首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present the results of a comparative analysis of the atmospheric chemical abundances of red giants in several open clusters: the Hyades, Collinder 350, NGC 6475, and Ruprecht 147. We determined the atmospheric parameters of all the stars and the elemental abundances in their atmospheres, as well as their masses, Galactic velocities, and the elements of their orbits in the Galaxy. The observed excess [Na/Fe] and [Eu/Fe] abundances in the atmospheres of Hyades giants suggests that matter later used for star formation had been enriched in the ejecta from type II supernovae.  相似文献   

2.
We have determined abundances of copper, zinc, sodium, and aluminum in the atmospheres of 172 F, G, and K dwarf stars (−1.0 < [Fe/H] < 0.3) belonging to the Galaxy’s thin and thick disks and to the Hercules moving group. Our observations were performed with the ELODIE échelle spectrometer on the 1.93-m telescope of the Haute Provence Observatory, with a resolving power of R = 42 000 and signal-to-noise ratio S/N > 100. The Na, Al, Cu, and Zn abundances were derived in an LTE approximation; the synthetic spectrum for the copper lines was calculated taking into account super-fine structure of the lines. We analyzed the abundances of these elements as a function of metallicity [Fe/H] for stars of the thin and thick disks of the Galaxy and the Hercules moving group. The Cu abundances and their trends with metallicity are essentially the same in the three studied sub-structures. The mean Al and Zn abundances for stars of the thin and thick disks differ significantly.  相似文献   

3.
We present a comparative analysis of the atmospheric abundances of red giants in the vicinity of open clusters. The atmospheric parameters, atmospheric abundances, masses, ages, Galactic velocities, and elements of the Galactic orbits are derived for all the studied stars. We have discovered high metal abundances (close to 0.3dex) for five stars, which we classify as super-metal-rich stars. Several stars have lower [Na/Fe] than normal red giants with similar atmospheric parameters. The kinematic characteristics of these stars are somewhat different from those for objects in the Galactic thin disk. We suggest that the observed effect can be explained by inhomogeneity of the chemical composition of gas-dust clouds, which could be due to different rates of SNe II supernovae in different regions of the Galaxy.  相似文献   

4.
A catalog compiling the parameters of 346 open clusters, including their metallicities, positions, ages, and velocities has been composed. The elements of the Galactic orbits for 272 of the clusters have been calculated. Spectroscopic determinations of the relative abundances, [el/Fe], for 14 elements synthesized in various nuclear processes averaged over data from 109 publications are presented for 90 clusters. The compiled data indicate that the relative abundances of primary α elements (oxygen and magnesium) exhibit different dependences on metallicity, age, Galactocentric distance, and the elements of the Galactic orbits in clusters with high, elongated orbits satisfying the criterion (Zmax2 + 4e2)1/2 > 0.40 and in field stars of the Galactic thin disk (Zmax is the maximum distance of the orbit from the Galactic plane in kiloparsec and e is the eccentricity of the Galactic orbit). Since no systematic effects distorting the relative abundances of the studied elements in these clusters have been found, these difference suggest real differences between clusters with high, elongated orbits and field stars. In particular, this supports the earlier conclusion, based on an analysis of the elements of the Galactic orbits, that some clusters formed as a result of interactions between high-velocity,metal-poor clouds and the interstellar mediumof theGalactic thin disk. On average, clusters with high, elongated orbits and metallicities [Fe/H] < -0.1 display lower relative abundances of the primary a elements than do field stars. The low [O, Mg/Fe] ratios of these clusters can be understood if the high-velocity clouds that gave rise to them were formed of interstellar material from regions where the star-formation rate and/or the masses of Type II supernovae were lower than near the Galactic plane. It is also shown that, on average, the relative abundances of the primary a elements are higher in relatively metal-rich clusters with high, elongated orbits than in field stars. This can be understood if clusters with [Fe/H] > -0.1 formed as a result of interactions between metal-rich clouds with intermediate velocities and the interstellar medium of the Galactic disk; such clouds could form from returning gas in a so-called “Galactic fountain.”  相似文献   

