefore the generation of synchrotron emission. The maximum of this emission falls in the microwave range. This mechanism provides appreciable fluxes at frequencies of tens of gigahertz and can explain the observed enhanced AXP radiation in this range. 相似文献
13.
Observations of the active region AR 7962 obtained at 2–32 cm on the RATAN-600 radio telescope on May 10–12, 1996, are presented. The high-resolution measurements detected a narrow feature near 8.5 cm against the background of the smooth spectrum of the local source associated with sunspots. This narrow-band emission is identified with a bright, pointlike, high-frequency source at 1.7 cm recorded on maps made using the Nobeyama radio telescope. The characteristics of the observed line (lifetime 3 days, brightness temperature of the order of several million Kelvin, relative width of about 10%) suggest that it can be explained as thermal cyclotron radiation at the third harmonic of the electron gyrofrequency from a compact source containing a dense, hot plasma; the corresponding higher frequency emission could be due to thermal Bremsstrahlung. Analysis of the RATAN-600 and Nobeyama data can be used to probe the magnetic field, kinetic temperature, and electron density in the radiation source in the corona. 相似文献
14.
M. R. Kundu 《Journal of Earth System Science》1984,93(3):201-225
We review high spatial resolution microwave observations of solar active regions, coronal loops and flares. Observations of
preflare active regions are presented; in particular we discuss the interpretations of reversal of polarization at the flare
site and the role of newly emerging flux in triggering the onset of flares. We discuss the spatial locations of microwave
burst emitting regions; loops or arcades of loops appear to be the sites of flare energy release in microwave bursts. We provide
direct observational evidence of magnetic reconnection as the primary cause of acceleration of electrons in microwave bursts. 相似文献
15.
I. F. Malov 《Astronomy Reports》2001,45(11):865-871
The luminosity L of radio pulsars due to synchrotron radiation by the primary beam at the magnetosphere periphery is derived. There is a strong correlation between the observed optical luminosities of radio pulsars and the parameter $\dot P/P^4$ (where P is the pulsar period). This correlation predicts appreciable optical emission from several dozen pulsars, in particular, from all those with P<0.1 s. Agreement with optical observations can be achieved for Lorentz factors of the secondary plasma γp=2–13. Plasma with such energies can be produced only when the magnetic-field structure near the neutron-star surface deviates substantially from a dipolar field. The peak frequency of the synchrotron spectrum should shift toward higher values as the pulsar period P decreases; this is, in agreement with observational data for 27 radio pulsars for which emission has been detected outside the radio band. 相似文献
16.
The dynamics of active regions have been investigated using multi-fractal analysis methods, based on magnetograms of the full solar disk in the 630.2 nm line obtained with the SOLIS vector spectromagnetograph of Kitt Peak Observatory (USA) during 2006?C2007 and January 1, 2009?CApril 12, 2010. The applied method of multi-fractal segmentation reveals the appearance of new magnetic fluxes on the Sun disk. A comparison of these fluxes with flare activity shows that the flares are generated in areas of interaction of emerging fluxes with existing structures. 相似文献
17.
Measurements of the broadening of pulsar pulses by scattering in the interstellar medium are presented for a complete sample of 100 pulsars with Galactic longitudes from 6° to 311° and distances to three kiloparsec. The dependences of the scattering on the dispersion measure (τ sc(DM) ∝ DMα), frequency (τ sc(v) ∝ v ?γ ), Galactic longitude, and distance to the pulsar are analyzed. The dependence of the scattering on the dispersion measure in the near-solar neighbourhood can be represented by the power law τ sc(DM) ∝ DM2.2±0.1). Measurements at the low frequencies 111, 60, and 40 MHz and literature data are used to derive the frequency dependence of the scattering (τ sc(v) ∝ V ?γ ) over a wide frequency interval (covering a range of less than 10: 1) with no fewer than five frequencies. The index for the frequency dependence, γ = 4.1 ± 0.3, corresponds to a normal distribution for inhomogeneities in the turbulence in the scattering medium. Based on an analysis of the dependence of the scattering on the distance to the pulsar and on Galactic longitude, on average, the turbulence level C n 2 is the same in all directions and at all distances out to about three kpc, testifying to the statistical homogeneity of the turbulence of the scattering medium in the near-solar region of the Galaxy. 相似文献
18.
In this paper, the results of our observations on Al-method ionospheric absorption of radio waves on 1.8 and 2.2 MHz during the solar eclipse of 16 February 1980 are presented. The absorption decreased by about 41% and 46% of the normal value respectively at the above two frequencies at Ahmedabad following the maximum phase of the eclipse (about 77% of full disc) with a delay of 18 minutes. The quantityA T (f) which is a measure of εN vdh is now examined for better clarity of the influence of the changes in theE-layer. The results are discussed in relation to the observations of the ionizing radiations from the sun, changes in the electron density, recombination rate and absorption in the underlyingD andE regions. 相似文献
19.
Modulations of the microwave emission of the Sun at 11.7 GHz have been studied using more than 40 events observed in 2001
at the Mets?hovi Radio Observatory. In nearly all the observed events, low-frequency modulations with periods of 3–90 min
were detected. As a rule, simultaneous modulation of the emission at several frequencies was observed. One possible origin
of such modulations with periods 5–10 min is parametric resonance arising in coronal magnetic loops as a result of interactions
with the 5-min photospheric oscillations, while the long-period modulations could be a manifestation of sunspot oscillations.
Torsional (ϑ-mode) and radial (r-mode) oscillations have such periods. The frequency of occurrence of oscillations with the determined periods is considered,
and a lower limit for the brightness temperature of the oscillations is estimated. 相似文献
20.
This paper presents a statistical study of various integrated parameters of solar active regions, such as the distance between the polarity centroids, the inclination of the magnetic axis, the flux imbalance between the polarities, and the interosculation parameter of the magnetic fluxes of opposite polarities. The study is based on observations of the longitudinal photospheric magnetic field. We analyze ten active regions for which an appreciable volume of data with good spatial resolution are available. The distributions of the above parameters with field strength are very different for quiet and flare-productive active regions and for quiet and flare-active evolutionary phases of the same active region. Some distributions exhibit substantial and characteristic variations during the development of certain flare processes. The first moments of the distributions reflect specific features in the configuration of the photospheric magnetic fields and are correlated with the level of eruptive processes in the active regions. 相似文献