5.
The properties of the relative abundances of rapid and slow neutron-capture elements are studied using a catalog containing spectroscopic abundance determinations for 14 elements produced in various nuclear-synthesis processes for 90 open clusters. The catalog also contains the positions, ages, velocities, and elements of the Galactic orbits of the clusters. The relative abundances of both r-elements (Eu) and s-elements (Y, Ba, La, and Ce) in clusters with high, elongated orbits and in field stars of the Galactic thin disk display different dependences on metallicity, age, Galactocentric distance, and the elements of the Galactic orbits, supporting the view that these objects have different natures. In young clusters, not only barium, but also the three other studied s-elements display significantly higher relative abundances than field stars of the same metallicity. The relative abundances of Eu are lower in highmetallicity clusters ([Fe/H] > -0.1) with high, elongated orbits than in field giants, on average, while the [Eu/Fe] ratios in lower-metallicity clusters are the same as those in field stars, on average, although with a large scatter. The metallicity dependence of the [O, Mg/Eu] ratios in clusters with high, elongated orbits and in field stars are substantially different. These and other described properties of the Eu abundances, together with the properties of the abundances of primary a-elements, can be understood in a natural way if clusters with high, elongated orbits with different metallicities formed as a result of interactions of two types of high-velocity clouds with the interstellar medium of the Galactic disk: low-metallicity highvelocity clouds that formed from “primordial” gas, and high-metallicity clouds with intermediate velocities that formed in “Galactic fountains.”  相似文献   

6.
The non-LTE potassium abundances in the atmospheres of 33 Galactic-disk stars are derived and the parameters of the atmospheres of 23 of the stars are determined. Neglecting departures from LTE results in a systematic overestimation of the potassium abundances and an increase in their dispersion, even for differential analyses relative to the Sun. The non-LTE corrections are significant ((?0.2)–(?0.6) dex) and depend on the surface gravities and effective temperatures of the stars. The mean potassium abundance for a sample of ten stars with [Fe/H]~0.0 is in agreement with the solar and meteoritic abundances (log ? (K)=5.12). As the stellar metallicity increases from [Fe/H]=(?1.0) to (0.2) dex, the [K/Fe] ratio decreases systematically from 0.3 dex to ?0.1 dex. The derived dependence [K/Fe]-[Fe/H] is in agreement with the results of published model calculations of the chemical evolution of the Galaxy. This indicates the dominance of explosive oxygen burning in massive type II supernovae during the synthesis of potassium in the Galactic disk.  相似文献   

7.
We analyze previously published chemical abundances in the atmospheres of red giants. Excess abundances are observed not only for Na, but also for Al and Si, with the overabundances increasing with the stars’ luminosity. The observed anomalies provide evidence that, in addition to the CNO hydrogen-burning cycle, the Mg-Al and Ne-Na cycles operate in the interiors of main-sequence stars; their products are brought to the stellar atmospheres by convection after the transition to the red-giant phase. The abundance anomalies for s-process elements, also observed in the atmospheres of field stars, testify to the presence of a substantial number of neutrons. The s-process abundance anomalies are absent from giants of the young Hyades cluster.  相似文献   

8.
We analyze the Na, Mg, Al, and Si abundances in the atmospheres of more than 40 stars, includingred giants of different spectral subgroups (normal red giants, mild and classical barium stars) and several supergiants. All these elements exhibit abundance excesses, with the overabundance increasing with the star’s luminosity. The dependence of the overabundances for each of these elements on the luminosity (or log g) is the same for all the spectral subgroups, testifying to a common origin: they are all products of hydrogen burning in the NeNa and MgAl cycles that have been dredged up from the stellar interiors to the outer atmospheric layers by convection that gradually develops during the star’s evolution from the main sequence to the red-giant stage. The sodium abundances derived for several stars are lower than for other stars with similar atmospheric parameters. The ages and kinematic characteristics of these two groups of stars suggest that they probably belong to different stellar generations.  相似文献   

9.
Model atmospheres are fitted to spectroscopic data in order to analyze the elemental abundances in the atmospheres of three red giants in the Hyades cluster. The three stars have almost identical chemical compositions, with iron-group elements slightly overabundant compared to the solar values—a pattern that is typical of Hyades dwarfs. The overabundances of the light elements Na, Al, and Si are virtually equal to those observed for field giants. No enrichment in rare-earth elements relative to iron was found, in sharp contrast to field giants. It is concluded that these discrepancies are due to the age difference between the two groups of stars, which have resulted in different degrees of convective overshooting.  相似文献   

10.
The abundances of 19 chemical elements in the atmospheres of five stars belonging to three globular clusters have been determined by applying the model-atmospheremethod to 430.0–790.0 nm spectra obtained with the échelle spectrometer of the 6-m telescope of the Special Astrophysical Observatory. The abundances of silicon, calcium, iron-peak elements, copper, zinc, and neutron-capture elements follow the abundance patterns for halo stars. The abundance of sodium in M 10 giants provides evidence that different mixing mechanisms operate in halo and cluster stars or that light elements are enriched in different ways in the pre-stellar matter from which some globular clusters and halo stars were formed.  相似文献   

11.
We present a compiled catalog of effective temperatures, surface gravities, iron and magnesium abundances, distances, velocity components, and orbital elements for stars in the solar neighborhood. The atmospheric parameters and iron abundances are averages of published values derived from model synthetic spectra for a total of about 2000 values in 80 publications. Our relative magnesium abundances were found from 1412 values in 31 publications for 876 dwarfs and subgiants using a three-step iterative averaging procedure, with weights assigned to each source of data as well as to each individual determination, and taking into account systematic deviations of each scale relative to the reduced mean scale. The estimated completeness for data sources containing more than five stars up to late December 2003 exceeds 90%. For the vast majority of stars in the catalog, the spatial-velocity components were derived from modern high-precision astrometric observations and their Galactic orbital elements were computed using a three-component model of the Galaxy, consisting of a disk, a bulge, and a massive extended halo.  相似文献   

12.
We determine the abundances of Pr and Nd in the atmospheres of magnetic and non-magnetic chemically peculiar stars from the lines of rare earth elements in the first and second ionization states. The computations for the magnetic stars take into account the influence of the magnetic field on line formation. We studied the influence of errors in the stellar-atmosphere parameters and the atomic parameters of the spectral lines on the accuracy of abundance determinations. Within the derived accuracy, ionization equilibrium is satisfied in the atmospheres of non-pulsating magnetic and non-magnetic stars (so that abundances derived separately from lines of first and second ions agree). For all the pulsating magnetic (roAp) stars studied, the abundances derived from lines of second ions are 1.0 to 1.7 dex higher than those derived from first ions. The violation of ionization equilibrium in the atmospheres of pulsating stars is probably due to, first, considerable enrichment of Pr and Nd in the uppermost atmospheric layers, and second, a higher location for the layer of enhanced elemental abundance in roAp stars than in non-pulsating stars. Two objects from the list of non-pulsating magnetic stars, HD 62140 and HD 115708, exhibit anomalies of their Pr and Nd lines characteristic of roAp stars. The differences in the rare earth anomalies for the pulsating and non-pulsating peculiar stars can be used as a selection criterion for candidate roAp stars.  相似文献   

13.
We present our analysis of elemental abundances in the atmospheres of 16 classical barium stars derived from high-resolution spectra and model atmospheres. Comparison of the results with analogous data for moderate barium stars and normal red giants shows that the abundance patterns for elements before the iron peak are the same for all three groups of red giants, testifying to a similar origin. For binary systems, we confirm the influence of the orbital period and, hence, the component separation, on the overabundance of s-process elements. The amount of enrichment in s-process elements is also influenced by mass, metallicity, and evolutionary phase. Any of these parameters can be important in individual objects.  相似文献   

14.
The results of a study of the chemical compositions of Galactic planetary nebulae taking into account two types of inhomogeneity in the nebular gas density in their envelopes are reported. New analytical expressions for the ionization correction factors have been derived and are used to determine the chemical compositions of the nebular gas in Galactic planetary nebulae. The abundances of He, N, O, Ne, S, and Ar have been found for 193 objects. The Y–Z diagrams for various He abundances are analyzed for type II planetary nebulae separately and jointly with HII regions. The primordial helium abundance Y p and enrichment ratio dY/dZ are determined, and the resulting values are compared with the data of other authors. Radial abundance gradients in the Galactic disk are studied using type II planetary nebulae.  相似文献   

15.
The atmospheric abundances of 30 chemical elements in the halo star HD 221170 are analyzed by fitting synthetic spectra to observed spectra (i) with a resolution of 60 000 and signal-to-noise ratios of about 200 taken with the 1.93-m telescope of the Observatoire de Haute Provence and (ii) with a resolution of 35 000 and signal-to-noise ratios of more than 100 taken with the 2-m telescope of the Terskol Peak Observatory. The derived parameters of the stellar atmosphere are Teff=4475 K, log g=1.0, [Fe/H]=?2.03, Vmicro=1.7 km/s, and Vmacro=4 km/s. The parameters Teff, log g, [Fe/H], and Vmicro can be determined by analyzing the variations of the rms error of the mean iron abundance derived using different model atmospheres. The chemical composition of the star’s atmosphere is analyzed. The abundances of a total of 35 elements in HD 221170 have been derived in this paper and in previous studies. Overall, the abundances of elements lighter than praseodymium are consistent with the elemental abundances in the atmospheres of stars with similar metal deficits. Copper and manganese are underabundant by ?2.9 and ?2.6 dex, respectively, relative to the Sun (when the analysis includes the effects of hyperfine structure). Heavy r-process elements (starting from praseodymium) are overabundant compared to iron-group elements. This can be explained by an enrichment in r-process elements of the material from which the star was formed.  相似文献   

16.
We have analyzed the lithium abundance in the atmospheres of 20 stars that are solar analogues based on high-resolution echelle spectra using model atmospheres in a non-LTE approach. In terms of their lithium abundances, the stars (which are located in a narrow range of temperatures of 5650–5900 K) can be divided into two groups: one with low lithium abundances, as in the solar atmosphere, and one with lithium abundances that are higher than the solar value by about 1 dex (with the accuracy of the lithium abundances being 0.15 dex).  相似文献   

17.
We have determined the atmospheric abundances of Y, Ba, La, Ce, Pr, Nd, and Eu for a sample of 171 giants selected as clump giants with metallicities [Fe/H] between ?0.7 and 0.3 dex, based on photometric criteria. In our analysis, we assumed local thermodynamic equilibrium and fit the parameters of model atmospheres to high-resolution (R = 42 000) echelle spectra with high signal-to-noise ratios. The Ba and Eu abundances were derived using synthetic spectra, including hyperfine structure. We find no significant difference in the abundances of s-or r-process neutron-capture elements between clump giants and ascending-branch giants selected by us earlier. We also analyze the relation between the abundances of neutron-capture elements and [Fe/H].  相似文献   

18.
We used high-resolution echelle spectra acquired with the 1.5-m Russian-Turkish Telescope to determine the fundamental atmospheric parameters and abundances of 30 chemical elements for three ?? Scuti stars: AOCVn, CP Boo, and KWAur. The chemical compositions we find for these stars are similar to those for Am-star atmospheres, though some anomalies of up to 0.6?C0.7 dex are observed for light and heavy elements. We consider the effect of the adopted stellar parameters (effective temperature, log g, microturbulent velocity) and the amplitude of pulsational variations on the derived elemental abundances.  相似文献   

19.
Marsakov  V. A.  Koval’  V. V.  Gozha  M. L. 《Astronomy Reports》2019,63(4):274-288

A catalog of Galactic globular clusters has been compiled and used to analyze relations between the chemical and kinematic parameters of the clusters. The catalog contains positions, distances, luminosities, metallicites, and horizontal-branch morphology indices for 157 globular clusters, as well as space velocities for 72 globular clusters. For 69 globular clusters, these data are suppleented with the relative abundances of 28 chemical elements produced in various nuclear-synthesis processes, taken from 101 papers published between 1986 and 2018. The tendency for redder horizontal branches in lowmetallicity accreted globular clusters is discussed. The discrepancy between the criteria for cluster membership in the thick-disk and halo subsystems based on chemical and kinematic properties is considered. This is manifest through the fact that all metal-rich ([Fe/H] > ?1.0) clusters are located close to the center and plane of the Galaxy, regardless of their kinematic membership in particular Galaxy subsystems. An exception is three accreted clusters lost by a dwarf galaxy in Sagittarius. At the same time, the fraction of more distant clusters is high among metal-poorer clusters in any kinematically selected Galactic subsystem. In addition, all metal-rich clusters whose origins are related to the same protogalactic cloud are located in the [Fe/H]–[α/Fe] diagram considerably higher than the strip populated with field stars. All metal-poor clusters (most of them accreted) populate the entire width of the strip formed by high-velocity (i.e., presumably accreted) field stars. Stars of dwarf satellite galaxies (all of them being metal-poor) are located in this diagram much lower than accreted field stars. These facts suggest that all stellar objects in the accreted halo are remnants of galaxies with higher masses than those in the current environment of the Galaxy. Differences in the relative abundances of α-process elements among stellar objects of the Galaxy and surrounding dwarf satellite galaxies confirmthat the latter have left no appreciable stellar traces in the Galaxy, with the possible exception of the low-metallicity cluster Rup 106, which has low relative abundances of α-process elements.

  相似文献   

20.
An analysis of the abundance of cobalt in atmospheres of red giants, indicates they can be divided into two groups: stars with the normal [Co/Fe] abundance and those with a small [Co/Fe] excess. A comparative analysis of the spectrograms taking into account the effect of superfine splitting provides evidence for a [Co/Fe] excess in some stars. We have also detected physical and kinematical differences between these groups. Stars with a [Co/Fe] excess are related to the thick-disk population of the Galaxy. These stars are older and less massive, display lower metallicities, and have Galactic velocities corresponding to those of thick-disk objects. It is suggested that the observed pattern of a [Co/Fe] excess in the halo and thick disk reflects the chemical composition of the Galaxy at a very early stage of its evolution, when Population III objects existed. The lower abundance excess in the thick disk compared to the halo and the absence of an excess in the thin disk are due to the contributiuon from Type I supernovae at later stages of the Galaxy’s evolution. We have found that the thick disk of the Galaxy displays gradients of its cobalt and iron abundances, possibly providing evidence that the thick disk formed as a result of the collapse of a protogalactic cloud.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号